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Abstract

In this paper, a numerical method is given for partial differential equations, which combines the use of Lagrange multipliers with
radial basis functions. It is a new method to deal with difficulties that arise in the Galerkin radial basis function approximation applied
to Dirichlet (also mixed) boundary value problems. Convergence analysis results are given. Several examples show the efficiency
of the method using TPS or Sobolev splines.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade, meshless methods using radial basis functions have been extensively studied. Compared with
classical numerical method such as finite element methods (FEM), meshless method will save computing time because
generating the mesh for FEM is time consuming. This complication has been described recently by Griebel and
Schweitzer [8] as “a very time-consuming portion of overall computation is the mesh generation from CAD input
data. Typically, more than 70% of overall computation is spent by mesh generators”. Numerical methods for partial
differential equations using RBF are focused on for its ‘meshless’ property. Both collocation and the Galerkin method
are discussed in a series of papers, for example [6,7,19,5]. The linear system in the unsymmetric collocation method
may not be solvable. Examples are given in [9] where the coefficient matrix in the linear system is singular. In [19], the
author gives an analysis for the Neumann problem using radial basis functions (RBF). FEM-like convergence estimates
are given. However, the finite dimensional subspace spanned by RBF cannot coincide with the Dirichlet boundary
condition, even by compactly supported RBF. Hence, there are lack of error analysis for both Dirichlet and the mixed
problem.

The Lagrange multipliers method, which was first introduced by Ivo Babuška in [2], has been thoroughly studied by
Pitkäranta [11–13], Barbosa [3], Brezzi [4], Stenberg [16]. This method is used to approximate the Dirichlet boundary
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conditions by using Lagrange multipliers. It was shown that the method had optimal convergence rates for the finite
element spaces satisfying an inf–sup condition. In this paper, we combine the Lagrange multipliers method with RBF
Galerkin approximation to obtain error estimates for Dirichlet problems. The traditional penalty method combined
with RBFs is also introduced.

The rest of this paper is organized as follows. In Section 2, we introduce the Lagrange multiplier method. In Section
3, We consider the discrete form of the Lagrange multiplier method in the finite dimensional subspace spanned by
translates of a radial basis function. Convergence rates for the approximate solutions are given. In Section 4, several
numerical examples are given to show the efficiency of this method. The last section is devoted to a conclusion of
this paper.

2. Lagrange multipliers method

Consider the model problem:{−�u + u = f in �,

u = g on ��,
(1)

where � is a d-dimensional domain, with a smooth boundary ��,whose outer unit normal direction is denoted by n, f

is in L2(�), The corresponding bilinear form is:

A(u, v) =
∫
�

(∇u · ∇v + uv) dx ∀u, v ∈ H 1
�(�). (2)

With H 1
�(�) = {v ∈ H 1(�) : v = g on ��}. The Sobolev spaces Hs(�), H s(��) are defined in the standard way

[1]. The norms are denoted ‖ · ‖Hs(�), ‖ · ‖Hs(��), respectively. We recall that the well-known trace inequality and
inverse trace inequality hold for suitable Sobolev spaces on �. We also use the space H−1/2(��), i.e., the dual space
of H 1/2(��), with the norm

‖�‖H−1/2(��) = sup
z∈H 1/2(��)

〈�, z〉
‖z‖H 1/2(��)

, (3)

where the duality pairing 〈�, z〉=∫�� z� ds. The original problem is given in the following weak form: given f ∈ L2(�)

and g ∈ H 1/2(��), find u ∈ H 1(�) and � ∈ H−1/2(��) such that

B(u, �; v, �) = (f, v) + 〈g, �〉 ∀(v, �) ∈ H 1(�) × H−1/2(��) (4)

with the bilinear form defined by

B(u, �; v, �) = A(u, v) − 〈�, v〉 − 〈�, u〉 (5)

(f, v) = ∫
� fv dx is the scalar product in L2(�).

In the FEM case, the problem is transformed into: for finite element subspaces Vh, �h with density h, find (uh, �h) ∈
Vh × �h, such that

B(uh, �h; v, �) = (f, v) + 〈g, �〉. (6)

The convergence rates of this method are given by the following theorem [2,4].

Theorem 2.1. Suppose that the element of the finite element subspaces satisfy the conditions

sup
v∈Vh\{0}

〈�, v〉
‖v‖H 1(�)

�C‖�‖H−1/2(��), ∀� ∈ �h

and

|v|2
H 1(�)

�C‖v‖2
H 1(�)

, ∀v ∈ {v ∈ Vh|〈�, v〉 = 0 ∀� ∈ �h}.



396 Y. Duan, Y.-J. Tan / Journal of Computational and Applied Mathematics 196 (2006) 394 –401

For the solution (uh, �h), the following error estimate holds

‖u − uh‖H 1(�) + ‖� − �h‖H−1/2(��) �C(hk‖u‖Hk+1(�) + hl+(3/2)‖�‖Hl+1(��)) (7)

when u ∈ Hk+1(�) and � ∈ Hl+1(��).

Remark 2.1. In general case, the densities of Vh, �h are not the same. Without any diffusion, we do not distinguish
them in notation here.

3. Approximated by RBF

Given a set of quasi-uniform [14,15] centers X ⊂ � with density h1, X1 ⊂ �� with density h2 and some RBFs
�(r), �(r). We can define the finite dimensional subspace Vh of H 1(�) and �h of H−1/2(��) by

Vh = span{�(‖x − xj‖) xj ∈ X},
�h = span{�(‖x − xj‖) xj ∈ X1},

where ‖ · ‖ is the Euclidean norm. For the sake of completeness, we list several radial basis function types:

Gaussian: exp(−c‖ · ‖2), c > 0,

Multiquadric: (c2 + ‖ · ‖2)�, � ∈ N, c 	= 0,

Thin-plate spline: ‖ · ‖� log ‖ · ‖, � ∈ 2N.

The RBFs introduced above are global RBFs. One of the most popular classes of compactly supported RBFs (CS-
RBFs) is the one introduced by Wendland [18]. Another is given by Wu [20]. These functions are strictly positive
definite in Rd for all d less than or equal to some fixed value d0, and can be constructed to have any desired amount of
smoothness 2	. For l = [d/2] + 	 + 1 and 	 = 0, 1, 2, 3, Wendland’s function becomes

�l,0(r)=̇(1 − r)l+,

�l,1(r)=̇(1 − r)l+1+ [(l + 1)r + 1],
�l,2(r)=̇(1 − r)l+2+ [(l2 + 4l + 3)r2 + (3l + 6)r + 3],
�l,3(r)=̇(1 − r)l+3+ [(l3 + 9l2 + 32l + 15)r3 + (6l2 + 36l + 45)r2 + (15l + 45)r + 15].

Here and throughout, =̇ denotes equality up to a constant factor. For example, the functions

�2,0=̇(1 − r)2+,

�3,1(r)=̇(1 − r)4+[4r + 1],
�4,2(r)=̇(1 − r)6+[35r2 + 18r + 3],
�5,3(r)=̇(1 − r)8+[32r3 + 25r2 + 8r + 1],

which are in C0,C2,C4,C6, respectively, and strictly positive definite in R3.
Wu’s CS-RBF is:

�(r) = (1 − r)6+(5r5 + 30r4 + 72r3 + 82r2 + 36r + 6) ∈ C6.

Assuming that � ∈ Cl1 , � ∈ Cl with Fourier transforms �̂, �̂ satisfying

�̂(t) ∼ (1 + ‖t‖)−2l1 , �̂(t) ∼ (1 + ‖t‖)−2l

then the following theorem provides a bound on the interpolation error.
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Theorem 3.1 (RBF-interpolant error estimate theorem, Wendland [17,19]). Let � ⊆ Rd be an open and bounded
domain, having Lipschitz boundary. Denote by Su the interpolant on X = {x1, x2, . . . , xN } ⊆ � to u ∈ Hk(�) with
k > d/2. Then there exists a constant h0 > 0 such that for all X with h < h0 where h is the density of X, the estimate

‖u − su‖Hj (�) �Chk−j‖u‖Hk(�)

is valid for 0�j �k.

The inverse inequality for �h is the key point in FEM version. In the RBF case, we have the following inverse
inequality:

Theorem 3.2. Assuming that � is positive definite and �̂(t) ∼ (1 + ‖t‖)−l−d , then for ∀g ∈ �h, the following
inequality holds:

‖g‖H 1/2(��) �Ch−2l−3d+3
2 ‖g‖H−1/2(��), (8)

where C is a constant independent of the density h2.

Proof. We will denote by C, a generic constant independent of h2. According to the definition of ‖g‖H−1/2(��), we
have

‖g‖H−1/2(��) = sup
�∈H 1/2(��)\{0}

〈g, �〉
‖�‖H 1/2(��)

� 〈g, g〉
‖g‖H 1/2(��)

=
‖g‖2

H 0(��)

‖g‖H 1/2(��)

.

Assuming that g =∑
i �(‖x − xi‖)�i , by using the technique in [10], we have

‖g‖2
H 0(��)

�Ch2l+2d−2
2 ‖��‖2

furthermore,

‖g‖2
H 1(��)

=
∥∥∥∥∥
∑

i

�(‖x − xi‖)�i

∥∥∥∥∥
2

H 1(��)

�
(∑

i

‖�(‖x − xi‖)�i‖H 1(��)

)2

� max
i

‖�(‖x − xi‖)‖2
H 1(��)

(∑
i

|�i |
)2

by using (
∑n

i=1 |ai |)2 �n
∑n

i=1 |ai |2, we have

‖g‖2
H 1(��)

�N max
i

‖�(‖x − xi‖)‖2
H 1(��)

‖��‖2 �Ch−d+1
2 max

i
‖�(‖x − xi‖)‖2

H 1(��)
‖��‖2.

This yields

‖g‖2
H 0(��)

�Ch2l+3d−3
2 ‖g‖2

H 1/2(��)
.

Then

‖g‖H 1/2(��) �Ch−2l−3d+3
2 ‖g‖H−1/2(��). �

Remark 3.1. For others RBFs, when � ∈ C∞, the inverse inequality will be quite different which depend on the lower
bound of interpolation matrix. This situation can be dealt with in a same way.

Remark 3.2. The inverse inequality is much worse than which in FEM. The corresponding form in FEM is

‖g‖H 1/2(��) �Ch−1
2 ‖g‖H−1/2(��).

Based on the two theorems above, we have the following error estimates:
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Theorem 3.3. Let f ∈ Hk(�), k�0, g ∈ Hs(��), s� 1
2 and u the solution of the original problem. Further, let uh, �h

be the approximate solution of the RBF method with Lagrange multipliers. Assuming that the centers of both � and
�� are quasi-uniform with densities h1, h2, respectively. h1h

−2l−3d+3
2 is sufficiently small. Then

‖u − uh‖H 1(�) +
∥∥∥∥�h − �u

�n

∥∥∥∥
H−1/2(��)

�C(hk+1‖f ‖Hk(�) + hs+(3/2)‖g‖Hs+1(��)), (9)

where h = max{h1, h2}, C ∼ min{h1, h2}−2l−5d+6.

Proof. The proof is almost the same as in [2]. Let (u, �) ∈ Vh × �h be given. Denote by w ∈ H 1(�) the solution of
the Neumann problem for the differential equation⎧⎨

⎩
−�w + w = 0 in �,

�w

�n
= � on ��.

(10)

Using the well-known bound for the solution of the elliptic problem, we have

‖w‖H 2(�) �C‖�‖H 1/2(��).

From Theorem 3.2, we have

‖w‖H 2(�) �Ch−2l−3d+3
2 ‖�‖H−1/2(��).

Let z ∈ Vh satisfy

‖w − z‖H 1(�) �Ch1‖w‖H 2(�) �Ch1h
−2l−3d+3
2 ‖�‖H−1/2(��).

When h1h
−2l−3d+3
2 is sufficiently small, we have∫

��
z� ds�C‖�‖2

H−1/2(��)
.

The rest of the proof is just a simple repetition of the FEM-version. �

Let

A = (A(�(‖x − xi‖), �(‖x − xj‖)))N1×N1
, xi, xj ∈ X

B =
(∫

��
�(‖x − xi‖)�(‖x − xj‖)

)
N1×N2

, xi ∈ X, xj ∈ X1

�f =
(∫

�
f �(‖x − xi‖) dx

)
N1×1

�g =
(∫

��
g�(‖x − xi‖) ds

)
N2×1

the linear system, induced by the bilinear form B and the finite dimensional space spanned by RBF, is

MC = �F (11)

with

M =
[

A B

BT 0

]
N×N

, �F =
[ �f

�g
]

.
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Remark 3.3. We can also consider the penalty method. For the general elliptic problem with homogeneous Dirichlet
boundary condition, we have the approximation [5]⎧⎨

⎩
Lu
 = f in �,

�u


�nL

+ 
u
 = 0 on ��.
(12)

Then

‖u − u
,h‖H 1(�) �
C√


‖f ‖H 0(�) + C
hk+1‖f ‖Hk(�), (13)

where u
,h is the RBF-solution for Eq. (12).

Remark 3.4. We use Gaussian numerical integration. GMRES (a subroutine in MATLAB) is recommended for solving
the linear system (11).

Remark 3.5. These method can also be used for mixed problems.

Remark 3.6. For global radial basis functions, the error induced by numerical integration just depends on the regularity
of the basis function.

4. Numerical examples

Throughout this section, let

L2
er = ‖uh − u‖L2(�)

‖u‖L2(�)

denote the relative error (L2-norm in �) of uh, where uh is the numerical solution using Lagrange multipliers and u is
the exact solution. Let

L∞
er = sup

�

|uh − u|
|u|

be the maximum pointwise relative error.

Example 4.1. Consider the Poisson equation{−�u = f in �,

u = 0 on ��,
(14)

with � = [−1, 1; −1, 1], the right-hand side

f1(x, y) = −ex(y2 − 1)(x2 + 4x + 1) − 2ex(x2 − 1),

f2(x, y) = 4(x2 + y2) sin(x2 − 1) sin(y2 − 1) − 2 sin(y2 + x2 − 2),

respectively, and corresponding exact solutions are

u1(x, y) = (x2 − 1)(y2 − 1)ex ,

u2(x, y) = sin(x2 − 1) sin(y2 − 1).

Take TPS �(r) = r6 log(r), �(r) = r5 and Sobolev spline �(r) = e−r (3 + 3r + 3r2) as the RBF. The centers are
uniformly distributed in � with density h = 0.2.

Vh = span{�(‖x − xi‖), xi ∈ �̄}, �h = span{�(‖x − xi‖), xi ∈ ��}.
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Table 1
Numerical results for Poisson equation using f1(x, y)

Radial basis function L2
er L∞

er

TPS 0.0048 0.0509
r5 0.0040 0.0314
Sobolev spline 0.0187 0.0390

Table 2
Numerical results for Poisson equation using f2(x, y)

Radial basis function L2
er L∞

er

TPS 0.0060 0.0286
Sobolev spline 0.0289 0.0822
r5 0.0087 0.0183

Table 3
Numerical results for Example 4.2 using r5

Density of the centers L2
er L∞

er

n1 = 5, n2 = 5 0.0044 0.0223
n1 = 5, n2 = 8 0.0039 0.0057
n1 = 5, n2 = 10 0.0039 0.0055

Values of the L2-norm and sup norm relative errors for different choices of the RBF and different choice of the right
hand side of Eq. (14). Tables 1–2.

Example 4.2. Consider the Poisson equation{−�u = f in �,

u = 0 on ��,
(15)

with � = {(x, y)|x2 + y2 �1}. Taking

f (x, y) = 4(x2 + y2) sin(x2 + y2 − 1) − 4 cos(x2 + y2 − 1)

the exact solution of this problem is

u = sin(x2 + y2 − 1).

The radial basis function is r5. The centers are taken as(
i

n1
cos

(
2�j

n2

)
,

i

n1
sin

(
2�j

n2

))
, i = 1, . . . , n1, j = 1, . . . , n2.

See Table 3.

5. Conclusions

We have introduced and analyzed a meshless Galerkin method for Dirichlet problems. The inverse inequalities in
the approximated subspace by RBFs play an important role in theoretical analysis. Our analysis is restricted to positive
definite RBF satisfying Theorem 3.2. In [10], the authors had claimed that there are many kinds of RBF satisfying this
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condition, For example, Wendland’s and Wu’s functions. Those functions make the numerical integration be complicate,
although the stiffness matrix will be sparse if the scaled CS-RBF is employed. In numerical examples, only Sobolev
Spline is positive definite. TPS is conditionally positive definite. We use TPS to compute without additional polynomial,
which ensure them to be the basis of suitable function space. It should be pointed out that higher accuracy is difficult
to reach. This is due to bad condition number of linear system (11), which is induced by the uncertainty [14] property
of RBF interpolation. Further work will focus on decreasing the condition number.
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