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Abstract

In this paper, we improve the preconditioned AOR method of linear systems considered by Evans et al. [The AOR iterative
method for new preconditioned linear systems, Comput. Appl. Math. 132 (2001) 461–466]. In Evans’ paper, the coefficient matrix
of linear system have to be an L-matrix with ai,i+1ai+1,i > 0, i = 1, . . . , n − 1 and 0 < a1nan1 < 1. When ai,i+1ai+1,i = 0 for
some i ∈ N = {1, . . . , n − 1}, the preconditioned method is invalid. In order to solve the above problem, a new preconditioner is
presented. Meanwhile, some recent results are improved.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the following linear system:

Ax = b, (1)

where A ∈ Rn×n, b ∈ Rn are given and x ∈ Rn is unknown.
The preconditioned methods are often used to accelerate the convergence of iterative method solving the linear

system (1). Recently, in Evans et al. [1] provided a preconditioner and improved the convergence rate of AOR iteration
method for the original linear system. However, in [1], the coefficient matrix of linear system (1) A have to be an
L-matrix with ai,i+1ai+1,i > 0, i = 1, . . . , n − 1 and 0 < a1nan1 < 1, the assumptions are too strong in many cases. For
example, when ai,i+1ai+1,i = 0 for some i ∈ N = {1, . . . , n − 1}, the preconditioned method of Evans et al. is invalid.
In this paper, we present a new preconditioner, which overcomes the shortcomings of [1].
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For simplicity, without loss of generality, let

A = I − L − U ,

where I is the identity matrix, L and U are strictly lower and upper triangular matrices obtained from A, respectively.
For any splitting, A = M − N with det(M) �= 0, the basic iterative method for solving (1) is

x(i+1) = M−1Nx(i) + M−1b, i = 0, 1, . . . ,

and in [2], the AOR iterative method is defined

x(i+1) = (I − rL)−1[(1 − w)I + (w − r)L + wU ]x(i) + (I − rL)−1wb,

where i = 0, 1, 2, . . . . Its iterative matrix is

Lrw = (I − rL)−1[(1 − w)I + (w − r)L + wU ], (2)

where w and r are real parameters with w �= 0.
The spectral radius of the iterative matrix is decisive for the convergence and stability of the method, and the smaller

it is, the faster the method converges when the spectral radius is smaller than 1. The effective method to decrease the
spectral radius is to precondition the linear system (1), namely,

PAx = Pb,

where P is a non-singular matrix. The corresponding basic preconditioned iterative method is given in general by

x(i+1) = M−1
p Npx(i) + M−1

p Pb, i = 0, 1, . . . ,

where PA = Mp − Np. In particular, if we express PA as

PA = D∗ − L∗ − U∗,

then the preconditioned AOR iterative method is

x(i+1) = (D∗ − rL∗)−1[(1 − w)D∗ + (w − r)L∗ + wU∗]x(i) + (D∗ − rL∗)−1wPb,

where i = 0, 1, 2, . . . . Its iterative matrix is

L∗
rw = (D∗ − rL∗)−1[(1 − w)D∗ + (w − r)L∗ + wU∗].

2. Preparatory knowledge

For convenience, we shall now briefly explain some of the terminologies used in the next sections. Let C = (cij ) ∈
Rn×n be an n × n real matrix. By diag(C), we denote the n × n diagonal matrix coinciding in its diagonal with cii .
For A = (aij ), B = (bij ) ∈ Rn×n, we write A�B if aij �bij holds for all i, j = 1, 2, . . . , n. Calling A nonnegative if
A�0 (aij �0; i, j = 1, . . . , n), we say that A − B �0 if and only if A�B. These definitions carry immediately over
to vectors by identifying them with n × 1 matrices. �(·) denotes the spectral radius of a matrix.

Definition 1 (Young [4]). A matrix A is a L-matrix if aii > 0; i =1, . . . , n and aij < 0, for all i, j =1, 2, . . . , n; i �= j .

Definition 2 (Varga [3]). A matrix A is irreducible if the directed graph associated to A is strongly connected.

Now, we are going to cite several known results which are indispensable for our subsequent discussions.

Lemma 1 (Varga [3]). Let A ∈ Rn×n be nonnegative and irreducible n × n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius �(A);
(ii) for �(A), there corresponds an eigenvector x > 0;
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(iii) �(A) is a simple eigenvalue of A;
(iv) �(A) increases when any entry of A increases.

Lemma 2 (Varga [3]). Let A = (aij )�0 be an irreducible n × n matrix, and P ∗ be the hyperoctant of vectors x > 0.
Then, for any x ∈ P ∗, either

min
1� i �n

[∑n
j=1 aij xj

xi

]
< �(A) < max

1� i �n

[∑n
j=1 aij xj

xi

]
,

or ∑n
j=1 aij xj

xi

= �(A) for all 1� i�n.

Moreover

sup
x∈P ∗

min
1� i �n

[∑n
j=1 aij xj

xi

]
< �(A) < inf

x∈P ∗ max
1� i �n

[∑n
j=1aij xj

xi

]
.

3. The [n, 1] (or [1, n]) preconditioned AOR iterative method

Now, we consider the preconditioned linear system,

Ãx = b̃, (3)

where Ã = (I + S̃)A and b̃ = (I + S̃)b with

S̃ =

⎡⎢⎢⎢⎣
0 0 · · · 0
0 0 · · · 0
...

...
...

...−an1

�
0 · · · 0

⎤⎥⎥⎥⎦
and the preconditoined linear system

Âx = b̂, (4)

where Â = (I + Ŝ)A and b̂ = (I + Ŝ)b with

Ŝ =

⎡⎢⎢⎢⎣
0 0 · · · −a1n

�
0 0 · · · 0
...

...
...

...

0 0 · · · 0

⎤⎥⎥⎥⎦ .

Now, we express the coefficient matrix of (3) as

Ã = D̃ − L̃ − Ũ ,

where D̃ = diag(Ã), L̃ and Ũ are strictly lower and upper triangular matrices obtained from Ã, respectively. By
calculation, we obtain that

D̃ =

⎡⎢⎢⎣
1

1
. . .

1 − a1nan1

�

⎤⎥⎥⎦ , (5)
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L̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

−a21 0

−a31 −a32 0
...

...
. . .

. . .(
1

�
− 1

)
an1

an1a12

�
− an2 · · · an1a1,n−1

�
− an,n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

Ũ = U =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −a12 −a13 · · · −a1n

0 −a23 . . . −a2n

. . .
. . .

...
. . . −an−1,n

0

⎤⎥⎥⎥⎥⎥⎥⎦ . (7)

The coefficient matrix of (4) can be expressed as

Â = D̂ − L̂ − Û , (8)

where D̂ = diag(Â), L̂ and Û are strictly lower and upper triangular matrices obtained from Â, respectively. By
calculation, we also obtain that

D̂ =

⎡⎢⎢⎢⎢⎣
1 − a1nan1

�
1

. . .

1

⎤⎥⎥⎥⎥⎦ , (9)

L̂ = L =

⎡⎢⎢⎢⎣
0

−a21 0
...

...
. . .

−an1 −an2 · · · 0

⎤⎥⎥⎥⎦ , (10)

Û =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
a1nan2

�
− a12

a1nan3

�
− a13 · · ·

(
1

�
− 1

)
a1n

0 −a23 · · · −a2n

. . .
. . .

...
. . . −an−1,n

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Applying the AOR method to the preconditioned linear systems (3) and (4), respectively, we have the corresponding
preconditioned AOR iterative methods whose iterative matrices are, respectively,

L̃rw = (D̃ − rL̃)−1[(1 − w)D̃ + (w − r)L̃ + wŨ ] (12)

and

L̂rw = (D̂ − rL̂)−1[(1 − w)D̂ + (w − r)L̂ + wÛ ]. (13)

4. Main results

Firstly, we present a lemma which is useful in the paper.
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Lemma 3. Let A, Ã and Â be the coefficient matrices of the linear systems (1), (3) and (4), respectively. If 0�r �
w�1 (w �= 0)(r �= 1) and A is an irreducible L-matrix with 0 < a1nan1 < � (��1), then the iterative matrices Lrw,
L̃rw and L̂rw associated to the AOR method applied to the linear systems (1), (3) and (4), respectively, are nonnegative
and irreducible.

Proof. From that A is an L-matrix, we have L�0 is a strictly lower triangular matrix and U �0 is a strictly upper
triangular matrix. So (I − rL)−1 = I + rL + r2L2 + · · · + rn−1Ln−1.

By (2), we have

Lrw = (I − rL)−1[(1 − w)I + (w − r)L + wU ]
= [I + rL + r2L2 + · · · + rn−1Ln−1][(1 − w)I + (w − r)L + wU ]
= (1 − w)I + (w − r)L + wU + rL(1 − w)I + rL[(w − r)L + wU ]

+ (r2L2 + · · · + rn−1Ln−1)[(1 − w)I + (w − r)L + wU ]
= (1 − w)I + w(1 − r)L + wU + T ,

where

T = rL[(w − r)L + wU ] + (r2L2 + · · · + rn−1Ln−1)[(1 − w)I + (w − r)L + wU ]
�0.

So Lrw is nonnegative. We can also get that (1 −w)I +w(1 − r)L+wU is irreducible for A is irreducible, hence Lrw

is irreducible.
From (5)–(7), we have D̃ > 0 when a1nan1 < �, L̃�0 when ��1, and Ũ = U �0, respectively. So,

L̃rw = (D̃ − rL̃)−1[(1 − w)D̃ + (w − r)L̃ + wŨ ]
= (I − rD̃−1L̃)−1[(1 − w)I + (w − r)D̃−1L̃ + wD̃−1Ũ ]
= (1 − w)I + w(1 − r)D̃−1L̃ + wD̃−1Ũ + T̃ �0,

where

T̃ = rD̃−1L̃[(w − r)D̃−1L̃ + wD̃−1Ũ ] + [r2(D̃−1L̃)2 + · · · + rn−1(D̃−1L̃)n−1]
× [(1 − w)I + (w − r)D̃−1L̃ + wD̃−1Ũ ]

�0.

Furthermore L̃rw is irreducible followed by the irreducibility of (1 − w)I + w(1 − r)D̃−1L̃ + wD̃−1Ũ and T̃ �0.
Similarly, we can prove that L̂rw is nonnegative and irreducible too. �

Theorem 1. Let Lrw and L̃rw be defined by (2) and (12), respectively. If matrix A of (1) is an irreducible L-matrix
with 0 < a1nan1 < � (��1), and 0�r �w�1 (w �= 0) (r �= 1), then

(1) �(L̃rw) < �(Lrw), if �(Lrw) < 1;

(2) �(L̃rw) = �(Lrw), if �(Lrw) = 1;

(3) �(L̃rw) > �(Lrw), if �(Lrw) > 1.

Proof. From Lemma 3, Lrw and L̃rw are nonnegative and irreducible matrices. Thus, from Lemma 1 there is a positive
vector x, such that

Lrwx = �x, (14)

where �(Lrw) = � or, equivalently,

[(1 − w)I + (w − r)L + wU ]x = �(I − rL)x (15)
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and

wŨx = wUx = (� − 1 + w)x + (r − w − �r)Lx.

From (12), for the positive vector x,

L̃rwx − �x = (D̃ − rL̃)−1[(1 − w)D̃ + (w − r)L̃ + wŨ − �(D̃ − rL̃)]x. (16)

Since

Ã = (I + S̃)A = (I + S̃ − L − S̃U) − U = D̃ − L̃ − Ũ ,

S̃L = 0,

and

�(D̃ − rL̃)x = �(1 − r)D̃x + �r(D̃ − L̃)x

= �(1 − r)D̃x + �r(I + S̃ − L − SU)x,

then

L̃rwx − �x = (D̃ − rL̃)−1[(1 − w − � + �r)D̃ + �(I − rL) − (1 − w)I

+ (w − r)(L̃ − L) − �r(I + S̃ − L − S̃U)]x
= (D̃ − rL̃)−1[(1 − w − � + �r)D̃ + �(I − rL) − (1 − w)I

+ (w − r)(D̃ − I − S̃ + S̃U) − �r(I + S̃ − L − S̃U)]x
= (D̃ − rL̃)−1[(1 − �)(1 − r)(D̃ − I ) + (w − r + �r)(S̃U − S̃)]x
= (D̃ − rL̃)−1{(1 − �)(1 − r)(D̃ − I ) − (w − r + �r)S̃

+ r(� − 1)S̃U + S̃[�(I − rL) − (1 − w)I − (w − r)L]}x
= (D̃ − rL̃)−1[(1 − �)(1 − r)(D̃ − I ) − (1 − r)(1 − �)S̃

+ r(� − 1)S̃U + (r − w − �r)S̃L]x
= (D̃ − rL̃)−1[(1 − �)(1 − r)(D̃ − I − S̃) + r(� − 1)S̃U ]x.

Let B = (1 − �)(1 − r)(D̃ − I ) − (1 − r)(1 − �)S̃ + r(� − 1)S̃U . Obviously, B �0 when � < 1. By calculation,
we obtain that bn1 = (1 − �)(1 − r)an1/�, bnj = −r(1 − �)an1a1j /� (j = 2, . . . , n − 1), bnn = −(1 − �)a1nan1/�,
bij = 0 (1 = 1, . . . , n − 1, j = 1, . . . , n), respectively. Then we have

L̃rw − �x = (D̃ − rL̃)−1Bx. (17)

Let

z = L̃rw − �x =

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ and L̃rwx = (̃lij )n×n.

When � < 1, from (17), we have

z =

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ �0
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and

zn � (� − 1)a1nan1xn

� − a1nan1
< 0.

Therefore,

L̃rwx = �x + z = �x +

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ �

⎡⎢⎢⎣
�x1
...

�xn−1
�xn + zn

⎤⎥⎥⎦ .

Let zn/xn = −h (h > 0). Then

L̃rwx = �x + z = �x +

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ �

⎡⎢⎢⎣
�x1
...

�xn−1
(� − h)xn

⎤⎥⎥⎦ .

Further, we get∑n
j=1 l̃ij xj

xi

�� (i = 1, . . . , n − 1) and max
1� i �n−1

[∑n
j=1̃lij xj

xi

]
��,

∑n
j=1̃lnj xj

xn

�� − h.

Using Lemma 2, we have that

min
1� i �n

[∑n
j=1̃lij xj

xi

]
< �(L̃rw) < max

1� i �n

[∑n
j=1̃lij xj

xi

]
,

or, ∑n
j=1̃lij xj

xi

= �(L̃rw), 1� i�n.

By the above discussion, we get

�(L̃rw) < �.

When � = 1, from (17), we have

z =

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ = 0.

So

L̃rwx = �x.
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From Lemma 2, it is obvious that

�(L̃rw) =
∑n

j=1 l̃ij xj

xi

= �.

When � > 1, from (17), we have

z =

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ �0

and

zn � (� − 1)a1nan1xn

� − a1nan1
> 0.

So

L̃rwx = �x + z = �x +

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ �

⎡⎢⎢⎣
�x1
...

�xn−1
�xn + zn

⎤⎥⎥⎦ .

Let zn/xn = h (h > 0). Then

L̃rwx = �x + z = �x +

⎡⎢⎢⎣
z1
z2
...

zn

⎤⎥⎥⎦ �

⎡⎢⎢⎣
�x1
...

�xn−1
(� + h)xn

⎤⎥⎥⎦ .

So we get∑n
j=1̃lij xj

xi

�� (i = 1, . . . , n − 1) and min
1� i �n−1

[∑n
j=1 l̃ij xj

xi

]
��,

∑n
j=1 l̃nj xj

xn

�� + h.

Using Lemma 2, we have

min
1� i �n

[∑n
j=1 l̃ij xj

xi

]
< �(L̃rw) < max

1� i �n

[∑n
j=1 l̃ij xj

xi

]
,

or
∑n

j=1 l̃ij xj /xi = �(L̃rw), for all 1� i�n.

�(L̃rw) =
∑n

j=1̃lnj xj

xn

�� + h.

So

�(L̃rw) > �.

Thus, we get the required results. �

Similarly, we can obtain the following theorem.
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Theorem 2. Let Lrw and L̂rw be the iterative matrices of the AOR method given (2) and (13), respectively. If the
matrix A of (1) is an irreducible L-matrix with 0 < a1nan1 < � (��1) and 0�r �w�1 (w �= 0) (r �= 1), then

(1) �(L̂rw) < �(Lrw), if �(Lrw) < 1;

(2) �(L̂rw) = �(Lrw), if �(Lrw) = 1;

(3) �(L̂rw) > �(Lrw), if �(Lrw) > 1.

In (2), (12) and (13), take w = r , we obtain the iterative matrix of the successive overrelaxation (SOR) method
associated to (2), (12) and (13). Therefore, we have the following corollary from Theorems 1 and 2.

Corollary 1. Let Lw, L̃w and L̂w be the iterative matrices of the SOR iterative method associated to (1), (3) and (4),
respectively. If the matrix A of (1) is an irreducible L-matrix with 0 < a1nan1 < � (��1) and 0 < w < 1, then

(1) �(L̃w) < �(Lw) and L̂w < Lw if �(Lw) < 1;

(2) �(L̃w) = L̂w = �(Lw), if �(Lw) = 1;

(3) �(L̃w) > �(Lw) and �(L̂w) > �(Lw) if �(Lw) > 1.

Similarly, let w = 1 and r = 0 in (2), (12) and (13), we can obtain the iteration matrices of Jacobi method associated
to (1), (3) and (4). Therefore, we also have the following corollary.

Corollary 2. Let B, B̃ and B̂, be the iterative matrices of the Jacobi iterative method associated to (1), (3) and (4),
respectively. If the matrix A of (1) is an irreducible L-matrix with 0 < a1nan1 < � (��1), then

(1) �(B̃) < �(B) and �(B̂) < �(B) if �(B) < 1;

(2) �(B̃) = �(B̂) = �(B), if �(B) = 1;

(3) �(B̃) > �(B) and �(B̂) > �(B), if �(B) > 1.

Remark 1. From our proof,we have weakened ai,i+1ai+1,i > 0 of [1]. That is, our results are more general than those
of [1].

Remark 2. From above results, we know that the convergence rate of the AOR (SOR, Jacobi, respectively) method
can be accelerated when �(Lrw) (�(Lw), �(B), respectively) < 1 if we apply the preconditioned methods to the pre-
conditioned linear systems (3) and (4). We also know that the preconditioned methods are invalid when �(Lrw)

(�(Lw), �(B), respectively)�1.

5. Numerical example

Now let us consider the following example to illustrate the results obtained from Theorems 1 and 2.

Example. The coefficient matrix A of (1) is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
20 − 1

20
1

30 − 1
20

1
40 − 1

20 · · · 1
10n

− 1
20

1
20 − 1

20 1 1
30 − 1

20
1

40 − 1
20 · · · 1

10n
− 1

20
1

30 − 1
20

1
20 − 1

20 1 1
40 − 1

20 · · · 1
10n

− 1
20

1
40 − 1

20
1

30 − 1
20

1
20 − 1

20 1 · · · 1
10n

− 1
20

...
...

...
...

. . .
...

1
10n

− 1
20

1
10n

− 1
20

1
10(n−1)

− 1
20

1
10(n−2)

− 1
20 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to know that ai+1,i = 0 from the above matrix A, then ai,i+1ai+1,i = 0. The preconditioned method in [1] is
invalid. However, we get the following table by using our methods. The digital of following table is formed by Matlab
6.51 program.



Y.-t. Li et al. / Journal of Computational and Applied Mathematics 206 (2007) 656–665 665

n w r � �(Lwr) �(L̃wr) �(L̂wr)

10 0.9 0.8 1 0.2465 0.2428 0.2385
15 0.95 0.75 2 0.3847 0.3835 0.3844
20 0.8 0.65 3 0.6843 0.6839 0.6842
25 0.7 0.6 4 0.9234 0.9233 0.9233
30 0.6 0.5 2 1.1219 1.1221 1.1220

For the SOR method, we have the following results.

n w r � �(Lw) �(L̃w) �(L̂w)

10 0.9 0.9 1 0.2271 0.2235 0.2265
15 0.8 0.8 2 0.4723 0.4712 0.4720
20 0.7 0.7 3 0.7172 0.7169 0.7171
25 0.6 0.6 1 0.9434 0.9341 0.9342
30 0.5 0.5 2 1.1016 1.1017 1.1017

Remark 3. From the above table, it is easy to know that �(L̃wr) < �(Lwr) and �(L̂wr) < �(Lwr) when �(Lwr) < 1.
�(L̃wr) > �(Lwr) and �(L̂wr) > �(Lwr) when �(Lwr) > 1. From the above numerical experiments, we get that the
results are in concord with Theorems 1 and 2.
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