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a b s t r a c t

How much information does a small number of moments carry about the unknown
distribution function? Is it possible to explicitly obtain from these moments some useful
information, e.g., about the support, the modality, the general shape, or the tails of a
distribution, without going into a detailed numerical solution of the moment problem?
In this, previous and subsequent papers, clear and easy to implement answers will be
given to some questions of this type. First, the question of how to distinguish between
the main-mass interval and the tail regions, in the case we know only a number of
moments of the target distribution function, will be addressed. The answer to this
question is based on a version of the Chebyshev–Stieltjes–Markov inequality, which
provides uswith upper and lower,moment-based, bounds for the target distribution. Then,
exploiting existing asymptotic results in the main-mass region, an explicit, moment-based
approximation of the target probability density function is provided. Although the latter
cannot be considered, in general, as a satisfactory solution, it can always serve as an initial
approximation in any iterative scheme for the numerical solution of the moment problem.
Numerical results illustrating all the theoretical statements are also presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

An important question arising inmany problems in Physics, Technology and Finance, is how the information contained in
the sequence ofmoments (of an unknown probability distribution) can be used to determine the corresponding distribution
function or important features of it. This is, in essence, the classical moment problem of mathematical analysis, initiated by
Thomas J. Stieltjes in 1894–95.
From the theoretical point of view, the univariate moment problem has been extensively studied and solved many years

ago. Various famous mathematicians have contributed to the analysis and solution of this problem. Among them we refer
P. Chebyshev, A. Markov, J. Shohat, M. Frechet, H. Hamburger, M. Riesz, F. Hausdorff, M. Krein. Necessary and sufficient
conditions under which a probability density function (pdf) f (x) can be recovered from its moments, either uniquely or not,
can be found in the mathematical literature; see, e.g., various special monographs, such as [1,7,15,23] and the more recent
book [24] containing excellent surveys on the moment problems. See also the recent works [4,13,18,19,22,25].
From thenumerical point of view, themoment problem is universally recognized as a difficult inverse problemwhich leads

to the solution of highly ill-posed systems of equations (see, e.g., [5,6,8,30,31] for a general overview of ill-posed problems).
Thus, a fundamental question is how to reformulate the numerical moment problems in a way permitting the reliable and
efficient determination (approximation) of the underlying pdfs. In accordance with the general principles concerning the
regularization of ill-posed problems (see, e.g., [5,6,8,29]), the a priori characterization of the data space (i.e. the moment
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space) and the solution space (i.e. the admissible pdf class) have been found to be of fundamental importance in implementing
a well-posed numerical solution scheme to the moment problem.
The a priori characterization of the (moment) data space can be achieved by using appropriate restrictions on themoment

data, ensuring that the given moment sequence, does belong to the appropriate moment space [9]. The characterization of
the solution space is mainly controlled by the choice of an appropriate representation for the function to be recovered [5,29,
2,11]. In this way, it is possible to exploit much (if not all) of existing a priori knowledge about the unknown pdf, resulting in
regularized numerical solution schemes. For instance, the positivity of (any) probability distribution function is an obvious
restriction, the implementation of which greatly enhances and accelerates the solution scheme [2,11]. In some cases the
boundary conditions (end-point values, tail behavior) [3,11], or modality information (unimodality/multimodality, mode
localization) [10] might be known and contribute to the efficiency of the numerical solution scheme.
In this work, we exploit twomore properties that can be used as a priori information in order to improve the efficiency of

any numerical algorithm for the solution of the moment problem: the ‘‘localization’’ of the target pdf (i.e. the identification
of the main-mass interval and of the tail intervals) and an explicitly given approximant pdf, that can be used as an initial
approximate solution for any numerical solution scheme.
Thus, the main questions examined in this work are the following: Given the 2k moments µ0 = 1, µ1 =∫
xdF(x), . . . , µ2k =

∫
x2kdF (x) of an unknown cumulative distribution function (cdf) F (x), with unknown support, how

can we identify the right-tail and left-tail delimiters, defined as, e.g.,
x∗ : F (x∗) < ε∗,

x∗ : F
(
x∗
)
> 1− ε∗,

where ε∗ and ε∗ are small positive quantities? And further, having defined the tail delimiters x∗, x∗ (or equivalently, having
defined the main-mass interval [x∗, x∗]), is it possible to construct (explicit) moment-based approximants for the target pdf
in (x∗, x∗)?
Before dealing with the above questions, we briefly summarize, in Section 2, some theoretical background we need for

our purposes. Section 3 provides moment-based bounds for the probability distribution which are the main tools for the
separation of the main-mass interval and the tail interval of it. Furthermore, in Section 4, a known theoretical asymptotic
result is reviewed and numerically exploited to construct explicit pdf approximations, demonstrating that a few moments
are able to provide us with valuable shape information for the main-mass pattern. The usefulness of all theoretical results
discussed herewith is illustrated in Section 5, by means of various numerical examples. Finally, a general discussion and
some fundamental conclusions are presented in Section 6.

2. Preliminaries

To formulate bounds for the cdf use will be made of the sequence of orthonormal (with respect to dF(x)) polynomials
P0(x), P1(x), . . . , Pk (x) , . . . ,which can be also expressed in terms of moments of the cdf F(x) as follows (see, e.g., [23,26]):

Pk(x) =
1

√
H2kH2k−2

Dk (x) , k = 0, 1, . . . , (1)

where

Dk(x) = det


µ0 µ1 · · · µk
...

...
...

µk−1 µk · · · µ2k−1
1 x · · · xk

 , and H2k =

∣∣∣∣∣∣∣
µ0 . . . µk
...

...
µk · · · µ2k

∣∣∣∣∣∣∣ ,
with H−2 = H0 = 1.
The following properties of Pk(x) (see, e.g., [21,26]) provides us with useful information concerning the roots of the

polynomials Pk(x).
- Properties of the polynomials Pk
Let xk,1, xk,2, . . . , xk,k be the roots of the polynomial Pk(x), and x̃k+1,1, x̃k+1,2, . . . , x̃k+1,k, x̃k+1,k+1 be the roots of the

polynomial Pk+1(x), both taken in ascending order. Then
(i) The zeros of Pk(x) are all real and simple. If the support of F(x) is an interval [a, b], then all the zeros of Pk(x) are in [a, b]
and limk→∞ xk,1 = a and limk→∞ xk,k = b.

(ii) Two consecutive polynomials Pk(x) and Pk+1(x) have no common zeros.
(iii) The roots xk,i, i = 1, 2, . . . , k, of the polynomial Pk(x) separate the roots x̃k+1,i, i = 1, 2, . . . , k + 1 of the polynomial

Pk+1(x); that is, x̃k+1,i < xk,i < x̃k+1,i+1. The last property is usually called the interlacing property.

In order to formulate the bounds of a cdf, it is useful to consider the Christoffel function λk(x) associated with df F , which
is defined by

λk(x) =

[
k∑
n=0

|Pn(x)|2
]−1

, k = 1, 2, . . . . (2)
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The values of the Christoffel function at two roots xk,i, xk,j, j > i, of polynomials Pk(x) can provide us with useful information
for the ‘‘estimation’’ of probability mass lying between them. This is made precise in the following.

Theorem 2.1. Let µ0 = 1, µ1 =
∫
x dF (x) , . . . , µ2k =

∫
x2kdF(x) be the moments of a cdf F(x), and xk,1, xk,2, . . . , xk,k, be

the roots of polynomial Pk(x), taken in ascending order. Then, for two any distinct roots xk,l < xk,m, 1 ≤ l < m ≤ k, we have

m−1∑
i=l+1

λk
(
xk,i
)
≤

∫ xk,m

xk,l
dF(x) ≤

m∑
i=l

λk
(
xk,i
)
. � (3)

The proof can be found in various classical treatises as, e.g., [1,16,17,23].

3. Lower and upper bounds for the cdf

Exploiting Eq. (3) it is not difficult to obtain strict upper and lower bounds for the values of F
(
xk,i
)
.

Theorem 3.1. With the same notation as in Theorem 2.1, for any set of roots
{
xk,i, i = 1, 2, . . . , k

}
, we have

Lk,i (F) ≤ F
(
xk,i
)
≤ Uk,i (F) , (4a)

where

Lk,i (F) = Lk,i
(
{µn}

2k
n=1

)
= 1−

k∑
j=i

λk
(
xk,j
)

(4b)

and Uk,i (F) = Uk,i
(
{µn}

2k
n=1

)
=

i∑
j=1

λk
(
xk,j
)
. (4c)

Proof. By taking the right hand of inequality (3) for the first root xk,l = xk,1 of the polynomials Pk(x) and assuming
limk→∞ xk,1 = a, with F (a) = 0 (see the first property of the polynomials Pk(x)), we get F

(
xk,i
)
≤
∑i
j=1 λk

(
xk,j
)
.

Applying the same procedure for the last root xk,m = xk,k and assuming that limk→∞ xk,k = b, with F (b) = 1, we have
1−

∑k
j=i λk

(
xk,j
)
≤ F

(
xk,i
)
. �

Theorem 3.1 permits us to easily construct lower and upper bounds (Lk,i (F) and Uk,i (F), respectively) for the unknown
cdf, based exclusively on the knowledge of moments µ1, . . . , µ2k. Furthermore, the values of Lk,i and Uk,i calculated at the
first and last roots, xk,1, xk,k, respectively, provide us with information about the total probability mass PRmass included in
the main-mass interval and the total probability mass PRtail for the tails intervals. More precisely, we have the following
estimates for the probability of the main-mass PR estmass and tails PR

est
tail :

Lk,k − Uk,1 ≤ PR estmass ≤ Uk,k − Lk,1, (5a)

1− Uk,k ≤ PR estright tail ≤ 1− Lk,k, (5b)

Lk,1 ≤ PR estleft tail ≤ Uk,1. (5c)

In other words, the total probability mass lying on the
[
xk,1, xk,k

]
interval, estimated only by means of the 2k given

moments, will be

PR estmass = PR
(k)
mass ± ER

(k), (6a)
with central value

PR (k)mass =
Uk,k − Uk,1 + Lk,k − Lk,1

2
(6b)

and range defined by means of

ER(k) =
Uk,k + Uk,1 − Lk,k − Lk,1

2
. (6c)

The estimation of the tail probability(ies) is most valuable for cdfs with unbounded support.
The above results permit us to formulate a clear and easy to implement algorithm for the definition of tail delimiters:

- Algorithm for the definition of tail delimiters
Assume that the 2kmoments µ1, . . . , µ2k of a target pdf are known. Then,
(i) Define the polynomials P0(x), P1 (x) , . . . , Pk(x), by means of Eq. (1).
(ii) Find the k roots xk,1, xk,2, . . . , xk,k of the last polynomial Pk(x).
(iii) Define the Christoffel function λk(x) by means of Eq. (2).
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Fig. 1. Localization of the main-mass and tail intervals of a finitely-supported, bimodal cdf (a generalized Gamma distribution supported on [0,+∞)), by
means of the cdf bounds (Eq. (4)), for 2k = 8, 10 moments.

(iv) Calculate the Christoffel function λk(x) at x = xk,1, xk,2, . . . , xk,k.
(v) Calculate the lower and upper bounds Lk,i and Uk,i of the cdf F(x) at each xk,1, xk,2, . . . , xk,k, by means of Eq. (4).
(vi) Consider xk,1 and xk,k as left- and right-tail delimiters, respectively.

In Section 5, the above algorithm is applied to various pdfs under the assumption that a number of exact moments are
known.

4. An explicit approximation of the target pdf

Anexplicitly given,moment-based, continuous approximant of the target pdf, valid in themain-mass region, and carrying
over its main shape characteristics, will be described in this section. This approximant is based on the asymptotic behaviour
of the Christoffel functions (cf. [14], referring to a similar approach). In this connection, we recall an asymptotic result
formulated and proved by Totik [32].

Theorem 4.1. Let f (x) be a positive function on the real line. If I = (a, b) is an interval, in which the function f (x) is bounded
and f (x) > 0, then, for almost all x ∈ I ,

lim
k→∞

kλk(x) = π
√
(x− a) (b− x) f (x) . � (7)

Thus, if k is sufficiently large, the target pdf can be approximated as follows:

f (x) ≈ fAP,k(x) =
k

c0 π
√
(x− a) (b− x)

λk(x), x ∈ (a, b) , (8a)

where c0 is a normalized factor. Besides, by integrating (8a), we obtain an approximant for the target cdf:

F(x) ≈ FAP,k(x) =
k
πc0

∫ x

a

1
√
(u− a) (b− u)

λk (u) du, x ∈ (a, b) . (8b)

The interval I = (a, b) should be contained in the support of the main-mass of the target pdf. Thus, if F (x) is strictly
monotone, the end points a and b can be taken as a = xk,1 and b = xk,k, provided that Lk,1 (F) is sufficiently near to zero
(e.g., Lk,k (F) ≈ 0.01), while Uk,k (F) is sufficiently near to unity (e.g., Uk,k (F) ≈ 0.99), defined by means of the upper and
lower bounds.
For simple, unimodal pdfs, approximation (8a) and (8b) may be very satisfactory for k = 5–7, while for more difficult,

bimodal densities typical values of k providing a good first shape approximation are k = 7–9. Numerical illustrations are
given in the next section.

5. Application and numerical examples

Some illustrative examples of applications of the theoretical results presented above are given in Figs. 1–4. The tail
delimiters’ algorithm, presented in Section 3, was applied to a unimodal and to three bimodal probability distributions,
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Fig. 2. Localization of the main-mass and tail intervals of a finitely-supported, bimodal cdf (a mixture of Beta distributions supported on [0, 1]), by means
of the cdf bounds (Eq. (4)), for 2k = 12, 14 moments.

Fig. 3. Localization of themain-mass and tail intervals of a semi-infinite supported, bimodal cdf (a mixture of generalized Gamma distributions supported
on [0,+∞)), by means of the cdf bounds (Eq. (4)), for 2k = 14, 16 moments.

supported, the first and the third on a semi-infinite interval, the second on a finite interval, and the fourth on the full line.
In all figures the corresponding lower and upper bounds, Lk,i (F) and Uk,i (F), have been plotted, along with the target cdfs.
To each figure (Figs. 1–4) a table is associated, containing the first and last roots of the polynomials Pk(x), the values of the
lower and upper bounds, and the values of the cdf at the aforementioned roots.
In the first case (Fig. 1; semi-infinite supported cdf; a generalized gamma distribution), the interval

[
xk,1, xk,k

]
, for k = 4,

5, (total number ofmoments 2k = 8, 10, respectively), gives a very good estimate of the location of themain-mass region. For
example, the exact probability mass on

[
x5,1 = 0.651824343, x5,5 = 1.403742415

]
is PR

[
x5,1, x5,7

]
= F

(
x5,5

)
− F

(
x5,1

)
=

0.993684031, while the estimate for the probability on this interval is PRestmass = 0.984527843± 0.015467541 (see Table 1).
In the second case (Fig. 2; finitely-supported cdf on [0, 1]; a mixture of two Beta distributions), the interval

[
xk,1, xk,k

]
,

for k = 6, 7, (total number of moments 2k = 12, 14, respectively), also gives a very good estimate of the location of the



12 P.N. Gavriliadis, G.A. Athanassoulis / Journal of Computational and Applied Mathematics 229 (2009) 7–15

Fig. 4. Localization of themain-mass and tail intervals of a full-line supported, bimodal cdf (amixture of Gaussian distributions supported onR), bymeans
of the cdf bounds (Eq. (4)), for 2k = 14, 16 moments.

Table 1
The values of the lower and upper bounds (Lk,i and Uk,i) and of the cdf F(x), calculated at the first and last roots of the kth-order polynomial Pk(x), for the
case shown in Fig. 1.

Degree of Pk(x) Roots of Pk(x) Lower bound Lk,i CDF F(x) Upper bound Uk,i

k = 4 xk,1 = 0.733272893 0.000000006 0.005906508 0.028684244
xk,4 = 1.352372074 0.922883717 0.982101219 0.999999993

k = 5 xk,1 = 0.651824343 0.000002307 0.001137028 0.006073012
xk,5 = 1.403742415 0.975133314 0.994821059 0.999997692

Table 2
The values of the lower and upper bounds (Lk,i and Uk,i) and of the cdf F(x), calculated at the first and last roots of the kth-order polynomial Pk(x), for the
case shown in Fig. 2.

Degree of Pk(x) Roots of Pk(x) Lower bound Lk,i CDF F(x) Upper bound Uk,i

k = 6 xk,1 = 0.111817212 0.000000052 0.006604550 0.025604921
xk,6 = 0.854013216 0.969160474 0.992512687 0.999999947

k = 7 xk,1 = 0.093952631 0.000002500 0.003190823 0.012845605
xk,7 = 0.873687877 0.985847005 0.996727699 0.999997499

Table 3
The values of the lower and upper bounds (Lk,i and Uk,i) and of the cdf F(x), calculated at the first and last roots of the kth-order polynomial Pk(x), for the
case shown in Fig. 3.

Degree of Pk(x) Roots of Pk(x) Lower bound Lk,i CDF F(x) Upper bound Uk,i

k = 7 xk,1 = 0.349307776 0.000011506 0.003332787 0.015955041
xk,7 = 1.956211834 0.996756156 0.999413348 0.999988493

k = 8 xk,1 = 0.310819746 0.000053632 0.001255635 0.006290070
xk,8 = 2.023690195 0.999200098 0.999865473 0.999946367

main-mass region. For example, the exact probabilitymass on
[
x7,1=0.093952631 , x7,7 = 0.873687877

]
is PR

[
x7,1, x7,7

]
=

F
(
x7,7

)
− F

(
x7,1

)
= 0.993536875, while the estimate for the probability on this interval is PRestmass = 0.986498199 ±

0.013496800 (see Table 2).
Figs. 3 and 4 show how themethodworks for semi-infinite supported and full-line supported cdfs. In Fig. 3 (semi-infinite

supported cdf; a mixture of two generalized gamma distributions), the interval [x8,1 = 0.310819746, x8,8 = 2.023690195],
containing 99.6% of the total probability mass (PR estmass = 0.995918684 ± 0.003008657; see Table 3), gives a good estimate
for the location of the main-mass region, leaving the semi-infinite interval [x8,8,+∞) as the right-tail region. In Fig. 4
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Table 4
The values of the lower and upper bounds (Lk,i and Uk,i) and of the cdf F(x), calculated at the first and last roots of the kth-order polynomial Pk(x), for the
case shown in Fig. 4.

Degree of Pk(x) Roots of Pk(x) Lower bound Lk,i CDF F(x) Upper bound Uk,i

k = 7 xk,1 = −1.691774734 0.000000548 0.001129534 0.006305578
xk,7 = 4.949479184 0.995616602 0.999159659 0.999999451

k = 8 xk,7 = −1.914953174 0.000000549 0.000313744 0.001880435
xk,8 = 5.135913296 0.998381421 0.999706426 0.999999452

Fig. 5. Localization of the main-mass and tail intervals of a finitely-supported, bimodal cdf (the same with Fig. 2), by means of the cdf bounds (Eq. (4)), for
2k = 12, 14, 16 and 18 moments.

(full-line supported cdf; amixture of twoGaussian distributions), the interval [x8,1 = −1.914953174, x8.8 = 5.135913296],
containing 99.8% of the total probability mass (PR estmass = 0.999824994± 0.001748958; see Table 4), is able to play the role
of the main-mass interval.
In Fig. 5, we have applied the bounding procedure for the same case as in Fig. 2, using 2k = 12, 14 (as in Fig. 2), and also

2k = 16 and 18moments. From this figure, we can conclude that, the points
(
xk,i, Lk,i

)
and

(
xk,i,Uk,i

)
, as the number of roots

xk,i increases, form an envelope, within which the target cdf lies. The shape of this envelope reveals in a clear way the basic
shape features of the target cdf (e.g., the bimodality).
The explicit, moment-based approximations of the target pdf in the main-mass region, which is provided by the

exploitation of the asymptotic results (8a) and (8b), are illustrated in Figs. 6–8. In Fig. 6, the target unimodal pdf (the same
pdf as in Fig. 1) is reconstructed by using 2k = 8, 10 and 12 moments. The general conclusion, valid for unimodal pdfs is
that the use of 10–14 moments in the reconstruction procedure gives satisfactory results.
In Figs. 7 and 8, the target pdfs (the same as in Figs. 3 and 4, respectively) are plotted against the approximant pdfs,

which are obtained from Eq. (8a), by using 2k = 12, 14 and 16 moments. Although, the obtained approximants cannot be
considered as satisfactory final solutions of themoment problem, they do provide us with valuable initial guess of the target
pdf (obtained explicitly), which is of great importance for any numerical solution of the reconstruction problem.

6. Discussion and conclusions

In this paper we have focused on the investigation how the partial information contained in a fewmoments can be used
to ‘‘dig out’’ various distributional characteristics and properties without going into the business of solving numerically the
(inverse) moment problem (see, e.g., [2,11,20,27,28]). We have demonstrated that the tail delimiters x∗, x∗, can be explicitly
(and easily) calculated in terms of a small number of moments, providing us with the main-mass interval [x∗, x∗]. Within
this interval an explicitly given, moment-based, continuous approximant of the target pdf, valid in the main-mass region
[x∗, x∗], and carrying over its main shape characteristics, is presented. Although the latter cannot be considered, in general,
as a satisfactory solution, it can always serve as an initial approximation in any iterative scheme for the numerical solution
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Fig. 6. The pdf approximants are plotted, by means of Eq. (8a), for 2k = 8, 10, and 12moments, respectively, along with the target pdf f (x) (the samewith
Fig. 1).

Fig. 7. The pdf approximants are plotted, by means of Eq. (8a), for 2k = 12, 14, and 16 moments, respectively, along with the target pdf f (x) (the same
with Fig. 3).

of the moment problem. In this sense, a robust characterization of the solution space of the moment problem becomes
possible, enabling a very efficient regularization of the moment data inversion.
In a forthcomingwork [12], explicitmoment-based approximants for the tails of the target pdf in (−∞, x∗)and (x∗,+∞)

will be presented. These resultsmight be combinedwith the results presented herewith in order to provide an explicit initial
approximation of the target pdf, which will be ‘‘uniformly valid’’ not only in [a, b], but also in (0,+∞) and over the whole
real axis (−∞,+∞).
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Fig. 8. The pdf approximants are plotted, by means of Eq. (8a), for 2k = 12, 14, and 16 moments, respectively, along with the target pdf f (x) (the same
with Fig. 4).
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