
Journal of Computational and Applied Mathematics 231 (2009) 869–885

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Exponential decay of errors of a fundamental solution method applied to
a reduced wave problem in the exterior region of a discI

Fumihiro Chiba a,∗, Teruo Ushijima b
a Department of Computer Science, Faculty of Electro-Communications, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo
182-8585, Japan
b The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

a r t i c l e i n f o

Article history:
Received 24 November 2006
Received in revised form 4 September 2007

MSC:
65N35
35J05

Keywords:
Reduced wave problem
Helmholtz equation
Fundamental solution method
Collocation method for integral equations
of convolution type
Dirichlet boundary value problem
Normalized wave number
Shadow

a b s t r a c t

This paper concerns a fundamental solution method (FSM, in abbreviation) applied to a
reduced wave problem in the exterior region of a disc. The convergent rate of approximate
solutions to the exact one is proven to be asymptotically exponentially decreasing with
respect to the number N of collocation points employed in an approximate problem. Using
obtained FSM solutionswe add two numerical tests: numerical estimate of errors including
cases of high wave numbers; and visualization of total waves appeared in the scattering
phenomena around a circular obstacle in the cases of κ = 50 and κ = 100, where κ is a
normalized wave number, defined through κ = length of wave number vector × radius
of the disc. In the second test, the total waves almost vanish behind the disc, seemingly
corresponding to the phenomenon of shadowing in the classical literature of physics.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns an error estimate for an approximation method for solving the Dirichlet boundary value problem
(Ef) of the 2-dimensional reducedwave equation in the exterior region of a disc.We employ a fundamental solutionmethod
(FSM, in abbreviation) to derive the approximate problem (E(N)f ).
Under a fairly general condition of the unique solvability for the problem (Ef), it is shown that the rate of convergence of

approximate solutions u(N) of approximate problems (E(N)f ) to the solution u of the original problem (Ef) is asymptotically
exponentially decaying with respect to N on the whole exterior region of the disc considered, where N is the number of
collocation points on the boundary Γa of the disc, if the boundary data f belongs to a fairly general class which includes the
case of the boundary data being a plane wave.
Let a be the radius of Γa and let ρ be the radius of a circle which is concentric and interior to the circle Γa, containing

all the source points employed in (E(N)f ). We adopt a way of arranging the collocation points and source points, called the
equi-distant equally phased arrangement of source points and collocation points in this paper. Our main theorem shows
that the convergent rate of u(N) to u has the form of O(γ N/2N−1)with γ = ρ

a .
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Fundamental solutionmethods have long been recognized as a useful computational technique for solving reducedwave
problems in unbounded domains. Among various computational results, the works of Sánchez-Sesma and Rosenblueth [1]
and Sánchez-Sesma [2] were the earliest ones so far as the authors know.
Rigorousmathematical studies on FSMapplied to 2-dimensional exterior reducedwaveproblems, however, had been few

when the second author of the present paper formulated an FEM–FSM combined method for 2-dimensional reduced wave
problem in the exterior region of a general scattering body in Ushijima [3] as a natural extension of the FEM–CSM combined
method for the planar exterior Laplace problems discussed inUshijima [4]. Here CSM is the abbreviation of charge simulation
method. Then the authors started jointly a series of works to investigate mathematically and numerically the properties of
FSMapplied to reducedwave problems outside a disc. Some of preliminary resultswere reported inUshijima [5]. In Ushijima
andChiba [6] the unique solvability of the problems (E(N)f )was investigated. Our paper [7] gave discussions of error estimates
from theoretical and practical points of view which include the cases of high frequency problems. The previous paper [8] in
Japanese treated the case of Neumann boundary value problemwith the emphasis on the effectiveness ofmultiple-precision
arithmetic with arbitrary many digits.
The paper of Katsurada and Okamoto [9] is a pioneering work for mathematical analysis of CSM applied to the Laplace

equations in a disc. The CSM for the Laplace equations is one of typical examples of FSM. Our theoretical result in this work
may be considered as a natural extension of that in [9] to the Helmholtz equation in a domain exterior to a disc.
In Ushijima and Chiba [7], we announced two theorems concerning error estimate, one ofwhich treated the problemwith

boundary data of finitely many Fourier modes, and the other one treated the problem with boundary data of plane waves,
separately. Since Theorem 4 of the present paper, a main theorem of this work, gives a sharper estimate which covers the
above two cases, the authors have decided to withhold the publication of the proof of these theorems announced in [7].
The organization of the rest of the paper is as follows. In Section 2, the setting of the continuous problem (Ef) and

approximate problems (E(N)f ) are described. In Section 3, our previous results on the solvability of (E
(N)
f ) are summarized.

In Section 4, the main theorem of this work is stated under two assumptions, one of which concerns the solvability of
the continuous problem (Ef), and the other one of which gives a description of the class of Dirichlet data treated in the
main theorem. In Section 5, a Fourier series expansion of the approximation error u − u(N) is given. Various estimations
of quantities related to the Fourier series expansion are shown in Section 6. A proof of the main theorem is completed in
Section 7. In Section 8, we add two numerical tests: numerical estimate of errors including cases of high wave numbers; and
two examples of total waves in circular obstacle scattering problems with high frequency incident plane waves. In the final
part acknowledgements are stated.

2. A reduced wave problem and its FSM approximation

2.1. A reduced wave problem with Dirichlet boundary condition in the exterior region of a disc

Let Γa be the circle in the plane R2 with radius a having the origin of the plane as its center. Let k be the length of the
wave number vector considered. LetΩe be the exterior domain of the circle Γa. We use the notation r = r(θ) for the point
in the plane corresponding to the complex number reiθ with r = |r|, where |r| is the Euclidean norm of r ∈ R2. Similarly
we use a = a(θ), and ρ = ρ(θ), corresponding to aeiθ with a = |a|, and to ρeiθ with ρ = |ρ|, respectively.
We consider the following inhomogeneous Dirichlet boundary value problem of the reducedwave equation in the region

Ωe as our continuous problem (Ef):

(Ef)


−∆u− k2u = 0 inΩe,
u = f on Γa,

lim
r→∞

√
r
{
∂u
∂r
− iku

}
= 0.

The solution u = u(r) is assumed to satisfy the Sommerfeld outgoing radiation condition at infinity. The boundary data
f = f (a(θ)) is a complex valued continuous function on Γa.
Let fn be the Fourier coefficient defined through

fn =
1
2π

∫ 2π

0
f (a(θ))e−inθdθ for n ∈ Z.

Then the solution u(r) is formally represented through the following formula (1):

u(r) =
∞∑

n=−∞

fn
H(1)n (kr)

H(1)n (ka)
einθ for r ≥ a. (1)

In the above formula (1), H(1)n (x) is the nth order Hankel function of the first kind.
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Note 1. It should be noted that, under certain decaying conditions on the Fourier coefficient fn as |n| tends to infinity, the
infinite differentiability of u defined by (1) with respect to r , r > a, and θ ∈ R, and the continuity of all derivatives of u up
to r ≥ amay be established, which in turn implies that the function u defined by (1) is the unique classical solution of the
problem (Ef). One of such decaying conditions is the following exponentially decaying condition (β).

(β)

{
There are positive constants F and β ∈ (0, 1) such that
|fn| ≤ Fβ |n| for n ∈ Z.

2.2. Approximate problems to the reduced wave problem through a fundamental solution method

Let N be an arbitrary fixed positive integer. Then we use the notation θj for j ∈ Z through

θ1 =
2π
N
, θj = jθ1 for j ∈ Z.

For fixed positive numbers ρ and a such that 0 < ρ < a, ρj and aj are defined as follows.

ρj = ρ(θj), aj = a(θj), 0 ≤ j ≤ N − 1.

The points ρj and aj are said to be the source and the collocation points, respectively. The arrangement of the set of source
points and collocation points introduced above is called the equi-distant equally phased arrangement of source points and
collocation points in this paper.
Nowwe introduce an approximate problem (E(N)f ) to (Ef) through a fundamental solution method, FSM, in the setting of

the equi-distant equally phased arrangement of source points and collocation points. We consider the following problem:

(E(N)f )

u
(N)(r) =

N−1∑
j=0

QjGj(r),

u(N)(aj) = f (aj), 0 ≤ j ≤ N − 1.

In the problem (E(N)f ), we use basis functions Gj(r) as follows,

Gj(r) = H
(1)
0 (k|re

iθ
− ρeiθj |), 0 ≤ j ≤ N − 1.

It is noted that Gj(r) is a constant multiple of the fundamental solution of Helmholtz equation with the singularity at r = ρj
satisfying the Sommerfeld outgoing radiation condition at infinity. The problem (E(N)f ) is understood in that the unknown N
quantities Qj, 0 ≤ j ≤ N − 1, should be determined by the collocation condition described as the second equation of (E

(N)
f ).

Hereafter the following notation is employed:

γ =
ρ

a
, δ =

r
a
, κ = ka.

These numbers are characteristic numbers of the relevant problem, normalized by the radius a. Using this notation we can
rewrite the basis function Gj(r) as follows.

Gj(r) = H
(1)
0 (κ|δ − γ e

−i(θ−θj)|), 0 ≤ j ≤ N − 1.

3. Solvability of the FSM approximate problems

For a fixed real number κ > 0 and a fixed real number γ ∈ (0, 1), let us define the kernel function g(θ) through

g(θ) = H(1)0 (κ|1− γ e
−iθ
|).

We understand that the problem (Ef) is to find a density function q(θ) satisfying the following equality (Ef):

(Ef)f (a(θ)) =
1
2π

∫ 2π

0
g(θ − ϕ)q(ϕ)dϕ.

The function f (a(θ)) is represented with the kernel function g(θ) through the formula of convolution (Ef). It is to be noted
that we have

Gj(a(θ)) = g(θ − θj), 0 ≤ j ≤ N − 1.

Hence we may consider the problem (E(N)f ) is an approximate problem of the integral equation (Ef). Unknown quantities
Qj, 0 ≤ j ≤ N − 1 in (E

(N)
f ) should be considered as approximate values of

1
N q(θj), 0 ≤ j ≤ N − 1.
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Define a circulant matrix G and an inhomogeneous vector f , and an unknown vector q as follows.

Gij =
(
g(θi−j)

)
0≤i,j≤N−1 , f = (f (ai))0≤i≤N−1, q = (Qi)0≤i≤N−1.

Then the problem (E(N)f ) is equivalent to solving the linear equation:

Gq = f . (2)

Let ω = eiθ1 , and introduce vectors ωn for n ∈ Zwith ωn = (ωjn)0≤j≤N−1. Since G is circulant, vectors ωn are eigenvectors of
G. Denote the eigenvalue of G corresponding to ωn by λn for n ∈ Z. Let F (N)n , and G

(N)
n , be the discrete Fourier coefficients of

f (a(θ)), and g(θ), for n ∈ Z, defined through

F (N)n =
1
N

N−1∑
j=0

f (aj)e−inθj and G(N)n =
1
N

N−1∑
j=0

g(θj)e−inθj , (3)

respectively. Although F (N)n and G(N)n should be called discrete Fourier coefficients with size N , we drop the phrase of ‘‘with
size N ’’ here and hereafter. By definition it follows that discrete Fourier coefficients F (N)n and G(N)n have the period N with
respect to the suffix n. And an elemental calculation yields the relation:

λn = NG(N)n for n ∈ Z.

Hence a unique solvability condition of (E(N)f ) is represented as follows.

(G(N)) G(N)n 6= 0 for n ∈ Z.

Under the condition (G(N))we can express the solution q of (2) as follows.

Qn =
1
N

N−1∑
j=0

F (N)j
G(N)j

einθj , 0 ≤ n ≤ N − 1. (4)

Due to Graf’s addition formula in p. 361 of Watson [10], we have the Fourier series expansion of g(θ) as follows.

g(θ) =
∞∑

n=−∞

gneinθ ,

with

gn = H(1)n (κ)Jn(γ κ) for n ∈ Z. (5)

Now we introduce the condition (g) on the kernel function g(θ) through

(g) gn 6= 0 for n ∈ Z.

This condition (g) has been denoted by (G1) in our previous paper [6], in which we have shown the following theorem as
Theorem 3.

Theorem 1. Let κ be an arbitrary positive number, and let γ ∈ (0, 1) be fixed. Suppose that the kernel function g(θ) with the
parameters κ and γ satisfies the condition (g). Then there is a positive integer N1 depending on κ and γ such that the condition
(G(N)) holds for any N ≥ N1.

Since H(1)n (κ) never vanishes for any κ > 0 as will be shown in the proof of Proposition 6 in Section 6, the condition (g)
is equivalent to the condition that the nth order Bessel function Jn(x) never vanishes at x = γ κ for any positive integer n.
From the properties of zeros of Bessel functions, we can conclude the following:
For fixed κ , except for the finite number of values of γ ∈ (0, 1) depending on κ , the condition (g) holds for any remaining

γ ∈ (0, 1). Especially if κ is less than or equal to the smallest positive zero of J0(x), the condition (g) holds for any γ ∈ (0, 1).

4. Main theorem

We assume the following Assumptions 2 and 3 throughout this section and the consecutive sections.

Assumption 2. Let κ be fixed as an arbitrary positive number. Choose γ ∈ (0, 1) appropriately so that the kernel function
g(θ)with parameters κ and γ may satisfy the condition (g).
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Assumption 3. Let fn and gn be Fourier coefficients of f (a(θ)) and g(θ) for n ∈ Z defined through

fn =
1
2π

∫ 2π

0
f (a(θ))e−inθdθ and gn =

1
2π

∫ 2π

0
g(θ)e−inθdθ,

respectively. Under Assumption 2, define quantities qn for n ∈ Z through

qn =
fn
gn
.

Suppose that the following quantity |||q||| is finite for the Dirichlet data f of the Problem (Ef).

|||q||| = sup
n∈Z
|qn|.

Theorem 4. Under Assumptions 2 and 3, there is a positive integer N2 such that the following estimate is valid:

sup
|r|≥a

∣∣u(r)− u(N)(r)∣∣ < 900|||q|||
π(1− γ )

γ N/2

N
for N ≥ N2.

The positive integer N2 depends on κ and γ , but does not depend on the Dirichlet data f .

5. A Fourier series expansion of the approximation error

Throughout Sections from 5 to 7, the symbol N means a generic positive integer satisfying

N ≥ max(N1, 2),

where N1 is a positive integer determined in Theorem 1.

Theorem 5. The solution u(N)(r) of (E(N)f ) is represented as follows.

u(N)(r) =
∞∑

n=−∞

F (N)n
G(N)n

gnHn(δ)einθ , (6)

whereHn(δ) is defined through

Hn(δ) =
H(1)n (δκ)

H(1)n (κ)
for n ∈ Z. (7)

Proof. For an arbitrarily fixed r ≥ a, the basis function Gj(r), 0 ≤ j ≤ N − 1, is expanded to the following Fourier series
with respect to θ due to Graf’s addition formula (See Watson [10] p. 361),

Gj(r) =
∞∑

n=−∞

H(1)n (κδ)Jn(γ κ)e
in(θ−θj) for r = r(θ)with |r| = r. (8)

Inserting the series above into the formula of u(N)(r) in (E(N)f ), we obtain

u(N)(r) =
N−1∑
j=0

Qj

{
∞∑

n=−∞

H(1)n (κδ)Jn(γ κ)e
in(θ−θj)

}
. (9)

Since the series (8) is absolutely and uniformly convergent with respect to θ , we have

u(N)(r) =
∞∑

n=−∞

{
N−1∑
j=0

Qje−inθj
}
H(1)n (κ)Jn(γ κ)

H(1)n (κδ)

H(1)n (κ)
einθ .

(The absolute and uniform convergency of (8) will be admitted after one sees Proposition 6 and the proof of Proposition 7
in Section 6.) The representation formula (4) of Qn yields

N−1∑
j=0

Qje−inθj =
F (N)n
G(N)n

for n ∈ Z. (10)

From (10), (5) and (7) and the definition ofHn(δ), we have the representation in the statement of Theorem 5. �
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The approximation error, namely the difference between the exact solution (1) and the FSM approximate one (6) is given
as follows.

u(r)− u(N)(r) =
∞∑

n=−∞

(
fn
gn
−
F (N)n
G(N)n

)
gnHn(δ) einθ . (11)

6. Estimates of quantities appearing in the Fourier series expansion of the approximation error

Proposition 6. We have

0 < |Hn(δ)| ≤ 1 for κ > 0, δ ≥ 1 and n ∈ Z.

Proof. Let x be a positive real variable, and let Yn(x) be the nth order Neumann function. The nth order Hankel function of
the first kind H(1)n (x) is represented as follows.

H(1)n (x) = Jn(x)+ iYn(x) for x > 0 and n ∈ Z.

Using Nicholson’s integral in p. 444 of Watson [10], we introduce the function Pn(x) as follows.

Pn(x) = |H(1)n (x)|
2
= J2n (x)+ Y

2
n (x) =

8
π2

∫
∞

0
K0(2x sinh t) cosh 2nt dt for x > 0 and n ∈ Z,

with

K0(x) =
∫
∞

0
e−x cosh t dt for x > 0,

where K0(x) is the zeroth order modified Bessel function of the second kind (see p. 446 of Watson [10]). The formula above
indicates that Pn(x) is a positive decreasing function of x > 0. Namely we have

0 < Pn(δκ) ≤ Pn(κ) for δ ≥ 1, κ > 0 and n ∈ Z.

Definition (7) yields the following estimate.

0 <
Pn(δκ)
Pn(κ)

=
|H(1)n (δκ)|2

|H(1)n (κ)|2
= |Hn(δ)|

2
≤ 1 for δ ≥ 1, κ > 0 and n ∈ Z.

Therefore, the statement of the proposition is obtained. �

Proposition 7. There exists a positive integer L, depending on κ and γ , such that

|gn| ≤
3

2|n|π
γ |n| provided that |n| ≥ L.

Proof. This statement comes from Lemma 1 of Ushijima and Chiba [6]. Key steps of the proof are rewritten here for the sake
of convenience. The following asymptotic estimates are written on p. 365 of Abramowitz–Stegun [11], which are valid for a
fixed positive x as n→∞.

Jn(x) ∼
1
√
2πn

( ex
2n

)n
, H(1)n (x) ∼ −i

√
2
πn

( ex
2n

)−n
. (12)

Then the asymptotic estimate below holds for fixed positive γ and κ as n→∞.

gn = H(1)n (κ)Jn(γ κ) ∼ −
iγ n

πn
.

As in Lemma 1 of [6], we understand that the above asymptotic behavior is equivalent to the following statement:
For any positive ε, there exists a positive integer L(ε) such that∣∣∣∣∣ gn− iγ n

πn

− 1

∣∣∣∣∣ ≤ ε for n ≥ L(ε).

Let L = L(1/2). Then we have∣∣∣∣∣ gn− iγ n
πn

− 1

∣∣∣∣∣ ≤ 12 for n ≥ L.
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Hence the following inequality holds.

|gn| ≤
3
2nπ

γ n for n ≥ L.

On the other hand the following formulas hold.

J−n(x) = (−1)nJn(x) and H(1)−n(x) = (−1)
nH(1)n (x) for n ∈ Z. (13)

Hence g−n = gn for n ∈ Z. Thus the result of Proposition 7 is obtained. �

Lemma 8. Let ψ(θ) be a 2π periodic continuous function. Suppose that the derivative ψ ′(θ) exists almost everywhere, and
that it belongs to L2(0, 2π). Let ψn and Ψ

(N)
n be the nth Fourier coefficient of ψ , and the nth discrete Fourier coefficients of ψ ,

respectively. Then the following equality holds.

Ψ (N)
n − ψn =

∑
p∈Z−{0}

ψn+Np for n ∈ Z. (14)

Proof. The function ψ(θ) is expanded in the following uniformly absolutely convergent Fourier series:

ψ(θ) =

∞∑
n=−∞

ψneinθ . (15)

The nth discrete Fourier coefficient of ψ is given as follows.

Ψ (N)
n =

1
N

N−1∑
j=0

ψ(θj)e−inθj , θj =
2π j
N
, n ∈ Z (16)

Inserting (15) into the right-hand of (16), we obtain (14). �

Proposition 9. There exists a positive integer L, depending on κ and γ , with the following property: If N ≥ L, then∣∣G(N)n − gn∣∣ ≤ 6
Nπ

(
γ N+|n| + γ N−|n|

)
for n with |n| ≤ N/2.

Proof. Fix a positive integer L1 arbitrarily. Suppose that integers N , n and p satisfy

N ≥ L1, |n| ≤ N/2, p 6= 0.

Then the following inequality holds.

|n+ Np| ≥ L1/2. (17)

In fact we have

|n+ Np| ≥ |Np| − |n| ≥ N − |n| ≥ N − N/2 = N/2 ≥ L1/2.

Let L1/2 equal to the integer L determined in Proposition 7. Then we have

|gn| ≤
3γ |n|

2|n|π
for any nwith |n| ≥ L1/2. (18)

Lemma 8 yields the following inequality.∣∣G(N)n − gn∣∣ ≤ ∑
p∈Z−{0}

|gn+Np|.

If N ≥ L1 and |n| ≤ N/2, we can insert the estimate (18) into the right-hand side of the above equality due to (17). Hence
we obtain∣∣G(N)n − gn∣∣ ≤ 3

2π

∑
p∈Z−{0}

γ |n+Np|

|n+ Np|
for nwith |n| ≤ N/2 (19)

provided that N ≥ L1. We note the following equality:

3
2π

∑
p∈Z−{0}

γ |n+Np|

|n+ Np|
=
3
2π

∞∑
p=1

(
γ Np+|n|

Np+ |n|
+

γ Np−|n|

Np− |n|

)
for nwith |n| ≤ N/2.
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Further we have

Np+ |n| ≥ Np− |n| ≥ N − |n| ≥ N − N/2 = N/2

in the the right hand side of the equality above. Therefore we can calculate for nwith |n| ≤ N/2 in the following way.
∞∑
p=1

(
γ Np+|n|

Np+ |n|
+

γ Np−|n|

Np− |n|

)
≤
2
N

∞∑
p=1

(
γ Np+|n| + γ Np−|n|

)
=
2(γ N+|n| + γ N−|n|)
N(1− γ N)

.

We take a positive integer L2 so as to satisfy

1
1− γ N

≤ 2 for N ≥ L2.

Let L = max(L1, L2). Then we have

2(γ N+|n| + γ N−|n|)
N(1− γ N)

≤
4(γ N+|n| + γ N−|n|)

N
for nwith |n| ≤ N/2

provided that N ≥ L. Summing up the above estimations starting from (19), we have the conclusion of Proposition 9. It is to
be noted that L1 depends on κ and γ , and that L2 depends on γ . �

Corollary 10. Let L be the positive integer determined in Proposition 9. Then we have∣∣G(N)n − gn∣∣ ≤ 12Nπ γ N/2 for n with |n| ≤ N/2

provided that N ≥ L.

Proof. Since we have

N + |n| ≥ N − |n| ≥ N − N/2 = N/2 for nwith |n| ≤ N/2,

Proposition 9 implies Corollary 10. �

Proposition 11. Let L be the positive integer determined in Proposition 9. Then we have∣∣F (N)n − fn∣∣ ≤ 6
Nπ
|||q|||

(
γ N+|n| + γ N−|n|

)
for n with |n| ≤ N/2

provided that N ≥ L.

Corollary 12. Let L be the positive integer determined in Proposition 9. Then we have∣∣F (N)n − fn∣∣ ≤ 12Nπ |||q|||γ N/2 for n with |n| ≤ N/2

provided that N ≥ L.

Proof of Proposition 11 and Corollary 12. Due to Assumptions 2 and 3, we have for any n ∈ Z

|fn| ≤ |||q||| |gn|.

Proposition 7 yields

|fn| ≤
3|||q|||
2π |n|

γ |n| for nwith |n| ≥ L,

where L is determined in Proposition 9. The estimate above assures that the function u(r) represented in the form (1) is
the unique classical solution of the problem (Ef), and especially that f (θ) = u(a(θ)) is a 2π-periodic continuous function
having the derivative f ′(θ) ∈ L2(0, 2π). Hence Lemma 8 yields

F (N)n − fn =
∑
p∈Z−{0}

fn+Np for n ∈ Z.

Therefore we have

|F (N)n − fn| ≤
∑
p∈Z−{0}

|fn+Np| ≤ |||q|||
∑
p∈Z−{0}

|gn+Np|.
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Hence Proposition 11, and Corollary 12, are established through the same arguments as are employed in the proof of
Proposition 9, and that of Corollary 10, respectively. �

Proposition 13. There exists a positive integer L depending on κ and γ such that∣∣G(N)n ∣∣ ≥ γ N/2

2Nπ
for n ∈ Z provided that N ≥ L.

Proof. Reduction of the proof of Proposition 13 to the proof of Theorem3 inUshijima and Chiba [6] is as follows. Temporarily
the integer L determined in Proposition 7 is denoted by L7, and integers Ni, 0 ≤ i ≤ 4, are employed in accordance with
those in the proof of Theorem 3 in [6]. Let N1 = L7 and let

N2 = −
log 2
log γ

.

Define

G3 = min
0≤n≤N1

|gn|.

Due to Assumption 2, G3 is positive. If

G3 ≤
24
π
γ 1/2,

then let

N3 =
2
log γ

× log
πG3
24

,

otherwise let

N3 = 1.

Let N4 be the largest zero of the following equation for the real variable x:

6xγ x/2 =
1
2
.

Define

N0 = max
1≤i≤4

Ni.

In Step 3 of the proof of Theorem 3 in [6], we have shown that if N ≥ Ni for 1 ≤ i ≤ 3, then

|G(N)n | ≥
12
π
γ N/2 for n ∈

[
0,
N1
2

]
.

In Step 4 of the proof of Theorem 3 in [6], we have shown that if N ≥ Ni for 1 ≤ i ≤ 4, then

|G(N)n | ≥
γ N/2

2πN
for n ∈

[
N1
2
,
N
2

]
.

Combining the above 2 estimates, and noticing the equality: G(N)−n = G
(N)
n for any n ∈ Z, we have

|G(N)n | ≥
γ N/2

2πN
for n ∈

[
−
N
2
,
N
2

]
provided that N ≥ N0. Since the discrete Fourier coefficient G

(N)
n has a period N with respect to the suffix n, we have

|G(N)n | ≥
γ N/2

2πN
for n ∈ Z provided that N ≥ N0.

For the positive integer L nearest to N0 from above, the statement of Proposition 13 is valid. �

Proposition 14. Let L9, and L13 be positive integers determined in Proposition 9, and in Proposition 13, respectively. Let L =
max(L9, L13). If N ≥ L, then∣∣∣∣ gnG(N)n

∣∣∣∣ ≤ 25 for any n with |n| ≤ N/2.
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Proof. Since∣∣∣∣ gnG(N)n − 1
∣∣∣∣ =

∣∣∣∣∣ gnG(N)n − G
(N)
n

G(N)n

∣∣∣∣∣ =
∣∣∣∣ 1G(N)n

∣∣∣∣ ∣∣gn − G(N)n ∣∣ ,
Propositions 9 and 13 yield∣∣∣∣ gnG(N)n − 1

∣∣∣∣ ≤ 2Nπγ N/2
×
12
Nπ

γ N/2 = 24 for nwith |n| ≤ N/2

if N ≥ L. Hence we have∣∣∣∣ gnG(N)n
∣∣∣∣ ≤ ∣∣∣∣ 1G(N)n

∣∣∣∣ ∣∣gn − G(N)n ∣∣+ 1 ≤ 24+ 1 = 25 for nwith |n| ≤ N/2

if N ≥ L. �

Proposition 15. Let L be a positive integer determined in Proposition 14. If N ≥ L, then∣∣∣∣∣ F (N)nG(N)n
∣∣∣∣∣ ≤ 49|||q||| for n ∈ Z.

Proof. Discrete Fourier coefficients F (N)n and G(N)n have the period N with respect to the suffix n ∈ Z. Then there exists an
integerm such that

|m| ≤ N/2 and
F (N)m
G(N)m
=
F (N)n
G(N)n

.

Further we have∣∣∣∣∣ F (N)mG(N)m − fmgm
∣∣∣∣∣ =

∣∣∣∣∣ F (N)mG(N)m − fm
G(N)m
+
fm
G(N)m
−
fm
gm

∣∣∣∣∣
=

∣∣∣∣ 1G(N)m
∣∣∣∣ ∣∣∣∣(F (N)m − fm)+ fmgm (gm − G(N)m )∣∣∣∣

≤

∣∣∣∣ 1G(N)m
∣∣∣∣ {∣∣F (N)m − fm∣∣+ ∣∣∣∣ fmgm

∣∣∣∣ ∣∣gm − G(N)m ∣∣} .
Due to Corollary 12, Assumption 3 and Corollary 10, we have∣∣∣∣∣ F (N)nG(N)n

∣∣∣∣∣ =
∣∣∣∣∣ F (N)mG(N)m

∣∣∣∣∣ ≤
∣∣∣∣ 1G(N)m

∣∣∣∣ {∣∣F (N)m − fm∣∣+ ∣∣∣∣ fmgm
∣∣∣∣ ∣∣gm − G(N)m ∣∣}+ ∣∣∣∣ fmgm

∣∣∣∣
≤ 2Nπγ−N/2 ×

(
12|||q|||
Nπ

γ N/2 + |||q||| ×
12
Nπ

γ N/2
)
+ |||q|||

= 49|||q|||

if N ≥ L. �

7. Proof of the main theorem

The difference (11) is divided into terms I , II and III in the following fashion:

u(r)− u(N)(r) =
∑

−N/2≤n≤N/2

InHn(δ)einθ +
∑
n>N/2

IInHn(δ)einθ +
∑
n<−N/2

IIInHn(δ)einθ

= I + II + III,

where In, IIn and IIIn represent the quantities(
fn
gn
−
F (N)n
G(N)n

)
gn (20)

with integer n running in the corresponding ranges specified to the terms I , II and III , respectively.
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7.1. Estimation of the term I

The term In defined in (20) in Section 6 is represented as follows.

In =

(
fn
gn
−
fn
G(N)n
+
fn
G(N)n
−
F (N)n
G(N)n

)
gn

=

{
fn
gn
×
(
G(N)n − gn

)
+
(
fn − F (N)n

)}
×
gn
G(N)n

=
{
I(1)n × I

(2)
n + I

(3)
n

}
× I(4)n .

By Assumption 3 in Section 4, we have

|I(1)n | =
∣∣∣∣ fngn

∣∣∣∣ ≤ |||q|||.
Denote the positive integer L determined in Proposition 9 by L9. Then we have

|I(2)n | = |G
(N)
n − gn| ≤

6
Nπ

(
γ N+|n| + γ N−|n|

)
for nwith |n| ≤ N/2

if N ≥ L9. Due to Proposition 11, we have

|I(3)n | = |F
(N)
n − fn| ≤

6|||q|||
Nπ

(
γ N+|n| + γ N−|n|

)
for nwith |n| ≤ N/2

if N ≥ L9. Denote the positive integer L determined in Proposition 14 by L14. Then we have

|I(4)n | =
∣∣∣∣ gnG(N)n

∣∣∣∣ ≤ 25 for nwith |n| ≤ N/2

if N ≥ L14. Let NI = max(L9, L14). Then the above 4 estimates yield the following estimate.

|In| ≤ (|I(1)n | × |I
(2)
n | + |I

(3)
n |)× |I

(4)
n | ≤

300|||q|||
Nπ

(
γ N+|n| + γ N−|n|

)
for nwith |n| ≤ N/2

if N ≥ NI .
The summation of γ N−|n| + γ N+|n| with respect to n ∈ [−N/2,N/2] is estimated, in both cases of even N and odd N , as

follows. ∑
−N/2≤n≤N/2

(γ N−|n| + γ N+|n|) <
2γ N/2

1− γ
.

Therefore we have

|I| ≤
∑

−N/2≤n≤N/2

|In| <
600|||q|||
Nπ(1− γ )

γ N/2 for N ≥ NI .

It should be noted that the definitions of L9 and L14 imply that NI depends on κ and γ . �

7.2. Estimation of the term II

The term IIn defined in (20) of Section 6 is represented as follows.

IIn =

(
fn
gn
−
F (N)n
G(N)n

)
× gn =

(
II(1)n − II

(2)
n

)
× II(3)n .

By Assumption 3, we have

|II(1)n | =
∣∣∣∣ fngn

∣∣∣∣ ≤ |||q|||.
Denote L determined in Proposition 15 by L15. Then we have

|II(2)n | =

∣∣∣∣∣ F (N)nG(N)n
∣∣∣∣∣ ≤ 49|||q||| for n > N/2
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if N ≥ L15. Denote L determined in Proposition 7 by L7. Then we have

|II(3)n | = |gn| ≤
3
2nπ

γ n for n > N/2

if N ≥ L7. Let NII = max(L15, L7). The above 3 estimates yield

|IIn| ≤
(
|II(1)n | + |II

(2)
n |
)
× |II(3)| ≤

75|||q|||
π

γ n

n
for n > N/2

if N ≥ NII . The summation of γ n/nwith respect to n ∈ (N/2,∞) is calculated as follows.∑
n>N/2

γ n

n
<
∑
n>N/2

γ n

N/2
=
2
N

∑
n>N/2

γ n.

Since we have, in both cases of even N and odd N ,∑
n>N/2

γ n ≤
γ N/2+1/2

1− γ
,

we obtain∑
n>N/2

γ n

n
<
2γ N/2+1/2

N(1− γ )
.

Therefore we have

|II| ≤
∑
n>N/2

|IIn| <
75|||q|||
π
×
2γ N/2+1/2

N(1− γ )
<

150|||q|||
Nπ(1− γ )

γ N/2 for N ≥ NII .

It should be noted that the definitions of L15 and L7 imply that NII depends on κ and γ . �

7.3. Estimation of the term III

In the same manner as in the previous subsection, we have

|III| ≤
∑
n<−N/2

|IIIn| <
150|||q|||
Nπ(1− γ )

γ N/2 for N ≥ NII .

7.4. Completion of the proof of the main theorem

Let N2 = max(NI ,NII). Then Sections 7.1–7.3 yield

|I + II + III| ≤ |I| + |II| + |III|

<
600|||q|||
Nπ(1− γ )

γ N/2 +
150|||q|||
Nπ(1− γ )

γ N/2 × 2 =
900|||q|||
π(1− γ )

γ N/2

N

if N ≥ N2. �

8. Numerical tests

8.1. Behavior of numerical errors

We obtain closed analytical formulae calculating approximate solutions u(N) of (E(N)f ) in forms of finite numbers of
arithmetic operations except for the evaluation of cylindrical functions. The truncation error of approximate solutions is
well estimated through Theorem 4.
The rounding error might pollute the convergent rate of the truncation error especially in the case of high frequency

problems, since the kernel function becomes more and more oscillatory as κ does larger and larger.
The first numerical test concerns the above mentioned conflict between truncation error and rounding error. To see the

exact situation, free use of multiple-precision arithmetic is instrumental in the test.
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Table 1
Parameters for numerical estimator.

κ γ N = 2n NN Digit

Left column 1, 10, 100, 1000 0.1 ≤ γ ≤ 0.9 1 ≤ n ≤ 10 2048 30
Left column 100, 1000 0.1 ≤ γ ≤ 0.9 11 ≤ n ≤ 13 16384 30
Right column 1, 10, 100, 1000 0.1 ≤ γ ≤ 0.9 1 ≤ n ≤ 10 2048 3200
Right column 100, 1000 0.1 ≤ γ ≤ 0.9 11 ≤ n ≤ 13 16384 3200

8.1.1. Boundary data
The following Dirichlet boundary data f is employed on Γa.
f = eiκ cos θ with θ ∈ [0, 2π ].

Letting t = ieiθ in the formula (1) on p. 14 of Watson [10], we have

f =
∞∑

n=−∞

inJn(κ)einθ .

Let fn = inJn(κ). Due to the formulae (5), (12) and (13), we have the following asymptotic behavior of |fn| as n→±∞.

|fn| =
∣∣∣∣ fngn

∣∣∣∣ |gn| =
∣∣∣∣∣ Jn(κ)

H(1)n (κ)Jn(γ κ)

∣∣∣∣∣ |gn| ∼
√
π |n|
2

(
eκ
2γ |n|

)|n|
|gn|.

Hence, under Assumption 2 there is a positive number C such that
|fn| ≤ C |gn| for n ∈ Z.

Therefore Assumption 3 holds, and Theorem 4 can be applied to this case.

8.1.2. Numerical estimator of error
Let NN be the number of evaluation points on Γa. Each evaluation point ãj is defined as follows.

ãj = a(θ̃j), θ̃j =
2π j
NN

for 0 ≤ j ≤ NN − 1.

Let N be the number of collocation points. Due to the formulae (3) and (4), Qj, 0 ≤ j ≤ N − 1 are computed by Fast
Fourier Transform. Values of approximate solutions are computed with Qj by the first formula of (E

(N)
f ).

The following formula is employed for the numerical estimator of error.

E(NN)(N) = max
0≤j≤NN−1

∣∣u(̃aj)− u(N)(̃aj)∣∣ . (21)

We employ NN = 2048 for 2 ≤ N ≤ 1024, and NN = 16384 for 2048 ≤ N ≤ 8192.

8.1.3. Behavior of numerical estimator
The results of computation are given as two columns of graphs in Fig. 1. The left column corresponds to 30 decimal

digit arithmetic, and the right one to 3200 decimal digit arithmetic, respectively. In each column, four graphs correspond to
κ = 1, 10, 100 and 1000, in descending order respectively. In each graph, five polygonal lines correspond to γ = 0.1, 0.3,
0.5, 0.7 and 0.9, respectively. And, the abscissa axis means the number of collocation points, N , and the ordinate axis means
the common logarithm of errors, log10 E(NN)(N). It is to be noted thatN is bounded by 1024 (= 210) in the cases of κ = 1 and
10, while it is extended to 8192 (= 213) in the cases of κ = 100 and 1000. Other values of parameters are listed in Table 1.
In the cases of κ = 1 and 10, the behavior of the numerical estimator with 3200 decimal digit arithmetic reflects the phe-

nomenon of exponential decay of errors. But, in the cases of κ = 100 and 1000, the behavior does not yet reflect exponential
decay of errors completely.
We remark that N should be taken greater than 1024 to see the exponential decay of the error estimator even if the

number of digits employed in computation is 3200 in the cases of κ = 100 and 1000. Further we remark that the lowest
part of the right column of Fig. 1 indicates that 3200 digits is still insufficient in the case of κ = 1000 with γ = 0.1 and
probably with γ = 0.3, in order to observe the exponential decay of the numerical estimator of error.

8.1.4. A guide to practical computation
In the case of large κ , say κ = 1000, the numerical estimator does not decrease exponentially in general if the number of

decimal digits of arithmetic is insufficient. This tendency is significantly remarkable for small γ . The pollution by rounding
error is dominant in the computation with an insufficient number of digits.
We have found, however, that, even if the case of κ = 1000, our estimator of error guarantees the accuracy of the

computed values within 10 decimal digits when we employ 30 decimal digit arithmetic for γ = 0.9 with N = 4096 or
more.
Regarding this finding as a guide, we have decided values of parameters for the second test.
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Fig. 1. Behavior of errors on Γa with common logarithmic scaling ordinate.

8.2. Visualization of the scattering phenomena around a circular disc

8.2.1. Profiles of absolute values of total waves
Let ui be the incident wave with the form of plane wave along the direction of x axis. Namely we set

ui(r) = eikx.

Let f be the boundary value of−ui restricted on Γa. Therefore we have

f (a(θ)) = −eiκ cos θ .
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Fig. 2. Profiles of absolute values of total waves by grayscale plotting.

The solution u of (Ef)with the above f is denoted by us, and the solution u(N) of (E
(N)
f ) by u

(N)
s . As usual the function us is

said to be the scattering wave. Define the total wave u, and its approximation u(N) through
u = ui + us and u(N) = ui + u(N)s .

As was shown in Section 8.1.1, the density function of q(θ) for this Dirichlet data f has a finite value of |||q|||, if the kernel
function g satisfies Assumption 2. Fig. 2 shows profiles of absolute values of total waves u(N) around the circle with κ = 50
in the upper case, and with κ = 100, in the lower case. In both cases, a is taken to equal 1 and γ = 0.9 is employed to
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Table 2
Parameters of the total waves in Fig. 2.

κ (= k) a ui f δ γ N L

Upper 50 1 ei50x −ei50 cos θ 1 ≤ δ ≤ 3 0.9 1024 128
Lower 100 1 ei100x −ei100 cos θ 1 ≤ δ ≤ 3 0.9 2048 256

obtain u(N)s through 30 decimal digit arithmetic. The numbers, N , of collocation points is 1024 in the case of κ = 50, and
2048 in the case of κ = 100. The profiles are shown in the annular region where 1 ≤ δ ≤ 3. For each direction from the
center of the circle to a collocation point, equi-distant L points are taken as evaluation points of u(N)(r) where L = 128 in
the case of κ = 50, and L = 256 in the case of κ = 100, respectively. More precisely we consider the closed interval on
the ray along the direction starting from the point with r = 1 to the point with r = 3. The interval is divided equally into
L segments. All the end points of the segments except for the points with r = 3 are employed as evaluation points. These
values of computational parameters and related items are listed in Table 2.
In our visualization procedure, the absolute values of total waves u(r) are normalized into the range of the interval [0, 1].

As amatter of fact, in practical computation, u(N)(r) is employed as u(r). The profiles in Fig. 2 are drawn in away of grayscale
plotting in order that the value |u(r)| = 1, and the value |u(r)| = 0, may correspond to white, and to black, respectively.

8.2.2. Observation of shadow area
Due to the property of grayscale plotting, we may roughly understand in Fig. 2 that the plotted points scaled as white

(|u(r)| = 1) correspond to the points at which the total wave attains either the top or the bottom of the wave, namely its
peak, and that the plotted points scaled as black (|u(r)| = 0) correspond to the points at which the total wave is in quiescent
state, namely in the middle part of the wave.
Comparing the upper case with the lower one, we see that the total wave behaves almost identically in both cases with

κ = 50 and with κ = 100 except for the wavelength, and that the wavelength of the former seems to be almost twice
longer than that of the latter in places where the waves seem to behave periodically, as a natural consequence of the ratio
of normalized numbers between the former and the latter.
In both cases, the total waves seemingly almost vanish behind the disc towards the positive direction of the x axis. Since

we treat the case of a progressing incident wave along this direction, these areas of vanishing wave may be considered
as shadow areas in the scattering phenomena. Among the huge amounts of literature we have noted that Morse and
Feshbach investigated the shadow phenomenon behind a cylindrical obstacle in a 3-dimensional scattering problem using
the solutions of the Helmholtz equation in p. 1380 of their classical text [12].

8.3. Software for computing

For multiple-precision computation, we have employed software libraries MPFR [13] and GMP [14]. The former is a
library for floating point arithmetic with arbitrary precision, which is based on the latter. We have coded our routine for
Bessel functions following the routine by Ooura [15], and our routine for a Fast Fourier Transform following the sample
routine in p. 164 of Brigham [16].
For visualization of numerical data, we have used a mathematical software system Mathematica [17] and a library

program ‘‘psbasic’’ by Mizushima [18]. The program ‘‘psbasic’’ has been essential in order to generate our postscript codes
of the waves.
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