
Journal of Computational and Applied Mathematics 234 (2010) 3326–3331

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

On a new notion of the solution to an ill-posed problem
A.G. Ramm
Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA

a r t i c l e i n f o

Article history:
Received 3 January 2010
Received in revised form 21 April 2010

MSC:
47A52
65F22
65J20

Keywords:
Ill-posed problems
Regularizer
Stable solution of ill-posed problems

a b s t r a c t

A new understanding of the notion of the stable solution to ill-posed problems is proposed.
The newnotion ismore realistic than the old one and better fits the practical computational
needs. A method for constructing stable solutions in the new sense is proposed and
justified. The basic point is: in the traditional definition of the stable solution to an ill-
posed problem Au = f , where A is a linear or nonlinear operator in a Hilbert space H , it is
assumed that the noisy data {fδ, δ} are given, ‖f − fδ‖ ≤ δ, and a stable solution uδ := Rδ fδ
is defined by the relation limδ→0 ‖Rδ fδ − y‖ = 0, where y solves the equation Au = f ,
i.e., Ay = f . In this definition y and f are unknown. Any f ∈ B(fδ, δ) can be the exact data,
where B(fδ, δ) := {f : ‖f − fδ‖ ≤ δ}.
The new notion of the stable solution excludes the unknown y and f from the definition

of the solution. The solution is defined only in terms of the noisy data, noise level, and an a
priori information about a compactum to which the solution belongs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let

Au = f , (1.1)

where A : H → H is a linear closed operator, densely defined in a Hilbert space H . Problem (1.1) is called ill-posed if A is
not a homeomorphism of H onto H , that is, either Eq. (1.1) does not have a solution, or the solution is non-unique, or the
solution does not depend on f continuously. Let us assume that (1.1) has a solution, possibly non-unique. Let N(A) be the
null space of A, and y be the unique normal solution to (1.1), i.e., y ⊥ N(A). Given noisy data fδ , ‖fδ − f ‖ ≤ δ, one wants to
construct a stable approximation uδ := Rδ fδ of the solution y, ‖uδ − y‖ → 0 as δ→ 0.
Traditionally (see, e.g., [1,2]) one calls a family of operators Rh a regularizer for problem (1.1) (with not necessarily linear

operator A) if
(a) RhA(u)→ u as h→ 0 for any u ∈ D(A),
(b) Rhfδ is defined for any fδ ∈ H and there exists h = h(δ)→ 0 as δ→ 0 such that

‖Rh(δ)fδ − y‖ → 0 as δ→ 0. (∗)

In this definition y is fixed and (∗)must hold for any fδ ∈ B(f , δ) := {fδ : ‖fδ − f ‖ ≤ δ}.
In practice one does not know the solution y and the exact data f . The only available information is a family fδ and some

a priori information about f or about the solution y. This a priori information often consists of the knowledge that y ∈ K ,
whereK is a compactum in H . Thus

y ∈ Sδ := {v : ‖A(v)− fδ‖ ≤ δ, v ∈ K} .

We assume that the operator A is known exactly, and we always assume that fδ ∈ B(f , δ), where f = A(y).
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Definition. We call a family of operators R(δ) a regularizer if

sup
v∈Sδ
‖R(δ)fδ − v‖ ≤ η(δ)→ 0 as δ→ 0. (1.2)

There is a crucial difference between our new Definition (1.2) and the standard definition (∗):

In (∗) y is fixed, while in (1.2) v is an arbitrary element of Sδ and the supremum of the norm in (1.2) over all such v must tend
to zero as δ→ 0.
The new definition is more realistic and better fits computational needs because not only the solution y to (1.1) satisfies

the inequality ‖Ay − fδ‖ ≤ δ, but any v ∈ Sδ satisfies this inequality ‖Av − fδ‖ ≤ δ, v ∈ K . The data fδ may correspond
to any f = Av, where v ∈ Sδ , and not only to f = Ay, where y is a solution of Eq. (1.1). Therefore it is more natural to use
definition (1.2) than the traditional definition (∗).
Our goal is to illustrate the practical difference between these two definitions, and to construct regularizer in the new

sense (1.2) for problem (1.1) with an arbitrary, not necessarily bounded, linear operator A, which is closed and densely
defined in H . This is done in Section 2.
In Section 1 this is done for a class of Eq. (1.1) with nonlinear operators A : X → Y , where X and Y are Banach spaces. In

this case we make two assumptions, (A1) and (A2):
(A1) A : X → Y is a closed, nonlinear, injective map, f ∈ R(A), whereR(A) it is the range of A,
and

(A2) the functional φ has the following properties:

φ : D(φ)→ [0,∞), φ(u) > 0 if u 6= 0, D(φ) ⊆ D(A),

the setsK = Kc := {v : φ(v) ≤ c} are compact in X for every c = const > 0,
and if vn → v, then φ(v) ≤ lim infn→∞ φ(vn).
The last inequality holds if φ is lower semicontinuous. In Hilbert spaces and in reflexive Banach spaces norms are lower

semicontinuous [3].
Let us give some examples of equations for which assumptions (A1) and (A2) are satisfied.

Example 1. A is a linear injective compact operator, f ∈ R(A), φ(v) is a norm on X1 ⊂ X , where X1 is densely embedded in
X , the embedding i : X1 → X is compact, and φ(v) is lower semicontinuous.

Example 2. A is a nonlinear injective continuous operator f ∈ R(A), A−1 is not continuous, φ is as in Example 1.

Example 3. A is linear, injective, densely defined, closed operator, f ∈ R(A), A−1 is unbounded, φ is as in Example 1,
X1 ⊆ D(A).

Let us demonstrate by Example A that a regularizer in the sense (∗)may be not a regularizer in the sense (1.2).
In Example B a theoretical construction of a regularizer in the sense (1.2) is given for some Eq. (1.1) with nonlinear

operators.
In Section 2 a novel theoretical construction of a regularizer in the sense (1.2) is given for a very wide class of Eq. (1.1)

with linear operators A.

Example A. Stable numerical differentiation.
In this Example the results from [4,5], are used, see also Chapter 15 in the book [6], where the problemof stable numerical

differentiation is discussed in detail. This Example is borrowed from [5].
Consider stable numerical differentiation of noisy data. The problem is:

Au :=
∫ x

0
u(s)ds = f (x), f (0) = 0, 0 ≤ x ≤ 1. (1.3)

The data are the values fδ and the constantMa. Here fδ are the ‘‘noisy’’ data, ‖fδ−f ‖ ≤ δ, where the norm is L∞(0, 1) norm, and
the constantMa defines a compactK . This compactK consists of the L∞ functions which satisfy the inequality ‖u‖a ≤ Ma,
a ≥ 0,

K := {u : ‖u‖a ≤ Ma}.

The norm

‖u‖a := sup
x,y∈[0,1]
x6=y

|u(x)− u(y)|
|x− y|a

+ sup
0≤x≤1

|u(x)| if 0 ≤ a ≤ 1,

‖u‖a := sup
0≤x≤1

(|u(x)| + |u′(x)|)+ sup
x,y∈[0,1]
x6=y

|u′(x)− u′(y)|
|x− y|a−1

, 1 < a ≤ 2.
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If a > 1, then we define

R(δ)fδ :=



fδ(x+ h(δ))− fδ(x− h(δ))
2h(δ)

, h(δ) ≤ x ≤ 1− h(δ),

fδ(x+ h(δ))− fδ(x)
h(δ)

, 0 ≤ x < h(δ),

fδ(x)− fδ(x− h(δ))
h(δ)

, 1− h(δ) < x ≤ 1,

(1.4)

where

h(δ) = caδ
1
a , (1.5)

and ca is a constant given explicitly (cf. [7]).
We prove that (1.4) is a regularizer for (1.3) in the sense (1.2), and

K := {v : ‖v‖a ≤ Ma, a > 1}.

In this example we do not use lower semicontinuity of the norm φ(v) and do not define φ.
Let

Sδ,a := {v : ‖Av − fδ‖ ≤ δ, ‖v‖a ≤ Ma}.

To prove that (1.4) and (1.5) is a regularizer in the sense (1.2) we use the following estimate

sup
v∈Sδ,a
‖R(δ)fδ − v‖ ≤ sup

v∈Sδ,a
{‖R(δ)(fδ − Av)‖ + ‖R(δ)Av − v‖} ≤

δ

h(δ)
+Maha−1(δ)

≤ c(a)δ1−
1
a := η(δ)→ 0 as δ→ 0, (1.6)

where c(a) > 0 is a constant which can be calculated explicitly, c(a) = 1
ca
+Maca−1a , and ca is the constant defined in (1.5).

Therefore, it follows from (1.6) that formulas (1.4) and (1.5) yield a regularizer in the sense (1.2) for the problem of stable
numerical differentiation.
If a = 1 andM1 <∞, then we can prove the following result.

Claim. There is no regularizer for problem (1.3) in the sense (1.2) even if the regularizer is sought in the set of all operators,
including nonlinear ones.

More precisely, it is proved in [6], pp. 197–235, where the stable numerical differentiation problem is discussed in detail,
that

inf
R(δ)
sup
v∈Sδ,1
‖R(δ)fδ − v‖ ≥ c > 0,

where Sδ,1 = Sδ,a|a=1, c > 0 is a constant independent of δ, and the infimum is taken over all operators R(δ) acting from
L∞(0, 1) into L∞(0, 1), including nonlinear ones.
On the other hand, if a = 1 andM1 <∞, then a regularizer in the sense (∗) does exist, but the rate of convergence in (∗)

may be as slow as one wishes, if u(x) is chosen suitably (see [7] or [6]).
Let us compare the new definition of the regularizer with the standard one.
It is proved in Example A that if and only if a > 1 the regularizer in the new sense does exist, and explicit form of this

regularizer and the error estimate are given. This error estimate is valid for the regularizer in the usual sense, because the
new regularizer, if it exists, is also a regularizer in the usual sense. On the other hand, when a = 1, then the regularizer
in the new sense does not exist, and the regularizer in the usual sense, although exists, but its convergence rate can be as
slow as one wishes for a suitable data. Therefore, onemay say that in this case the usual regularizer does not yield a solution
computable from the numerical analysis point of view.

Example B. Construction of a regularizer in the sense (1.2) for some nonlinear equations.
Assuming (A1) and (A2), let us construct a regularizer for (1.1) in the sense (1.2).We use the ideas from [5,8]. Let A(u) = f .
Define Fδ(v) := ‖Av− fδ‖+ δφ(v) and consider the minimization problem of finding the infimumm(δ) of the functional

Fδ(v) on a set Sδ:

m(δ) := inf
v∈Sδ
Fδ(v), Sδ := {v : ‖Av − fδ‖ ≤ δ, φ(v) ≤ c}. (1.7)

Here

K = Kc := {v : φ(v) ≤ c}
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is a compact set in X by the Assumption (A2). The constant c > 0 can be chosen arbitrary large and fixed at the beginning
of the argument, and then one can choose a smaller constant c1, specified below. Since

Fδ(u) = δ + δφ(u) := c1δ, c1 := 1+ φ(u),

where A(u) = f , one concludes that

m(δ) ≤ c1δ. (1.8)

Let vj be a minimizing sequence for the functional Fδ(v). If j is sufficiently large, then

Fδ(vj) ≤ 2m(δ) ≤ 2c1δ,

and

φ(vj) ≤ 2c1.

By Assumption (A2), as j→∞, one can select a convergent subsequence, denoted again vj, and obtain

vj → vδ, φ(vδ) ≤ 2c1. (1.9)

Take δ = δm → 0 and denote vδm := wm. Then (1.9) and Assumption (A2) imply the existence of a subsequence, denoted
againwm, such that:

wm → w, A(wm)→ A(w), ‖A(w)− f ‖ = 0. (1.10)

Thus A(w) = f . Since A is injective by Assumption (A1), it follows thatw = u, where u is the unique solution to the equation
A(u) = f .
Define now R(δ)fδ by the formula

R(δ)fδ := vδ,

where vδ is defined in (1.9).

Theorem 1.1. R(δ) is a regularizer for problem (1.1) in the sense (1.2).

Proof. Assume the contrary:

sup
v∈Sδ
‖R(δ)fδ − v‖ = sup

v∈Sδ
‖vδ − v‖ ≥ γ > 0, (1.11)

where γ > 0 is a constant independent of δ. Since φ(vδ) ≤ 2c1 by (1.9), and φ(v) ≤ c by (1.7), one can choose convergent
in X sequences

wm := vδm → w̃ as δm → 0,

and

vm → ṽ,

such that

‖wm − vm‖ ≥
γ

2
, ‖w̃ − ṽ‖ ≥

γ

2
,

and

A(w̃) = f , A(ṽ) = f .

By the injectivity of A it follows that w̃ = ṽ = u. This contradicts the inequality ‖w̃ − ṽ‖ ≥ γ

2 > 0. This contradiction
proves the theorem.
The conclusions A(w̃) = f and A(ṽ) = f , that we have used above, follow from the inequalities

‖A(vδ)− fδ‖ ≤ δ, ‖A(v)− fδ‖ ≤ δ, ‖f − fδ‖ ≤ δ,

after passing to the limit δ→ 0. In passing to the limit we have used the closedness of the operator A, which is a part of the
assumption (A2). �
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2. Construction of a regularizer in the sense (1.2) for linear equations

If A is a linear closed densely defined in H operator, then T = A∗A is a densely defined self-adjoint operator. Let
Ta := T + aI , where a = const > 0. The operator T−1a A

∗ is densely defined and closable. Its closure is a bounded operator,
defined on all of H , and ‖T−1a A

∗
‖ ≤

1
2
√
a . See [9–12] for details and other results. Let Es be the resolution of the identity of

the self-adjoint operator T , dρ := d(Esy, y), and

K :=

{
y :
∫
∞

0
s−2pdρ ≤ k2p

}
, p ∈ (0, 1), kp > 0,

where p and kp are constants.
Our basic result is:

Theorem 2.1. The operator Rδ = T−1a(δ)A
∗ is a regularizer for problem (1.1) in the sense (1.2) if limδ→0 δ

[a(δ)]1/2
= 0 and

limδ→0 a(δ) = 0. Moreover, if a(δ) = bpδ
2

2p+1 , then

sup
y∈K, ‖Ay−fδ‖≤δ

‖R(δ)fδ − y‖ ≤ Cpδ
2p
2p+1 , (2.1)

where

Cp =
1

2
√
bp
+ cpkpbpp, cp = pp(1− p)1−p, bp := (4pcpkp)

−
2

2p+1 .

The above choice of a(δ) is optimal in the sense that the right-hand side of (2.2) (see below) is minimal for this choice of a(δ).

Proof. Let

ε := sup
y∈K,‖Ay−fδ‖≤δ

‖T−1a A
∗fδ − y‖ := sup ‖T−1a A

∗fδ − y‖.

Then, with Ay = f , one has

ε ≤ sup ‖T−1a A
∗(fδ − f )‖ + sup ‖T−1a A

∗Ay− y‖ := J1 + J2,

where

J1 ≤
δ

2
√
a
,

and

J22 ≤ sup{a
2
‖T−1a y‖

2
} ≤ sup

∫
∞

0

a2

(s+ a)2
d(Esy, y).

Thus,

J22 ≤
(
max
s≥0

asp

a+ s

)2
k2p = c

2
pk
2
pa
2p,

because maxs≥0 as
p

a+s is attained at s =
pa
1−p and is equal to cpa

p, where

cp := pp(1− p)1−p, k2p := sup
y∈K

∫
∞

0
s−2pd(Esy, y).

Consequently,

J2 ≤ cpkpap,

and

ε ≤
δ

2
√
a
+ cpkpap. (2.2)

Minimizing the right-hand side of (2.2) with respect to a > 0, one obtains inequality (2.1).
The minimizer of the right-hand side of (2.2) is

a = a(δ) = bpδ
2

2p+1 , bp := (4pcpkp)
−

2
2p+1 ,
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and the minimum of the right-hand side of (2.2) is Cpδ
2p
2p+1 , where

Cp :=
1

2
√
bp
+ cpkpbpp. (2.3)

Theorem 2.1 is proved. �
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