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maximum likelihood estimator and likelihood ratio test or chi-square test statistic but we
consider minimum phi-divergence estimators and phi-divergence test statistics. Families
of minimum phi-divergence estimators and phi-divergence test statistics are wide classes
of estimators and test statistics that contain as a particular case the maximum likelihood
estimator, likelihood ratio test and chi-square test statistic. In an asymptotic set-up, the
biases and the risk under the squared loss function for the proposed estimators are derived
and compared. A numerical example clarifies the content of the paper.
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1. Introduction

Let X and Y denote two ordinal response variables, X and Y having I levels. When we classify subjects on both
variables, there are I? possible combinations of classifications. The responses (X, Y) of a subject randomly chosen from
some population have a probability distribution. Let p; = P(X = i,Y = j), withp; > 0,i,j = 1,..., 1. We display this
distribution in a rectangular table having I rows for the categories of X and I columns for the categories of Y. We denote

by p = (p11,...,py)" the I> — 1 unknown parameters in the model. In order to get the “unrestricted” estimator of p we
consider a random sample of size n, (Xy, Y1), ..., Xy, Yy) from (X, Y), and we denote by
n
N; = Zl{i,j)(xz, Y1) (1)
=1

and ny a particular result of Ny, i.e., n; represents the observed frequency in the (i, j)th cell for (i,j) € I x I with
Zf-:l Z}:l n; = n. We shall denote byp = (ny1/n, ..., n,,/n)T the “unrestricted” estimator of p.
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Also assume that uncertain non-sample prior information on the value of p = (p11, ..., py)" is available, either from
previous studies or from practical experience of the researchers or experts. Let the non-sample prior information be
expressed in the form of the null hypothesis

Ho:p,-j:pﬁ i,jEIXI (2)
which could be true, but not necessarily. We denote by Py a “restricted” estimator of p = (p11, ..., py)" obtained under
assumption (2). Hypothesis (2) represents the symmetry model. To investigate if there are symmetric patterns in the data is
equivalent to studying if the cell probabilities on one side of the main diagonal are a mirror image of those on the other side.
Some well-known “restricted” estimators (estimators under the hypothesis of symmetry), in a contingency table, have been
given in [1-5], amongst others. Later we shall give the expression of the some “restricted” estimators of p = (p11, ..., pu)".
These estimators are based exclusively on the sample data. They do not use any other prior knowledge in their definitions.
We can consider no-sample information in order to improve the quality of the estimators and we can expect a better
estimation. Prior information is available in the form given in (2). But it is not certain if (2) is true. To remove this uncertainty
of the prior information in the model, it is natural to perform a preliminary test on the validity of the uncertain prior
information.

Based on a “unrestricted” estimator and in a “restricted” estimator of p = (p11, ..., py)’, We can obtain some test
statistics for testing

Ho : pj =pji 1i,j €l xIversusH; : p;j # pji, for atleast one (i, j) pair. 3)

The most common test statistics for testing (3) are based on “distances” between the “unrestricted” and one “restricted”
estimator of p = (p11, ..., pu)"s

d®,pr) - (4)
In this paper, the test statistics d (p, pr), under consideration, has asymptotically a chi-square distribution with m =
I(I — 1)/2 degrees of freedom. Some examples of “distances” of the type given in (4) are Pearson’s statistic, [1],

(my — )’
njj + nji

X2 = (5)

ij
i<j

which for large n has a chi-square distribution with m = I(I — 1) /2 degrees of freedom, and the likelihood ratio test statistic
given by

G*=2) njlog
i

i<j

Zn,.
L (6)
nji + 1

Its asymptotic distribution coincides with the asymptotic distribution of X2. Later we will see another family of test statistics
of the type (4) for testing (3).

Now we can use the sample information and the non-sample information as well as the test statistic (4) to define an
estimator of p. Based on p, pr and d (p, Pr), the preliminary test estimator, p*®®, is given by

P =Bl BB +BIp ) @G- Q

By I4(x) we are denoting the indicator function taking the value 1ifx e Aand O ifx g Aandm = I(I — 1) /2.
We can observe that “p*” depends on the preselected level of significance of the test. To overcome this problem, we can
consider the shrinkage or James-Stein estimator, p°, of p, as follows:

P=m+(1-m-2)d@.p0)") ®—Pr)- (8)
The previous estimators (“restricted”, “unrestricted”, “pP'”, “p*”) as well as other very interesting estimators, which we
shall study later, can be obtained from the family of estimators

P' =P+ (1 —h(d® ) ®—Pr), 9)
for an appropriate real function h. For instance, if we consider h(x) = 1(0 2 )(x) we get (7), and for h(x) = (m — 2)x~! we

get (8).

Many papers have been published studying estimators of the type given in (9), for different statistical models, following
the seminal work of Bancroft [6] and later Han and Bancroft [7]. They developed the preliminary test estimators that use
uncertain non-sample prior information (not in the form of prior distributions), in addition to the sample information.
Stein [8] introduced the Stein-rule (shrinkage) estimator for a multivariate normal population that dominates the usual
maximum likelihood estimators under the square error loss function. In order to have a clear idea about the importance of
this area as well as its application in different problems, see [9].

In this paper, we shall study the family of estimators (9) for appropriate estimators pi and test statistics d (p, pg) that we
will describe in the following section. Section 3 is devoted to presenting some asymptotic distributional results. We do not
know the existence of any paper studying preliminary test estimators for the symmetry model in categorical data.
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2. Phi-divergence estimators

We consider the set

1 1
O=1{6:0=(pj 1<i<I, 1<j<I (i.j)# (D) withp; > 0and > > pj<1 (10)
i=1 =1
l (i-ji#(l,')
and we denote p(8) = (P11, ... pn) =P o =1- 201> 1 Di-
(u)#(l 1))
We define

I(I+1) ..
TN <1, 0<ay ij=1,....1

B=(a11, .-+, Q11y G2y Qofy vy Qoimt, G—1g)) €R 2
i<j

Hypothesis (2) can be written as

Ho:0=g(B). B= i1, ....Pu, P2, P2 Pi—11-1, Pi-11) € B, (11)

where the function g is defined by g = (gj; i.j=1,....,1, (i.)) # (I, 1)) with
Dij i<j

gl](ﬁ) { ﬁ l >J )
and

giB) =py, j=1,...,1—-1

giB)=py, i=1,....,1-1
Note that p (g(B)) = (g;(B); i.i=1,..., I)T,where

I

giB=1- Y g
D

The maximum likelihood estimator (MLE) of 8 can be defined as
B =argminD @, pE(F) as.

where D (p, p (g(B))) is the Kullback-Leibler divergence measure defined by

1 1
D(.p@EP)) = Dij
222 piles

/\

o~ ~ o~ o~ ~N\T
We denote by # = g(B) the MLE of @ = g(B) and by p(#) = (pn o, ..., p,,(f))) the MLE of p(#). It is well known that

pq(ﬁ) p”ﬂ’” ,i=1,...,1,j=1,...,1 Using the ideas developed in [10], we can consider the minimum ¢,-divergence
estimator (M ¢2E) replacmg the Kullback-Leibler divergence by a ¢,-divergence measure in the following way:

P2

B =argminDy, B.pE(B); ¢ € ", "
where
D¢2 @,P(g(ﬁ))) = ZZgu(ﬂ)¢2 < Dij ) ’
i=1 j=1 &i(B)

@* is the class of all convex functions ¢, (x), x > 0, such thatatx = 1, ¢,(1) = 0, ¢5 (1) > 0,and atx = 0, 0¢, (0/0) =0
and 0¢, (p/0) = plimy_ « ¢, (u)/u. The ¢,-divergence measures were introduced simultaneously in [11,12]. For more
details about ¢-divergence measures, see [ 13] and the references therein. In the following, we shall assume that the functions
¢, in the class @* are twice continuously differentiable at x > 0.

We denote by = g(ﬂ %y and by

T
p@") = (pu@™). ... @) (13)
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the (M¢,E) of the probability vector that characterizes the symmetry model. Based on p(@‘ﬁz), it is possible to define a new
family of statistics for testing (3) that contains as a particular case the test statistics given in (5) and (6). This family of test
statistics is given by

n n dod B
T ’0\¢2 = Dy, (D, /0\¢2 = i'5¢2 i . 14
N = o (Bp@™) i 2 2@ o o (14)

We can observe that the family (14) involves two functions ¢; and ¢, € @*. We use the function ¢, to obtain the (M¢,E)
and ¢, to obtain the family of test statistics. The asymptotic distribution of T,f’ 1 (5¢2) is chi-squared withm = I(I — 1)/2

degrees of freedom (see Chapter 8 in [13]). Thus, for a given level of significance « € (0, 1), the critical value of T,?l (/0\@)
may be approximated by x,ﬁ_a, the upper 100a% of the chi-square distribution with m degrees of freedom. If, in (13), we
consider ¢, (x) = xlogx — x + 1, we get the Kullback-Leibler divergence, and therefore the corresponding M¢,E is the MLE.
If, in addition, we consider ¢(x) = xlogx — x + 1 or ¢1(x) = (x — 1)2 /2, we obtain the statistics given in (5) and (6),
respectively.

When the hypothesis of symmetry holds, p(yz) has a smaller risk (with a quadratic loss) than p. If the hypothesis

of symmetry does not hold, the risk of p(@ 2) may go to 400, as the sample size n increases. For this reason, when the
prior knowledge about the hypothesis of symmetry in (2) is rather uncertain, it may be desirable to use a preliminary test
estimator. We shall consider in this paper the family of preliminary phi-divergence test estimators

Py, @) =p@) + (1- 1 (17@™)) (- p@™)). (15)

This family of test statistics is similar to the family (14) with pr = p(/om) and d (p, pr) = T,f,bl (/éd)z). We can observe the
following.

(i) For h(x) = I(0 2 )(x), we get 1’251 (/é@) = pqp;]e (@¢2), the “preliminary phi-divergence test estimator”, with

P @) =@l IO +B N TE). (18)

X%,asoo)

Looking at pgtle (§¢2), it is found that as TY' (87) — oo, pgtle (/63%) — P, while as T! @) > o, pgze(/ﬂ\djz) — p(§¢2).
(ii) For h(x) =0, pg)1 (5(1)2) =, the “unrestricted estimator”.
(iii) For h(x) =1, pg1 (54)2) = p(@d)z), the “restricted phi-divergence estimator”.

(iv) Forh(x) =1 —a, pgl (5¢2) = p;‘f (§¢2), the “shrinkage phi-divergence estimator”, with

P = (1 — 0 p@™) + ap.
(v) For h(x) = (1—a) I(o 2 >(x), a € [0, 1],1)(’;)1 (/Om) = pfpplt(/é(bz), the “shrinkage preliminary phi-divergence test

estimator”, with
spt pf2y o~ o1 a2 ~ %2 o1 a2

PR =B, TE) + [B (- 0p@)]1, THE).

(vi) For h(x) = (m — 2)x~ 1, pgl @"’2) = pfj)1 (5‘7)2), the “phi-divergence James-Stein estimator”, with
P AP b2, — ~ P
Py, ") =p@) + (1- m -2 (190" ?)) (- p@).

We can see that p(';tf(a(bz) depends on the level of significance of the test. To overcome this difficulty, we can consider

the James-Stein estimator. We can observe that 1,1fb1 (§¢2) — pas Tfl (5¢2) — 00, but as T,?l (@¢2) — 0, pfpl (@‘pz) gives
inadmissible values. To avoid the inadmissibility of pfpl (@tpz), we are going to define another James-Stein type estimator
in (vii).
.. 1 noaP2y sy a2 s s ..
(vii) For h(x) = 1 — [1 —(m-=2)x ]I(m_z,oo)(x), (m > 2),p¢1 @) = Py, (6"), the “phi-divergence positive part of the
Stein-rule estimator”, with
o e g2\ 7! 20\ (= o
Py @) =p@") + (1 —m-2) (1" @) ) In-200 (T @) (B - p®")).

We can observe that as T2 (87) — oo, P, @”) — P, while as T"' 0”) — m — 2, ;) ") = p@”) and if, ;) ®)
then pfpt (§¢2) — p(@‘bz).



1164 L. Pardo, N. Martin / Journal of Computational and Applied Mathematics 235 (2011) 1160-1179

(viii) For h(x) = 1 — [1—(m—2)x7"] I[ ®). (m > 2),p} @) = pgtle+ (67), the “modified preliminary phi-

divergence test estimator”, with

P @ =@+ (1- -2 @) 1. (1) (B-p@™).

X%,a*oo)

Preliminary phi-divergence estiators have been studied in different statistical problems, see for instance [14] and [15]
and references therein.

3. Asymptotic bias and asymptotic quadratic risk

The Fisher information matrix of @ € © (® was defined in (10)), in the symmetry model, is the (I — 1) x (I* — 1) matrix
given by

IS (0) = %o — Z4B (0)" (B(0) 4B (0)") ' B(6) %y,
ahij(e)>
Bﬂij I(I;l) ><(12_1)

h,-j(0):p,-j—pj,-, i<j,i:1,...,1—],j:1,...,1.

where Xy = diag(d) — 06" and B (6) = ( . The functions h;; are

For more details see Chapter 8 in [13]. It is not difficult to establish that the Fisher information matrix, IFS (), can be written
as
I; (6) = Mgz ()" Mg,

where Ir(B) is the Fisher information matrix corresponding to 8 € B.
We consider a contiguous sequence of alternative hypotheses that approaches the null hypothesis Hy : 6 = p (g(8)), for
some unknown § € B, at the rate O (n”/ 2). Consider the multinomial probability vector

Pri =P @) +dyn 2, i=1,... 1 j=1,....1,

whered = (dyy, ..., dy)" is a fixed I* x 1 vector such that Y_}_, Z]’-:1 dij = 0; recall that n is the total count parameter
of the multinomial distribution and B € B. Asn — oo, the sequence of multinomial probabilities {p,},cy With p, =

(pngo i=1,.... 1, j=1,..., I)T, converges to a multinomial probability in H at the rate of O (n~"/2). Let

Hin:Pa=p@EP)+dn'?, BeB (17)
be a sequence of contiguous alternative hypotheses, here contiguous to the null hypothesis Hy : # = p (g(8)), for some
unknown B € B. We can observe that p (g(8)) with B € Bis givenby p(g(B)) = (pjij=1,....1;pj= pﬁ)T. We shall
denote

©Oy={0€®:0=g(P) forsomef € B}.

In the next theorem, we get the asymptotic distribution of the statistics p, p(ﬁz),ﬁ — p@m) and T,? ! (/674)2) under the
contiguous alternative hypothesis given in (17). These asymptotic distributions will be important to get the asymptotic bias
and asymptotic quadratic bias, as well as the asymptotic distributional quadratic risk of the family of estimators defined
in (15).

In the next theorem, and in the rest of the paper, by I, we denote the identity matrix of order a and by Dp ) the diagonal
matrix with elements p(6).

Theorem 1. Under Hy ,,, given @ = g(B), B € B, we have the following.
(a) The random vector X, = ﬁD;(;ézﬁ — p(0)) converges in law to the I>-dimensional normal random vector, X, with mean

vector § = D;(},;Zd and variance-covariance matrix J (0) = I 2.2 —/p () (\/W)T

(b) The random vector Y, = «/ED;(XZ (’if — p(§¢2)> converges in law to the I>-dimensional normal random variable, Y, with
mean vector J* (@) §, where J*(0) = I2,;2 — K(0) and variance-covariance matrix B(0) = J(6) — K (@), with K () =
A0)ZA0)', g =Dy, —p (0) p() and

—~1/2

A0 = D,y'T,
T
where T = (Iz_1,;2_1, —1) and —1 = (—1 (B-n —1) )
(c) The random vector Z, = /ni ;(%2 (p(/om) —-p (0)) converges in law to the I*-dimensional normal random vector, Z, with

mean vector K (6)8 and variance-covariance matrix K (0).
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(d) The family of test statistics T,‘f’ ! (5“52) can be written as
191 0") = Y] Y, + 0,(1),
and its asymptotic distribution, under the contiguous hypothesis given in (17), is a noncentral chi-squared distribution with
m = I(I — 1)/2 degrees of freedom and non-centrality parameter
1 d; dyjdj;
A= @s=-)y L) & (18)
325, "

ij ij
i<j i<j

Proof. We omit the proof because only requires some algebraic calculations. O

The next theorem is an extension of the Theorems 6 and 8 on page 32 in [9].

T . , . .
Theorem 2. [et Z = (Z1,...,Zp) be a p-dimensional vector distributed as a normal with mean vector u, and
variance—covariance matrix Xz. We assume that X is an idempotent matrix with rank | < p. Then, for a measurable function ¢,
we have

(@) E[Z¢ (2"2)] = nE [¢ (x2,, (V)] where x = E [27Z].
(b) Let W be a positive semi-definite I* x I?> matrix. Then,

Elp (212)27Wz) = tr (5 W) E[p (13, 09)] + miWiaE [ (s )]

By X§+2 (A), we are denoting a non-central chi-square random variable with non-centrality parameter A and by tra(A) the
trace of the matrix A.

Proof. Matrix ¥; is idempotent with rank | < I%. Therefore there exists an orthogonal matrix C = (C;, G;) such that

“&C:C? %Limw) o)
and

cC"=Cc"C=1Ip,p. (20)
Based on (19), we have

€l 22C1 = i
and based on (20),

(c{ ¢ cz) B (l, o)

c¢ dc) \0 0O

We define the normal random vector X = (X, ..., Xp)T with mean vector ClT Itz and variance-covariance matrix I;. We can
write

Z =CX.

We have E [Z] = C; ClT Iz = Xzi; = g (the last equality follows because the matrix X is idempotent and its eigenvalues
areQor 1), Var[Z] = C]TC1 = Y. The last equality follows because

€30 = Iy <= CC] 261 = € = 2,0, = () &= %;0,C] = (] < ¥; = C,(].
We can also observe that

Z"z=x"clc;x =x"x.
Therefore,

E[29 (2'2)] = E[CXp (XX)] = GE [Xo (XX)] = €T [ (13,2 )]
The last equality follows by Theorem 6 on page 32 in [9]. Now, we have

E[20 (2'2)] = meE [ (13 )]

T
because C;C; = Ij.
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Now we are going to establish part (b). We have
Elp(2'2)2"WZ] = E [p(X"X)X"C{WC; X]
= tr (C]WE) E [9 (X2 )] + 8Tz C1CT WEICT 178E [@ (X0 V)]
The last equality follows by Theorem 8 in [9]. Then, we have

E[p(2'2)Z"WZ] = tr BO) W)E [h(x7 1, )] + mgWazE [h (x2a V)], O

In Theorems 6 and 8 on page 32 in [9], a similar result was established, but in the particular case that Xz = Ipxp.
The asymptotic bias ofp(';’)1 (§¢2), under H; ,, is given by

B}, @) = lim E[ VD, (v, @)~ p1)].

where p, was defined in (17). In order to be able to do comparisons, we can consider the asymptotic quadratic bias of pf;’l (§¢2)
defined by

s 2 \T =9
AQB (p), @™)) = B (v, @) B(p},@)).
In the next theorem we are going to get the expression of AQB (p;;1 @4:2)) for the family of phi-divergence test estimators
~b
P (67).
Theorem 3. Under Hy ,, the asymptotic quadratic bias of pé’h (§¢2), defined in (15), is given by
~ 2
AQB (1), 0)) = E [ (x7,200)] . @

where A was defined in (18).

Proof. We know that

P, @) =p@) + (1-n (17@)) (- p@))
and

v (8, @) = po) = VD, B = po) = VD, (5 - p@™)) h (¥}, +0,(1)
Therefore,

B (), @)

Jim E [V (8, 8) — pu) h (VY + 0,(D)
= lim E[Yuh (Y, Yy +0,(1)] =E[Yh(Y'Y)].

But Y is a normal random vector with mean vector J* (#) é and variance-covariance B(#). It is not difficult to see that B(#)
is an idempotent matrix. Applying part (a) in Theorem 2, we get

B (2}, @) =1" @5 1 (13,1,

and

AQB (pZ,1 @”

because

SO @s=81"0)5=1r O

1) = E[n (a0 877 @1 @8 = 2E [ (7, .00)]

Based on this theorem, in the next theorem we are going to give some relations between the estimators considered
previously.
Theorem 4. Under H;,, the asymptotic quadratic bias (AQB) of the estimators P, p(?z),pSPt(?z),ppte(ﬁ(bz),pf;] (5¢2),

#1 b1
p(];tle+ (5"’2), py; and p, (5¢2) can be ordered as follows.

(a) ADB (p) < ADB (p;;f(ﬁ‘”)) < ADB (p(ﬁ””)).
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(b) ADB () < ADB (pf;;‘(?z)> < ADB (pq";f (@¢2)).
(c) ADB (p}*(8™)) < ADB (s} @™)).
(d) ADB (pj; @")) < ADB (p3, @) iff

1
E[Xmts M Iom-2) (Xps2 M)] = mcmﬂ(m —2;2).

Gq(c; 1) represents the distribution function of a chi-square distribution with a degrees of freedom and non-centrality
parameter A evaluated at the point c.

(e) ADB (pj, ")) < ADB (b5 @) ) if

Gm+2 (X;121,Q§ 1) = (m—2)E [ nﬁ-z (A)]
forall @ and ).
(f) ADB (py; ")) < ADB (pE@™)) if

Gms2 (Xmiri %) = (M= DE[1—= (1= m = 1) Xty o ) Im-1.00) (Xms1.0 )]
forall @ and .

Proof. Based on (21), we have
ADB() =0, ADB (p(ﬁq’z)) —A,  ADB (p;;f(ﬁ‘”)) =(1—a)?2,

and part (a) follows.
We have

L L
ADB (p' @) =2 (1= 0* G2, (120 %) and  ADB (BEC@™)) = 3Ghs (Xhi %)

and part (b) is clear.
From (21), we have

2
ADB (p§,§e+<5¢2>) = AE [1 — (1= (m =22, M) I[X’%ﬂm) (Xps2 (k))}
2
= AE [1 — (1= (m=2)xp2, (L) (1 - 1<0’X%ﬂ) (X2 (k)))]
2
=X {cm+z (tmat ) + (M = 2)E [x, )] = (m = 2) E [x,;iz Mo,43,) (a2 (A))“ ,

and we know that ADB (pgtle (54)2)) = AG.,

(X2.4: A)- Therefore,
ADB (pf,’,ﬂe(yz)) < ADB (pgtf+(5¢2)) ,
because
{Gm+2 (Ximas 2) + (M = 2)E [ Xpt, W] — (m = 2)E [ ma () o) (X2 (x))]} > Gz (X201 2) -

and part (c) follows.
By (21),

ADB (B, (87)) = (m — 2 3E [x2, W]
and
ADB (p; 0)) = 2 {Gmsa (m = 2:2) + (m = 2)E 2, 0] = (m = 2 E [y W) lom-2) (32 )]}

The difference | = ADB (pfm (Wz)) — ADB (pf;] (’0\452)) can be written as

= x(m—2)> { E[Xmi2 M lo.m=2) (Xppia V)] — Gz (M — 2; A)}

(m—2)

x {ZE [Xmra W]+ Gmez (M —2;0) — E [ Xty W) Lom—2) (Xps2 (A))]} ,

_ 1
(m—2)
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and it is clear that

2E [x2, W] + Gz (M =25 3) — E [ X2y W Iom—2) (X2ry V)] = 0

(m—2)

and ! > OiffE [x,2, W) Io.m—2) (X2, V)] = (m—lz)cmﬁ(m — 2: )), and part (d) follows.
Parts (e) and (f) follow in a similar way. O

Let W be a positive semi-definite I? x I?> matrix. The weighted square loss function associated to pgl (@‘”2) is defined by
o 0 T b
L (v}, @), p1) = (v, @) — ) W (6, @) ).

and the asymptotic distributional quadratic risk (ADQR), ADQR (pg1 (5¢2); W), ofpg1 (54)2), under Hy ,, by

i €[V (0 (12,8 ) W (0,07 (7,0 - )|

11— 00

The following theorem presents the ADQR for the phi-divergence test estimators pZn (§¢2) defined in (15).

Theorem 5. Under Hy p, the asymptotic distributional quadratic risk (ADQR) of pg,l (5¢2) defined in (15) is given by
ADQR (p{,;,1 @) w) = tr (W] (8)) — tr (WB (8)) {2E [ (x2,,(M)] — E[1 (2o (M)]}

81 O W 0)8 {28 [h (175 0)] = 2E [0 (s 0) ] +E [ (124 0)°] |

Proof. By the definition of the ADQR, and taking into account the expression of pgl (5¢2), we have

lim E [ﬁ (D;(})gz (Pgn @“1’2) B Pn))T w.n (D;(;gz (p’;n (5‘”) - Pn)ﬂ

ADQR (i), (6”); W)

= lim [ﬁ (2@ b)) Wi (DB~ pn))]
~2 lim [ﬁ (pu2n (1) (- p@™)) ) wn (Dyef? B - pn))]

2 T
+ lim £ [h (19 @™) Vi (D (B —2@™)) Wi (D) (5 p@@)m .
n—oo
It is well known that if A is a symmetric nonnegative definite matrix and Y an M-dimensional random vector with mean
vector g and variance-covariance matrix X,
E[(Y —a)'AY —a)|=tr@A)+(n—a) A(p—a).

Applying this result, we get

T
lim [ﬁ (D’ ®—pn) W (D’ — M)] = tr(WJ (6)),

n—-oo

because

«/ﬁ @ - pn) n__>l;oo N (0, 2;11(9))

and
—1/2 L —1/2 —-1/2
VD, " B —pa) > N (0’ Dyg) Zp@)Dyp) )
. —1/2 ~1/2
with D, Ep(e)Dp(fi) =J0).
On the other hand,

lim E [ﬁ (D@ @) (B~ p@™)) W/ (D (7 - p@”)))} = E[hy" V) ywy],



L. Pardo, N. Martin / Journal of Computational and Applied Mathematics 235 (2011) 1160-1179 1169
and part (b) in Theorem 2 gives
E[R(YTY)2YTWY] = tr (B(6) W) E [h (2o (x))z] + 877 (0) Wy (8) SE [h (X2.4 (x))z] .
Now, we get
[= lim [Jﬁ (D@ @) (B - @) Wi (Dy B - pn))] :

We denote X = D;(},{z«/ﬁ@ — pn), and we are going to get the joint distribution of the random vector X; and Y, =

— ~ 0
VD, (- p@™)).
It is well known (see Chapter 6 in [13]) that the minimum phi-divergence estimator, szy verifies
~ _ - —~
B” =B+1:(B)'AB) D,y ®—pEB)) +o(B—pEB)). (22)

where

~12 9p(&(B) _i2 9p(E(B) (g B\
A =D,y PELY —p i, TED (SR

On the other hand,

£(57) —e o+ (“E) (37 8) o |5 - 4]

Butg (/ﬂ\d’z) = §¢2 , 8 (B) = 0, and the expression of (sz — ﬁ) can be obtained from (22). Therefore,

=0 (" (‘sz”)rt,f(ﬂ)‘l D A0 Dy B~ p @) +0 15— p @) +o ([B” - )
=04 (BB 1 B (BB o ponotb-p o +o (|3 4]
= 0+1:0) 'A®) Dy’ B—p @) +0(B-p O +0([B” - 8]).
Then,
v <15 0) o[ (5" o]
= TMI(8)"'MgA 0)" D) B~ p ) +0 (1B —p®)1) +0 (|8 — 8] ).
Defining
L(8) = TMyI:(B)"'MpA (0)' D, .
we have
Vi (p@™) = p @) = VALO) B — pn) +LO)M + 0,(1).
Now, we get
V@ —p ) =nlz @ —pa) +d +0,(1)
and

~b
Vi (p@") = p®) = VIL®) B — po) +LB)d + 0,(1).
Then, the random vector
— ~ N\
VD, /2 (p —p® 2))
is asymptotically normal, with mean vector

p=D0,4% (2.2 — L©®))d,
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and variance-covariance matrix

C(6) =D, )% (Zg — ZoL(®)" — L (8) Zo + L(O)ZpL(6)") D, )’
It is not difficult to establish that 4 = J* (6) §, C (#) = B (#) and B () is an idempotent matrix with rank(B (8)) = m.

If we denote S, = D;(%z\/ﬁ (p — pn), we can write

)=t ) 500 ame) G
(Yn)_(n},;z(z,zi,z—ua)) Vi@ —po+ Do (1o —L@®)d ) T {0p(1)

p(
Sn L 0 J(0) B(9)
(y,,) ) ((] 0) 5) ’ (8(0) B(O)))'

Let S be the random vector verifying

and

s, & .

n—oo

We have
E[S/Y =yl=y —J" (60) 8. (23)
Based on this result, we get
I=E[Y'WSh(Y'Y)]=E[h(Y'Y)Y' WE[S/Y]].
Now, by (23), we can write
I=E[h(YY)Y'WY]—E[h(Y"Y)Y 'WJ*(9)3].
Applying Theorem 2, we get
[=tr (BO)W)E [h (xy ()] + 87T 0) WI* (0) 8E [h (s (V)] — 8T (0) WI* (0) 8 [ (x5, )]
Now the result follows, because
ADQR (pf, (8"): W) = tr(WJ (8)) +tr BO) W) E [ (12, )’ | + 81 @) Wy 0 3E [h (x50 1)’

—2tr (BO) W) E [h (x2, V)] — 281 (0) WI* () SE [h (x4 V)]
+28"1 @) Wy 0) 8E [h (x2,, V)], D

In the following theorem, we present, under the null hypothesis of symmetry, some relations between the estimators

7 N~ et 2 et ¢ a0 ¢
P.p(60). p™(0"").p} (0").p, (07). T (0"). py (67°) and p5, (67°).

Theorem 6. Under the null hypothesis of symmetry and weighted square loss function
e o T b
L(pg)1 ® 2),pn) = (p’;,1 ®) —pn) w (pf; (O] —pn)

. . . . . c e . . .. . ~ P sre /P2 spt P2
with positive semi-definite matrix W, the asymptotic distributional quadratic risk of the estimatorsp, p(0 ), p*™ (0" "), Py, @),
pf;,t]e @), p, @), pqpfer @”) and P, (6”) can be ordered as follows:

(a) ADQR (p(@"); W) < ADGR (pf(8™); W) < ADQR (p} @"); W) < ADGR (; W).
(b)Ifm> 2,
ADQR (p(®”): W) < ADQR (p}; @”): W) < ADQR (p}, 8"); W) = ADGR ;W)
and

ADQR (p(8™); W) = ADQR (p5y* @) W) < ADGR (b} 8™): W) < ADQR (: W) .

(c) ADQR (p(@d’z); w) < ADQR (ﬁ;f; w) < ADQR (p; W).
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(d) If Gmy2 (X 3 0) = (M —2) /2,
R(p@®): W) = ADQR (P ®"): W) = ADQR (p}, @™): W) = ADQRG; W).
Proof. Under the hypothesis of symmetry A = 0, and, by Theorem 5, we have
~b 2

ADQR (pgl @) w) — tr (WK (8)) + tr (WB (6))E [(1 —h(x2,, (0)) ] .

Therefore the ADQR is an increasing function of
2

E[(1=h (432))°] (24)

In the following table, we present the expressions of E[(1 — h(x,flJrz (0)))?] for the different estimators P, p(’0\¢2), p (@¢2),

spt  p® e o 20 e+ p®: P~
Py, (7). p5 (0™, b (67). p " (0™) and pjy (67).

Estimator E [(1 —h(x2., (0)))2 ]

P 1

p(@™) Y

@ @

pgtle(ﬁz) 1= Gmi2(X2 43 0)

p;)[;t(’é‘f’Z) 1—a@2—a) Gm+2(X;$1,a; 0)

5, @™ Jo (= (m=2)x7)2dGpy2 (%, 0) = 1 — 22
PE@) 2,00 — (m— 2% )2dGnis(x: 0)
PO [3(1— (m— 2x )G (x: 0)

Expressions of E [(1 —h (X;H(O)))z].
Based on this table, it is immediate that
ADQR (p(8”); W) < ADGR (5 (8"); W) < ADQR (p: W) < ADQR B; W)..

We consider m > 2.If X is a Gamma random variable with parameters p and a, we have

2

17 @ 27 _ a .
E[X ]_p—_l and E[X ]_7@_1)@_2),
therefore,
o _ e1y2 L o2 1/4 _ B 1/2 _ _m—2
/0(1 (m—2)x"")*dGpi2(x;0) =14+ (m—2) (mzﬂ—])(m;z—z) 2(m 2)m2+2_]_1 o

Expression (24) for pfb1 (’6\?%) is
* —1\2 m—2
(1—m-=2)x")dGpp(x;0) =1 — ——
0 m
and for p it is 1. Therefore, we have
ADQR (p(@"): W) < ADQR (b} @"): W) =< ADQR (p}, 6"): W) < ADQR ;W) .
The inequality between ADQR <p;+] 0™ W> and ADQR (pfm @"): W) follows because

/Oo (1= (m —2)x ")?dGpy2(x; 0) < /oo(l — (m = 2)x""2dGpi2(x; 0).
m 0

-2
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We have

o m—2
/2 (1= (m—2)x")?dGpui2(x; 0) = 1= Gnya (X i 0) + — {(—(1=Gnlxpo: ®)
X

— (Gn2(Xg.03 0) — Gm(X 03 0)) }

and

ADQR (p}* (8"): W) — ADQR (v 6"); W)

_2
= 2 (1 G ) = (Gn 20 0) = Gk )}

Therefore, ADQR (psle (§¢2); W) < ADQR (pf;tf(yz); W) because G2 (Xp o: 0) > Gm(X o 0)-
Now, it is clear that

ADQR (p(®”); W) < ADQR (B} (6"): W) < ADQR (p3 (8"): W) < ADQR ;W)

It is also immediate to see that ADQR (p(@"’z); w) < ADQR (p;;’f; w) < ADQR (5; W).
Finally to see (d), we have
P o
1= G2 (X 0) = ADQR (B 0"); w) < ADQR (p;)1 @ w)
o 142 m-—2
= (1—=(m—=2)x")dGp2(%;0) =1 — ——;
0 m
the inequality is true iff G2 (x2 ,; 0) > ™2, O

In the following theorem the following result (Courant Theorem) will be important. Let A1, ..., A, be the characteristic
roots of an n x n matrix A. Then,
T

x Ax
Chmin(/") =< T =< Chmax(A),
x'x
with Chyin(A) = min {Aq, ..., A,} and Chyay(A) = max {Aq, ..., Ay}
Theorem 7. Under the contiguous alternative hypothesis, given in (17), and the weighted square loss function
o b T 0
L(pZ,1 ® 2),pn) = (p’;,1 ®) —pn) w (p;; (O] —pn)
with positive semi-definite matrix W, we have the following results in relation to the ADQR.
(a) ADQR (p™*(8"): W) < ADQR ; W) iff
tr (WB (0)) (1 —a?
A < ( (2 ) ( ) _
(1 - a) Chmax(w)
(b) ADGR (p(6”); W) < ADQR ; W) iff

_ w(WB@®)
T Chpax(W)

(c) ADQR (pE*(6"); W) < ADQR B W) iff

tr (WB (6)) G2 (X2, 1)
(ZGm+2 (szn;ot; )\-) — Gmta (Xr%l;oz; )")) Chinax (W) .

If A — oo or a — 1 we have ADQR (pgtf(?’z); w) > ADQR (B; W).
(d) ADQR (P} (8"); W) < ADQR @: W) iff

(1—a?) tr (WB (0)) Gnra (X205 )
{(a2 - 1) Gm+4a (Xri;a; )”) +2(1—-0a)Gny2 (Xri:a; )‘)} Chimax (W) .

<

A<




L. Pardo, N. Martin / Journal of Computational and Applied Mathematics 235 (2011) 1160-1179
(e) ADQR (p(@"); W) < ADQR (p}*(@"™); W) i

) tr (WB (0)) (1 — Gz (X2.0: 1))
= 1= 2Gms2 (X205 &) + Ginra (X203 )} Chinax (W)

(f) ADQR (b3 (6"): W) = ADQR (' @"): W) iff

- (1= 0 Gnso (4 7)
" {2Gm12 (X203 2) = (1 = @Gt (Xro3 1) } Chinax (W)

(g) Let m > 2, and assume that

m-+ 2

tr (WB () Chinax (W) ™' > 5

then, for all X,

ADQR (p3; 8"): W) < ADQR (B}, 6"); W) = ADR ; W)
If, in addition,

8T () WJ* (0)8 > tr (WB(®)),

we have
ADQR (p(®”); W) = ADQR (p}, 6" W) .
(h) Let 0 < a < 1. We have

ADQR (p*(8"); W) < ADQR (p(@”); W)

Proof. By Theorem 5, we have
ADQR (p; W) = tr (W] (6))

and

ADQR (p™*(8"); W) = tr (W] (6) — tr (WB 8) (1 - a*) + (1 — a)* S (6) WJ" ©) 5.
Therefore, ADQR (psre @) w) < ADQR (B: W) iff

(1—a)’8J* O WJ* (0)§ < tr (WB(6)) (1—0d).
This is equivalent to

L OYROY _ _r(wB ) (1—a)
81 0)J* )8 ~ 8y (0)J* ()8 (1 —a)>

But 8" J* (8)J* (§) 6 = 8"J* (§) § = A; then

8T OW )5 _ rWB®) (1-2)
A - 2 (1= a)?

Applying the Courant Theorem,

I OL MO

Chmin w =
W= S 01 @

=< Chmax(w) .

Therefore ADQR (psre @) w) < ADQR (B; W) iff

L - tr (WB (0)) (1 — a?)
- (1 - a)2 Chmax(w)

1173
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2
and ADQR (pSre (?2); W) > ADQR (p; W) iff . > %. Result (a) follows. Result (b) follows because p(§¢2) can

be obtained from p*¢(8”*) with a = 0. We know that

~p
ADQR (P (8); W) = tr (W] (8)) — tr (WB (6)) Gimns (30 %)
+ 87T 0) WI* (0) 8 {2Gm 12 (Xireas ») — Gmra (Xeas )} -
If). = 00, then Gz (2,45 A) — 0and Guyq (x2.,; ») — 0. Therefore, ADQR (pgf(ﬁq’z ): w) —> ADQR (p: W). Similarly,
ifo — 1, then ADQR (pgﬁe(ﬁ"bz); w) — ADQR (5; W).
Now ADQR (p;tf @) w) < ADQR (5; W) iff
tr (WB (6)) Gins2 (Ximio: ») _ 8'J* (0) WI* (6) 8
Py = py

and this is equivalent to

T (WB (6) Grs (2.0 1)
A< ; .
Chpmax (W) {Zcm+2 (X;;a; k) — Gma (Xri;a; }\)}

Now we are going to establish (d). We have

{ZG"hLZ (lelza; )‘) —Gmni4q (X1121§01; )‘)} ’

ADQR (P 87): W) = tr (W] (8)) + (¢ — 1) tr (WB (6)) Gy (G0 %)
+8T O W 0) 8{(a® — 1) Gra (Ximas ) +2(1 = @) Gz (Xmas 1)} -
Therefore, ADQR (p;}:‘(?’z); w) < ADQR (: W) iff
(@* — 1) tr (WB (8)) Grsz (Xmios 1) + 8T () WI* (8) 8 {(a® — 1) Gimsa (Xt 1) +2 (1 = @) Gs2 (Xniat 4)} <O,
or, equivalently,
§T O WI* (0)8{(a® — 1) Gra (Ximias ) +2 (1 = @) Gt (Xmat )} < (1 — @) tr (WB (8)) Ginz (Ximi 2) -
Finally, we have ADQR (pf,jf(ﬁ"’z); w) < ADQR (: W) iff

. (1—a®) tr WB () Gns2 (2,03 1)
= (@ = 1) G (20 ) + 21— @ Gz (12,5 4) ] (W)’

No we are going to see (e). We know that

ADQR (p(®”); W) = tr (WJ (8)) — tr (WB ) + 8'J" (6) WJ" 0) 8
and
pte /P2 2
ADQR (B’ (8); W) = tr (W] (8)) — tr (WB (6)) Gs (30 %)
+ 8T O) W (0) 8 {2Gms2 (Xpei M) — Gmsa (Xpai M)} -
Therefore, ADQR (p(@"’z); w) < ADQR (pgf(ﬁ"’z); w) iff

3 @OW©8 _ wWB®) {1-Gni (X701 4]
A - {1 — 2Gm+2 (Xri;a; )\) + Gm+4 (XT%I;C(; )")}

’

but

T p* *
SrOwW®)8 ;/V] @3 < Chmax (W),

and the result follows.
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Part (f). We have
spt /p?:
ADQR (p @"): W) = tr (W 8)) + (¢ — 1) tr (WB (6)) Gy (e %)
+8J O W (0)8{(a® = 1) Gra (Xt ) +2 (1 = @) Gy (Xmad 1) }
and
pte /P2 2
ADQR (B} (67); W) = tr (WJ (8)) — ¥ (WB (6)) Gy (o %)
+8'J (O) WI* (8) 8 {2Gi+2 (Ximias &) — Gmsa (Ximat 2} -
Therefore, ADQR (p(@"te); w) < ADQR (p;ﬁt(ﬁ"’z); w) iff
87" (O) WI* (8) 8 {~*Ginva (Ximyas ) + 20Gims2 (Ximas 1)} < @ tr (WB (0)) Gtz (Ximias +) -

Takingintoaccountthat0 < a < 1and Gpy4 (X2.4: &) < Gmi2 (Xgos A) Wehave —a?Gya (Xy: 1) +20Gm 12 (XPo: ) =
0. Then

89 O W ©)8 _ @ tr (WB (0)) Gz (X2.o: A)
A T M —a?GCrya (x2.0: A) 220Gz (X240 1)}

and based on this inequality, and the Courant Theorem, we have

’

) a® tr (WB (0)) Gz (Xr%l;a; A)
T {=@6nia (X ) +20Gm (X705 ) } Chimax (W)

From Theorem 5, and denoting t = ADQR (p;;; (54)2); W) — ADQR (pib1 (@%); W), we have

£ = —tr (M E (1= (m = 2) 2y 1) o2 (g2
— 87 O W @) [ (1 - (= 2) x4 1) o2 (G0 |
=281 @)W (0) 8E [((m = 2) Xpu?y (1) = 1) lom-2) (Ymy2(M))]

Therefore, ADQR (pf;; @”): W) < ADQR (p;)1 @): W) because

m—2
E[(1—(m—2) xui; ) lom-—2) (Xinsz 0))] = /0 (1—(m—=2)x")dGns2(x; 1) < 0.

By Courant’s Theorem it is a simple exercise to establish that 8 J* () WJ* (6) 8§ < AChpay (W).
By Theorem 5, we get

ADQR (pj, 8"): W) — R (p®8"); W) = — (m — 2) (M Zy) [ (m = 2)E [, )]

81 () W™ (0) 8 (m +2) B
i [1 - 20t (M Ey) 20E [Xis W] 0.

The last inequality follows by (25).
Part (h) is immediate. O

4. A numerical application

In order to clarify the different preliminary phi-divergence test estimators, pg)l (/071)2), introduced and studied in this paper
for the symmetry model, in this section we are going to consider a numerical example.

We shall consider the data in Table 1.

These data were collected by Glass [16] in a study of social mobility in Great Britain. They are a cross-classification of a
sample of British males according to each subject’s status category and his father’s status category. A question of interest
might be whether or not changes in class between fathers and sons occur in both directions with the same probability,
i.e., to determine whether observations in cells situated symmetrically about the main diagonal have the same probability
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Table 1
Cross-classification of a sample of British males to each subject’s status category and his father’s status category.

Subject’s status

Upper Midle Lower
Upper 588 395 159
Father’s status Midle 349 714 447
Lower 114 320 411

of occurrence, i.e., if pj = p;i (i # j). Under such a hypothesis, the frequencies in the ijth and jith cells are expected to be
equal, and the maximum likelihood estimator is

1 L

p(05) = {2("“”1"') PA =123
njj i= j,

When the hypothesis of symmetry holds, p (/5) = ( (511> .., D (533)) has a smaller risk with a quadratic loss than

M.
o

the unrestricted estimators p = ( ., ”33) where n;; is the number of elements in the cell (1, 1) and n is the number

of elements in the sample (n = nq; + - - - + ns3). If the hypothesis of symmetry does not hold, the risk of p (0) may be

very big. For this reason, the prior knowledge about the hypothesis of symmetry (p,-j = pﬁ) is rather uncertain, and it may
be desirable to use a preliminary test estimator. We are going to obtain the different estimators considered in this paper, for
the data in Table 1.

If we observe the expression of the preliminary test estimators in (9), we can see that we need previously to get p(yz)

(the minimum ¢,-divergence estimator for the probability vector p = (p11, ..., p33))as well as T,f’ 1 (5452) (the family of test
statistics for testing p; = p;i, i,j = 1, 2, 3).

In order to obtain p(/(?z) as well as T,f” (?2), we shall consider
1
9200 = 9100 = $1(0 = 7 (T —x =2 (= 1) (26)
for A £ 0and X # —1and
Po(x) = klimom(x) =xlogx—x+1

d_1(x) = Alim_lm(x) = —logx+x+ 1.

In the following, we denote by p(/O\W)) the family of minimum divergence estimators associated to ¢, (x), given in (26), and

T(’\1> (? Z)) the family of test statistics associated to ¢, (x) and ¢;(x), given in (26), and defined in (8).

The expression ofp(a(m), see for instance page 371 in [13], is given by

1
Ao+l Ao+l o1
Py~ Py 2
2

u(’ém)) —, Lj=1,...,3:12#0, L # -1, o
3 AA2+1+E}\2+] bexat
>y ()
i=1j=1
and the expression of T\*" @) by
A 1 3.3 M1
Tm)(@( Py 22”7—1 . A#£0, A £ —1. o8)

)\1 (1 + )\]) =1 =1 ( (’o‘(kz))>

Important and well-known estimators obtained from (27) are the following.
For A, = 0, we obtain the maximum likelihood estimator for symmetry introduced by Bowker [1], whose expression is

U(»é(m)_p,, zpﬂ, ij=1,...,3.
For A = —1, we obtain, as a limit case,
1
) Pibii)’ -
p;(0 )=3(3"7ﬂ)1, ij=1,...,3
> > (Pipi)?

i=1j=1
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Table 2

Minimum ¢,-divergence estimators for different values of A, (— 1, —1/2,0, 1/2,1,2/3).
Cell Ay =—1 Ay =—1/2 =0 Ay =1/2 Ay =1 Ay =2/3
11 0.16924 0.16852 0.16814 0.16765 0.16740 0.16765
12 0.10687 0.10651 0.10638 0.10624 0.10611 0.10620
13 0.03875 0.03885 0.03903 0.39211 0.03938 0.03926
23 0.10886 0.10915 0.10967 0.11017 0.11067 0.11034
22 0.20551 0.20464 0.20418 0.20372 0.20327 0.20357
33 0.11830 0.11779 0.11753 0.11727 0.11701 0.11718

Table 3

Values of T,f)“')(/é(h)) for different values of 11 and A;.

Ay =—1/2 A =0 r=1/2 =1 Ay =2/3

=-—1 17.14 17.41 22.193 24.588 23.144
A=—=1/2 32.77 31.899 31.722 31.669 31.699
AM=0 31.84 31.627 31.541 31.53 31.532
A =2/3 32.77 31.379 31.722 31.669 31.699
A =1 31.66 31.452 31.297 31.129 31.235

i.e., the minimum discrimination estimator for symmetry introduced and studied in [2].

ForA =1,
5 9N\ 1/2
<pi2j+pj2i )
2
)
pi@ ") = ———.
N
>y (M
i=1j=1
and we get the minimum chi-squared estimator for symmetry introduced in [3].
Other interesting estimators for symmetry are as follows. For A, = —2, the minimum modified chi-squared estimator;
for . = —1/2, the minimum Freeman-Tukey estimator; and finally, for A, = 2/3, the minimum Cressie and Read estimator.

In Table 2, we present the expression ofp,-j(/é(m) for different values of A, (A, = —1,—1/2,0, 1/2, 1,2/3).
In relation with (27), we get for A; = A, = 0 the likelihood ratio test,

~0) 2n;i
TO® ) =6 =2) njlog—"—.
" ( ) Zﬂu Ognﬁ—l—n,j
ij
i<j

For A, = 0 and A1 = 1, we get the classical chi-square test statistic given in [1]

20

2
Trﬁl)(O (”ij - nﬁ) '

y=X?=
ng + nj;

A
i<j
Finally, for A = A, = 1, we get the test statistics given in [3] and for A, = 0 we get the family of test statistics introduced
and studied in [17].
Table 3 presents the values of different test statistics for different values of A; and A;.
Based on the results given in Table 3, we must reject the hypothesis of symmetry in our data, and therefore it will be not

good to consider the restricted estimators p(/é( 1)). If we observe the expression of the preliminary test estimator given in

(9), we can observe that p°: (?AZ)

P ) coincides with the unrestricted estimator p = ("L, ..., %2}, ie,

n’ > n
pf;j)(ﬁ(“)) = (0.16814, 0.11295, 0.04568, 0.0980, 0.20418, 0.12782, 0.03259, 0.09150, 0.11753).

In order to get the expression of the shrinkage preliminary phi-divergence estimator, p*™ (/67@2)), we need to fix a value of
a € (0, 1). We consider a = 0.4. Then,

(0" = 0.6p8”?) + 0.4p.

In Table 4, we present the expression of p*' (/0\('\») for different values of A;.
In Table 5, we present the expressions of the James-Stein phi-divergence estimator, pfl\l)(@w)). In order to get

pfxl)(?AZ)), we need T,W(?“)). We have used the values of T,W(?*Z)) for Ay = 1and A, = —1/2. In our situation,
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Table 4

Srinkage preliminary phi-divergence estimators for different values of A, (—1, —1/2,0, 1/2, 1, 2/3).
Cell Ay =—1 Ay =—1/2 A =0 Ay =1/2 =1 Ay =2/3
11 0.16858 0.16829 0.16814 0.16794 0.16784 0.16794
12 0.11052 0.11037 0.11032 0.11027 0.11021 0.11025
13 0.04427 0.04282 0.04289 0.18412 0.04303 0.04298
21 0.10263 0.10248 0.10243 0.10238 0.10232 0.10236
22 0.20466 0.20432 0.20413 0.20395 0.20377 0.20389
23 0.12024 0.12035 0.12056 0.12076 0.12096 0.12083
31 0.03505 0.03509 0.03517 0.17640 0.03531 0.03526
32 0.09844 0.09856 0.09877 0.09897 0.11047 0.09904
33 0.11784 0.11763 0.11753 0.11743 0.11732 0.11739

Table 5

James-Stein preliminary phi-divergence estimators for different values of A, (—1, —1/2,0, 1/2, 1, 2/3).
Cell Ay =1 Ay =—1/2 Ay =0 Ay =1/2 Ay =1 Ay =2/3
11 0.1686 0.16858 0.16857 0.16855 0.16854 0.16855
12 0.1104 0.11039 0.11039 0.11038 0.11038 0.11038
13 0.04409 0.04409 0.04410 0.06227 0.04411 0.04411
21 0.10276 0.10275 0.10275 0.10274 0.10274 0.10274
22 0.20469 0.20466 0.20464 0.20463 0.20462 0.20463
23 0.12018 0.11989 0.11991 0.11992 0.11994 0.11993
31 0.03517 0.03517 0.03518 0.04633 0.03.51 0.03743
32 0.09877 0.09878 0.09880 0.09881 0.09883 0.09882
33 0.11785 0.11784 0.11783 0.11782 0.11781 0.11782

(—1/2)
@) = 31.66.

Pixl)(/ém)) = p@") + (1 _ Tél)@*ﬂﬂ))) (ﬁ— p(/éuz)))

using A; and Ay, i.e., T,E”(/O\(_l/z)).

In our case, m = 3. Therefore,

A(=1/2)
Iin—2.0) (Trfl)(o )) =1

and p?j\: ) (ZQZ)) coincides with pfm (/0&2)). We also have
Iin—2,00) (%) = I[x%m) (x),

pte (’0‘()»2)) sy (’0‘()»2)).

and therefore p; =p;,
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