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a b s t r a c t

In this paper we present the R package deTestSet that includes challenging test problems
written as ordinary differential equations (ODEs), differential algebraic equations (DAEs)
of index up to 3 and implicit differential equations (IDEs). In addition it includes 6 new
codes to solve initial value problems (IVPs). The R package is derived from the Test Set for
Initial Value Problem Solvers available at http://www.dm.uniba.it/~testset which includes
documentation of the test problems, experimental results froma number of proven solvers,
and Fortran subroutines providing a common interface to the defining problem functions.
Many of these facilities are now available in the R package deTestSet, which comprises an
R interface to the test problems and to most of the Fortran solvers. The package deTestSet
is free software which is distributed under the GNU General Public License, as part of the
R open source software project.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper is dedicated to Donato Trigiante. Donato was a driving force behind the idea of setting up test sets for
mathematical problems and greatly encouraged his students to pursue this aim. The idea to develop a Test Set for stiff
Initial Value Problems was first discussed at the workshop ODE to NODE, held in Geiranger, Norway, 19–22 June 1995. It
was felt that both engineers and computational scientists alike can benefit from having a standard test set for IVPs which
includes documentation of the test problems, experimental results from a number of proven solvers and Fortran subroutines
providing a common interface to the defining problem functions. Engineers are able to see at a glance which methods will
potentially be the most effective for their class of problems. Researchers can compare their new methods with the results
of existing ones without incurring additional programming workload. Peter van der Houwen and his students at CWI in
Amsterdamwere the first to develop andmaintain a practical test set for Initial Value Problems [1]. From2001 on, the project
has beenmaintained by the INdAMBari unit project group ‘‘Codes and test problems for Differential Equations’’ [2]. The Test
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Set for Initial Value Problem Solvers (hereafter referred to as IVPTESTSET) is available at http://www.dm.uniba.it/~testset
and includes documentation of the test problems, experimental results from a number of well-established solvers, and
Fortran subroutines providing a common interface to the defining problem functions.

Apart from the engineers and scientists that are acquainted with working with compiled languages such as Fortran or C,
there are many scientists who prefer to solve their problems in high-level problem solving environments (PSEs). Until now,
the most often used PSEs for solving differential equations are commercial packages such as Matlab [3], Mathematica [4] or
Maple [5], or open-source software such as Scilab [6] or Octave [7].

One of the emerging PSEs whose use is expanding rapidly, especially in universities and academia, is the open source
software R [8]. Although still mainly known as software for visualization and statistics, R has recently been extended to
also provide powerful methods for solving differential equations [9] by a number of extension packages. The R package
deSolve [10] provides solution methods for initial value problems of ODEs, DDEs, PDEs and DAEs. The R packages
rootSolve [11] and ReacTran [12] include more solution methods for PDEs, while bvpSolve [13] is designed for solving
boundary value problems.

Here we describe a new R package deTestSet that adds some powerful methods for solving DAEs and provides an R
interface to most of the test problems in the IVPTESTSET.

The main aim of this paper is to introduce the new package and to present a comparison of the performance of well-
known solvers using challenging test problems in the R environment. The paper is structured as follows. First we list the
main characteristics of the test set of initial value problems [2] and define the classes of problems thatwe are dealingwith. In
Section 2.1, the classes of the test problems are briefly discussed and some implementation issues noted. Section 3 introduces
the integration routines available in the new package, while Section 4 gives some example implementations of ODE, DAE
and IDE systems inRwith numerical benchmarks of computational performance. Finally some concluding remarks are given
in Section 5.

The package is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=deTestSet.
New versions of the package, still under development, are available at http://r-forge.r-project.org/ [14].

2. The test set for stiff initial value problems

The main characteristics of the IVPTESTSET [2] are as follows:
• uniform presentation of the problems,
• description of the origin of the problems,
• robust interfaces between problem and drivers,
• portability among different platforms,
• contributions by people from several application fields,
• presence of real-life problems,
• tested and debugged by a large, international group of researchers,
• comparisons with the performance of well-known solvers,
• interpretation of the numerical solution in terms of the application field,
• ease of access and use.

2.1. The test problems

The test problems in IVPTESTSET can be categorized into three classes: systems of Ordinary Differential Equations (ODEs),
Differential Algebraic Equations (DAEs), Implicit Differential Equations (IDEs). In this test set we call a problem an ODE if it
has the form

y′
= f (t, y), t0 ≤ t ≤ tend

y, f ∈ Rd

y(t0) is given.

(2.1)

A problem is called a DAE if it is of the form

My′
= f (t, y), t0 ≤ t ≤ tend

y, f ∈ Rd, M ∈ Rd×d

y(t0) is given
(2.2)

whereM is a constant, possibly singular, matrix.
The label IDE is given to problems which can be cast immediately into the form

f (t, y, y′) = 0, t0 ≤ t ≤ tend
y, f ∈ Rd

y(t0) and y′(t0) are given.

(2.3)

Note that ODEs andDAEs are subclasses of IDEs. Inwhat followswe give a list of theODE test problems available indeTestSet.
A complete description of the problems is available in [2]

http://www.dm.uniba.it/~testset
http://CRAN.R-project.org/package%3DdeTestSet
http://r-forge.r-project.org/
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Fig. 1. Numerical solution of the HIRES problem. See text for the R code.

• ODE Problems: HIRES, Pollution, Ring Modulator, Medical Akzo Nobel, EMEP, Pleiades, Van der Pol, Robertson, Orego,
Beam, E5.

• DAE Problems: Chemical AkzoNobel, Andrews’ squeezingmechanism, Transistor amplifier, Charge pump, Two bit adding
unit, Car axis, Fekete, Slider crank, Water tube system.

• IDE Problems: NAND gate, Wheelset.

2.2. The R implementation of the test problems

For each problem we have implemented an R interface to the Fortran function available in the IVPTESTSET, suitably
modified in order to be consistent with the deSolve package. To run, for example, the problem HIRES with the default
solver (mebdfi, [15]) and with the solver radau [16] from the R package deSolve, we just need in R to open the package
(library), and to call the R function hires with the following code:
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This solves the problem HIRES and gives as output the solution, printing the mixed error significant digits (see Section 2.3)
computed with respect to a reference solution. To plot the solution we write

This simple statement plots all 8 dependent variables constituting the HIRES problem at once, using a line width twice the
size of the default (lwd) (see Fig. 1).

2.3. Mixed error significant digits

All the codes in deSolve and deTestSet implement an error estimate, but it is not assured that the error will be of the
same order of magnitude as the prescribed tolerances, which by default are 1e-6.

A common way to compare codes is to use the so-called work precision diagrams using themixed error significant digits,
mescd, defined by

mescd := − log10(max(|absolute error/(atol/rtol + |ytrue|)|)), (2.4)
where the absolute error is computed at all the mesh points at which output is wanted, atol and rtol are the input absolute
and relative tolerances, ytrue is a more accurate solution computed using one of the available solvers with smaller relative
and absolute input tolerances and where (/, + and max) are element by element operators.

We will use this quantity for comparing the efficiency of the different codes.

3. The integration routines

The R package deTestSet is closely related to the package deSolve [10] from which it inherits the calling sequence for
the test problems and the integration codes. Moreover, it includes six more codes to solve ODEs, DAEs and IDEs, which we
introduce next.

3.1. Explicit Runge–Kutta solvers

Two explicit Runge–Kutta codes available in deTestSet are based on the well-established Fortran codes dopri5 and
dop853 [17]. In addition, a new code based on the Cash–Karp Runge–Kutta method [18,19], has been implemented.

The general calling sequence for solving ODEs in R is

where times holds the times at which output is wanted, y holds the initial conditions, func is the R function that describes
the differential equations, and parms contains the parameter values (or is NULL, i.e. undefined). Many additional inputs can
be provided, e.g. the absolute and relative error tolerances (defaults atol = 1e-6, rtol = 1e-6), the maximal number
of steps (maxsteps), the integration method used etc.

The default integration method for the function ode is lsoda from the deSolve package, which implements the type-
insensitive solver LSODA [20].

To solve ODEs with any of the new methods we write

Alternatively, we can also call the new integrators directly:

If we type ?cashkarp a help page that contains a list of all options that can be changed is opened. As most of these options
have a default value, we are not obliged to assign a value to them, as long as we are content with the default.

3.2. Implicit solvers

Several solvers from the R package deSolve are based on implicit schemes, e.g. many solvers from ODEPACK [21], the
code VODE [22], DASPK20 [23] and the code RADAU5 [16]. Of these only the last two can be used for the solution of DAE
problems written in Hessenberg form of index at most 3.

There are threemore codes based on implicit schemes available in deTestSet. The first one is based onmodified extended
backward differentiation formulas mebdfi [15], the second one on generalized Adams methods gamd [24] and the last is
based on blended implicit methods bimd [25,26]. They all can solve ODEs and DAEs written in Hessenberg form of index up
to 3 (for a definition of index see [9,16]). The code mebdfi can also solve IDEs. The calling sequence for solving ODEs with
these methods is
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while for solving DAE problems it is

where argument mass is the matrixM (Eq. (2.2)). The solution of IDEs can be written as

where res is the R function that implements the residual equations (2.3) and dy holds the initial values of the derivatives.
These new functions can be used together with daspk [23] and radau [16] from deSolve. Only daspk and mebdfi can

be used for the solution of IDEs in R, without transforming the problem.

3.3. Stiffness detection

The main characteristic of the new explicit Runge–Kutta solvers is that they all include at least one test for stiffness
detection, and by default they stop if stiffness is detected. This feature explains why we included these solvers in a Test Set
for Stiff Initial Value Problems. It is possible to continue even if stiffness is detected using the argument verbose = TRUE
for dopri5 and dopri853 and setting the argument stiffness=-2 or stiffness=-3 for cashkarp.

The code cashkarp includes two stiffness detection algorithms described in [16, p. 21]. The first method, originally
proposed by Shampine [27] is based on comparing two error estimates of different orders err = O(hp), err = O(hq), with
q < p. Usually err ≪ err , if the step size is limited by accuracy requirements and err > err when the step size is limited by
stability requirements. The precise way in which the two error estimators are derived is described in [17, p. 21]. This test is
inserted in cashkarp. The practical test used is: if 0.1err > err for at least 15 steps, separated by at most 6 steps where
this inequality is not satisfied then the problem is taken to be stiff (parameter stiffness=3).

The second way to detect stiffness is to approximate the dominant eigenvalue of the Jacobian as follows. Let v denote
an approximation to the eigenvector corresponding to the dominant eigenvalue of the Jacobian. If the norm of v (∥v∥) is
sufficiently small then the Mean Value Theorem tells us that a good approximation to the dominant eigenvalue is

|λ̄| =
∥f (t, y + v) − f (t, y)∥

∥v∥
. (3.1)

The cost of this procedure is at most 2, but often 1, function evaluations per step. In the code cashkarp we use two
different approximations of yn+1 at the point tn+1, that are available since the fifth stage computes another approximation
in tn+1 = tn + c5h, therefore

|λ̄| =
∥f (tn+1, yn+1) − f (tn + c5h, g5)∥

∥yn+1 − g5∥
.

The product h|λ̄| can then be compared to the linear stability boundary of the method in order to detect if the stepsize is
limited by stability.

The practical test used in the code dopri5 is: if h|λ̄| > 3.25 (6.1 for dopri853) for at least 15 steps, separated by at
most 6 steps where this inequality is not satisfied then the problem is taken to be stiff. The test used in the code cashkarp
is the same as in dopri5. This test is the default for all the solvers.

3.4. Implementation issues

In practice, the Fortran codes are implemented in R via a wrapper, written in C, that forms the interface between the
Fortran and theR codes. The original codes have beenmodified in order to have the calling sequence of the derivative function
consistent with the calling sequence in the deSolve package. Note that for the codes in deSolve the default maximum step
size is made a function of the times argument (the time sequence where output is wanted), whereas for gamd and bimd
the default maximum step size is set equal to |tend − t0|.

4. Numerical experiments

This section deals with the solution of problems included in deTestSet. Some of them are described in detail, so the
users can learn how to solve a problem using R. For many of the examples taken from the IVPTESTSET we just describe the
numerical results. The first example also introduces the techniques used for the benchmarking.
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4.1. ODE problems

4.1.1. The van der Pol equation
A commonly used example to demonstrate stiffness is the van der Pol problem (see [16, p. 566]). It is defined by the

following second order differential equation:

y′′
− µ(1 − y2)y′

+ y = 0, (4.1)

whereµ is a parameter. We convert (4.1) into a first order system of ODEs by adding an extra variable, representing the first
order derivative:

y′

1 = y2
y′

2 = µ(1 − y21)y2 − y1.
(4.2)

Stiff problems are obtained for large µ, non-stiff for small µ. We ran the model for µ = 1, 10, 1000, using mebdfi as the
integrator. The implementation in R is

The function diagnostics prints important information about the numerical solution, such as the value of the output flag
that informs us if the computation has been successful, the number of function evaluations and so on.
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Using the parameter µ = 1 the problem is not stiff, so we can apply an explicit Runge–Kutta solver, printing the time the
solver takes (in seconds) to solve the problem:

They all compute the solution without experiencing any problems. However if we use µ = 100, and the default tolerances,
they detect stiffness and the output is, for example:

Up until now we compared the execution time of the codes to solve the same problem, using the default relative and
absolute tolerances.

To compare the solver’s efficiencies, for every solver, a range of input toleranceswas used to produce plots of the resulting
mescd values against the number of CPU seconds needed for a run, when not otherwise specified the reference solution has
been computed using bimd with rtol = atol = 10−14. We took the average of the elapsed CPU times of 4 runs. The format of
these diagrams is as in [17,16, pp. 166–167,324–325]. As an example we report in Fig. 2 the work precision diagrams for the
methods lsoda, dopri5, cashkarp, dopri853, adams1 (on the left) and the work precision diagrams for the methods
mebdfi, radau, gamd, bimd, daspk (on the right) running the van der Pol problem with µ = 1. The range of tolerances
used is, for all codes, rtol = 10−4−j(5/8) with j = 0, . . . , 16, all the other parameters are the default, except for radau we
use hmax equal to the width of the integration interval. We use times <- 0:30 for µ = 1.

We wish to emphasize that the reader should be careful when using these diagrams for a mutual comparison of the
solvers. The diagrams just show the result of runs with the prescribed input on the specified computer.

A more sophisticated setting of the input parameters, another computer or compiler, as well as another range of
tolerances, or even another choice of the input vector times may change the diagrams considerably. We used a Personal
Computer with Intel(R) Core(TM)2 Duo CPU (U9400 1.40 GHz, 2,80 GB of RAM) and MICROSOFT WINDOWS XP. We show
the impact of the output times chosen by running the vdpol problemwithµ = 1000 using times <- 0:2000 and times
<- seq(0, 2000, by = 100). The results are in Fig. 3.

For the van der Pol problem for µ = 1 the adams is the most efficient code (Fig. 2), while for µ = 1000 bimd require
the least computational effort to compute a solution with a similar number ofmescd (Fig. 3).

4.1.2. Pleiades problem
The Pleiades problem [17] is fromcelestialmechanics. This problemhas beendescribed in detail in the IVPTESTSET [2].We

report here theR code of the problemas itwas implemented in [9], to compare the results from the implementation in pureR
and from theR interface to the Fortran code. The problem involves seven stars, withmassesmi, in the two-dimensional plane
of coordinates (x, y). The stars are considered to be point masses. The only force acting on them is gravitational attraction,

1 The adams method is available from deSolve, and is based on the solver LSODE from ODEPACK [21].



4126 F. Mazzia et al. / Journal of Computational and Applied Mathematics 236 (2012) 4119–4131

Fig. 2. Work precision diagrams for the van der Pol problem, µ = 1.

Fig. 3. Work precision diagrams for the van der Pol problem µ = 1000. times <- 0:2000 on the left, times <- seq(0, 2000), by=100 on the
right.

with gravitational constant G (units of m3 kg−1 s−2). If rij = (xi − xj)2 + (yi − yj)2 is the square of the distance between stars
i and j, then the second order equations describing their movement are given by

x′′

i = G

j≠i

mj
(xj − xi)

r3/2ij

y′′

i = G

j≠i

mj
(yj − yi)

r3/2ij

,

(4.3)

where, to estimate the acceleration of star i, the sum is taken over all the interactions with the other stars j. Writing these
as first order equations we obtain

x′

i = ui
y′

i = vi

u′

i = G

j≠i

mj
(xj − xi)

r3/2ij

v′

i = G

j≠i

mj
(yj − yi)

r3/2ij

,

(4.4)

where xi, ui, yi, vi are the positions and velocities in the x and y directions of star i respectively.
With 7 stars, and four differential equations per star, this problem comprises 28 equations. As in [17], we assume that

the masses mi = i and that the gravitational constant G equals 1; the initial conditions are found in [17]. We integrate the
problem in the time interval [0, 3]. In the function that implements the derivative in R (pleiade), we start by separating
the input vector Y into the coordinates (x, y) and velocities (u, v) of each star. The distances in the x and y directions are
created using R function outer. This function will apply FUN for each combination of x and y. It thus creates a matrix with
7 rows and 7 columns, having for distx on the position i, j, the value xi − xj. The matrix containing the values r3/2ij , called
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rij3, is then calculated using distx and disty. Finally we multiply matrix distx or disty with the vector containing
the masses of the stars (starMass), and divide by matrix rij3. The result of these calculations are two matrices (fx,
fy), with 7 rows and columns. As the distance between a body and itself is equal to 0, this matrix has NaN (Not a Number)
on the diagonal. The required summation to obtain u′ and v′ (Eq. (4.3)) is done using R function colSums; the argument
na.rm = TRUE ensures that these sums ignore the NaNs on the diagonal of fx and fy. During themovement of the 7 bodies
several quasi-collisions occur, where the squared distance between two bodies are as small as 10−3. When this happens,
the accelerations u′, v′ get very high. Thus, over the entire integration interval, there are periods with slow motion and
periods of rapid motion, such that this problem can only be efficiently solved with an integrator that uses adaptive time
stepping.

As the problem is non-stiff, we solved itwith the codecashkarp.Weuse the functionsystem.time to print the elapsed
time required to obtain the solution.

To use the Fortran interface in the deTestSet package the instructions are

The execution times show that the numerical solution obtained using the R interface to the Fortran code requires much less
computational time than the one required by using the R implementation of themodel. More about computing performance
in pure R and compiled code can be found in [10]. A package vignette of deSolve deals with how to write ODE models in
compiled code and solve them with R [28].

In Fig. 4 we show the work precision diagrams for the Pleiades problem of the deTestSet solvers compared with adams,
lsoda and daspk codes from the package deSolve.

More information about the Pleiades problem using R can be found in [9].
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Fig. 4. Work precision diagrams for the Pleiades problem. Explicit solvers (on the left)—Implicit solvers (on the right).

Table 1
Exit flag for the explicit solvers.

Problem rtol atol cashkarp (eig) cashkarp (err) dopri5 dopri853

Vdpol 10−4−j(5/8) 10−4−j(5/8) -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
Ring 10−4−j(5/8) 10−4−j(5/8) -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
E5 10−4−j(5/8) 10−24 -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
Rober 10−4−j(5/8) 10−4−j(5/8) -4 (j = 0, 1, 3, . . . , 16) -2 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -2 (j = 5)

-3 (j = 2) -3 (j = 1, 2, 3) -3 (j = 0, 1)
-5 (j = 4, . . . , 15) -4 (j = 2, 3, 4, 6, . . . , 16)

Beam 10−4−j(1/4) 10−4−j(1/4) -4 (j = 0, . . . , 16) 1 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
EMEP 10−4−j(3/8) 1 -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
Orego 10−4−j(5/8) 10−4−j(5/8) -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
Pollution 10−4−j(5/8) 10−4−j(5/8) -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)
HIRES 10−4−j(5/8) 10−4−j(5/8) -4 (j = 0, . . . , 16) -5 (j = 0, . . . , 16) -4 (j = 0, . . . , 16) -4 (j = 0, . . . , 16)

4.1.3. Stiffness detection
The Pleiades problem is the only non stiff problem in the IVPTESTSET which can be efficiently solved with the explicit

Runge–Kutta solvers. When trying to solve stiff problems, the explicit Runge–Kutta codes usually stop upon detecting
stiffness.

In Table 1 we report the exit flag of the codes when we try to solve one of the stiff problems using a fixed set of relative
and absolute tolerances. In this table, cashkarp(eig) is the code cashkarp with only the stiffness detection based on
the check of eigenvalues activated, in cashkarp(err) the stiffness detection based on error check is used. The meaning
of the error flag is as follows:

1: successful stop;
-2: maximum number of steps reached;
-3: stepsize too small;
-4: the problem seems to become stiff using the standard check of eigenvalues:
-5: the problem seems to become stiff using the stiffness detection algorithm based on two error estimators.

Reading Table 1 we see that the behavior of cashkarp(eig), dopri5 and dopri853 using the same stiffness
detection based on the standard check of eigenvalues is the same. Only for the Robertson problem the codes
cashkarp(eig) and dopri853 do not detect stiffness for some input tolerances but exit because the stepsize is either
too small or the maximum number of allowed steps has been reached. The stiffness detection based on the error check
(implemented only in cashkarp) does not detect stiffness for the Beam problem and for the Robertson problem has a
similar behavior of the stiffness detection based on the eigenvalues.We can conclude from this that all the stiffness detection
algorithms are reliable on these test problems. After stiffness has been detected we can switch to an implicit solver.

4.1.4. Ring modulator
The ringmodulator problem is a stiff system of 15ODEs that originates from electrical circuit analysis. Thework precision

diagram in Fig. 5 (on the left) has been computed using atol = rtol = 10−4−j(5/8), for j = 0, . . . , 16. The reference solution
has been computed using bimd with atol = rtol = 10−14, using times <- seq(0, 0.001, by = 5e-06). It shows
that the most efficient codes for this problems are mebdfi and bimd.
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Fig. 5. Work precision diagrams for the ring modulator problem (on the left) and the beam problem (on the right).

4.1.5. Beam problem
The beamproblemoriginates frommechanics and describes themotion of an elastic beam. It is a stiff ODE consisting of 80

differential equations. Thework precision diagram in Fig. 5 (on the right) has been computed using atol = rtol = 10−4−j(1/4),
for j = 0, . . . , 16. The reference solution has been computed using bimd with atol = rtol = 10−10, using times <-
seq(0, 5, by = 0.01). It shows that the most efficient codes for this problems are gamd and bimd. Note that for the
beam problem the code mebdfi works well if the maximum order is limited to 4 (see [16, p. 304]) because in this case the
code is based on A-stable formulas.

4.2. Numerical experiments: DAEs and IDEs

In this section we present work precision diagrams of selected DAE test problems using the R solvers in the deSolve and
deTestSet. The work precision diagrams are computed using as tolerances rtol = atol = 10−4−j(3/8) for j = 0, . . . , 16. The
reference solution has been computed using the solver bimd with rtol = atol = 10−12. The first problem is the Transistor
Amplifier, which is an index 1 DAE of dimension 8 that originates from electrical circuit analysis. The results are reported
in Fig. 6 on the left. The figure shows that on this problem the most efficient codes are daspk and mebdfi. The situation is
similar for the Fekete problem, an index two DAE frommechanics (Fig. 6 on the right). For this problem, the codes mebdfi,
gamd and daspk are the most efficient.

The next two problems are both index three DAEs. For these problems the reference solution has been computed using
the solver bimd with rtol = atol = 10−14. The caraxis problem is of size 10, and is an example of a multibody system.
For this problem the most efficient codes using as tolerances rtol = atol = 10−4−j(3/8) for j = 0, . . . , 16 and times <-
seq(0,3,by=3/500) (see Fig. 7) aremebdfi andradau, we observe that even thoughdaspk is not designed to solve index
three DAEs it is able to compute the solution.2 The Andrews squeezingmechanism is of size 27 and describes themotion of 7
rigid bodies connected by joints without friction. In Fig. 7 we report the results using as tolerances rtol = atol = 10−4−j(3/8)

for j = 0, . . . , 16 and times <- seq(0,0.03,by=0.03/500). The behavior is similar to the caraxis problem, the only
difference being that daspk is not able to obtain a solution.

The last example is an IDE problem of index 2, called Wheelset, which is of size 17 and is related to the simulation of
problems in contact mechanics. Since it is formulated as an IDE, only daspk and mebdfi could be used for the solution. The
behavior of the two codes is very similar with daspk the most efficient (see Fig. 8, the work precision diagrams has been
computed using rtol = atol = 10−4−j(3/8) for j = 0, . . . , 16, times <- seq(0,10,10/500)), and the reference solution
has been computed using the solver mebdfi with rtol = atol = 10−14.

5. Final remarks

In order to make the IVPTESTSET available to people who are not well acquainted with Fortran, aMatlab interface to the
test set was written in 2006. In addition, some of the test problems have also been inserted in the OCTAVE odepkg package
(http://octave.sourceforge.net/odepkg/).

With the new R package deTestSet, users of the open source software R now can also benefit from this facility.
In addition to the interface to IVPTESTSET, the new package provides some efficient integration codes that add to the

repertoire of methods already available in the R package deSolve.
Potential users of the R package deTestSet are scientists and engineers who either need to solve differential equations or

need to simulate, on a computer, scientific problems based on differential equations. Teachers may also find both the code

2 This is because in the R implementation of DASPK2, the same scaling strategy as in radau has been implemented—see [9].

http://octave.sourceforge.net/odepkg/


4130 F. Mazzia et al. / Journal of Computational and Applied Mathematics 236 (2012) 4119–4131

Fig. 6. Work precision diagrams for the Transistor problem (on the left) and the Fekete problem (on the right), both are index 1 DAEs.

Fig. 7. Work precision diagrams for the Andrews problem (on the left) and the caraxis problem (on the right), both are index 2 DAEs.

Fig. 8. Work precision diagrams for the Wheelset problem, IDE of index 2.

and problem data bases useful when organizing courses concerning the numerical simulation on newly emerging fields of
experimental mathematics.
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