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a b s t r a c t

Classes of permutations of finite fields with various specific properties are often needed for
applications. We use a recent classification of permutation polynomials using their Carlitz
rankwith advantage, to produce examples of classes of permutations ofFp, for odd p, which
for instance are ‘‘random’’, have lowdifferential uniformity, prescribed cycle structure, high
polynomial degree, large weight and large dispersion. They are also easy to implement.We
indicate applications in coding and cryptography.
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1. Introduction

Permutation polynomials over finite fields have attracted significant attention in the last decades, due to their vast
applications, especially in combinatorics, cryptography, coding and pseudorandom number generation. Naturally, methods
of construction of various types of permutations and/or newways of classifying themare needed in order tomeet the specific
requirements of individual applications. Here we present classes of permutations of finite fields Fq, q = pr , r ≥ 1, for odd
primes p, which possess a variety of properties that can be advantageous for diverse applications.
Permutations with low differential uniformity, for instance, are sought for to be used in symmetric cryptography since
they provide good resistance to differential attacks, see [1–3]. We recall that the differential uniformity δf of a function
f from a finite field Fq to itself is determined by properties of the difference map Df ,a(x) = f (x + a) − f (x), a ∈ F∗

q;

i.e., δf = maxa∈F∗
q ,b∈Fq δf (a, b), where δf (a, b) = #{x ∈ Fq,Df ,a(x) = b}. One would also need such permutations to be

implemented easily, hence usually sparse polynomials are studied, for example in [4–6]. Our approach provides examples
with added polynomial complexity, i.e., high degree and large weight, yet they can still be implemented easily. We note
that while most cryptosystems use Boolean functions or permutations of finite fields of characteristic two, there is an
increasing interest in permutations of finite fields of odd characteristic or bijections between finite groups of the same
cardinality also, for details we refer the reader to [1,2,7] and references therein. The concepts of ambiguity and deficiency of
permutations between two finite abelian groups of the same cardinality, which concern the difference map are introduced
and permutations with optimal behavior with respect to these measures are studied in [8,9], see Remark 3.2 below for
further comments. Costas permutations, which are interesting combinatorial objects were first introduced for applications
and the corresponding difference map shows an extreme behavior, as we explain in Section 2. The relationship between
almost perfect nonlinear (APN) and Costas permutations of the rings Zn has been first investigated in [10]. We also explore
this relationship and provide evidence supporting the description of [10], that it is ‘‘quite erratic’’. For small primes we give
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examples of almost Costas permutations, in a sense that we describe below. Permutations with a particular cycle structure
are of importance in turbo-like coding or low-density-parity-check codes (LDPC), see [11–13]. Those which decompose into
cycles of length two for instance are their own inverses, and hence the sameprocedure for encoding can be used for decoding.
‘‘Random’’ permutations with prescribed cycle structure are of particular interest for use as interleavers in turbo codes.
We use two basic tools to relate various favorable properties of permutations of Fq and obtain classes with such attributes.
Our first tool is the classification of permutation polynomials with respect to their Carlitz rank. We recall that Sq, the
symmetric group on q letters, is isomorphic to the group of permutation polynomials of Fq of degree less than q, under
the operation of composition and subsequent reduction modulo xq − x. A well known result of Carlitz [14] states that Sq
is generated by the linear polynomials ax + b, for a, b ∈ Fq, a ≠ 0, and xq−2. Consequently, as pointed out in [15], with
P0(x) = a0x + a1, any permutation P of Fq can be represented by a polynomial of the form

Pn(x) = (· · · ((a0x + a1)q−2
+ a2)q−2

· · · + an)q−2
+ an+1, n ≥ 0, (1)

where a1, an+1 ∈ Fq, ai ∈ F∗
q = Fq \ {0} for i = 0, 2, . . . , n.

The Carlitz rank of P , denoted as Crk(P ), is defined in [16] to be the smallest integer n ≥ 0 satisfying P = Pn for a
permutation Pn of the form (1). Our second tool is the so called dispersion. Dispersion is also concerned with the difference
map and for a permutation P of the set {0, 1, . . . , n − 1}, it is defined as the cardinality of the set {(j − i, P(j) − P(i))|0 ≤

i < j ≤ n− 1}. This concept has been in use as a randomness measure of permutations for their possible use as interleavers
in turbo codes, see [17].
This paper is organized as follows. After giving preliminaries in Section 2, we focus on evaluation in Section 3 of dispersion
of permutations of Carlitz rank 1, and show that with an appropriate choice of parameters, these polynomials provide
the first examples having provably high dispersion, and hence can be considered as ‘‘random’’. Indeed only a few non-
empirical results on the dispersion of permutations of finite fields have appeared so far, in connectionwith coding theoretical
applications, and only about monomials, see [18,19]. In Section 4 we characterize and enumerate permutations of Carlitz
rank 1 with prescribed dispersion and cycle decomposition. Section 5 focuses on permutations of Carlitz rank > 1. We
complete this work by presenting results on the differential uniformity of permutations of small Carlitz rank in Section 6.

2. Preliminaries

We start by recalling that a permutation πc of {0, 1, . . . , n − 1} is called a Costas permutation (or a Costas array) if for
every 0 ≤ i, j, k, i + k, j + k ≤ n − 1,

πc(i + k) − πc(i) = πc(j + k) − πc(j)

implies k = 0 or i = j. For an extensive review of literature on Costas permutations, together with its applications we refer
to [20,21].
Drakakis et al. consider permutations with the following stronger properties in [10]. A permutation π of {0, 1, . . . , n − 1}
is called a range (R-) periodic Costas permutation if for every 0 ≤ i, j, k, i + k, j + k ≤ n − 1,

(π(i + k) − π(i)) mod n = (π(j + k) − π(j)) mod n (2)

implies k = 0 or i = j. Similarly π is called a domain-and-range (DR-) periodic Costas permutation if (2) is replaced by

(π((i + k) mod n) − π(i)) mod n = (π((j + k) mod n) − π(j)) mod n. (3)

Hence a DR-periodic Costas permutation permutes the ring Zn. As it is proved in [10], R-periodic Costas permutations of
{0, 1, . . . , n − 1} do not exist if n is odd. Therefore there are no DR-periodic Costas permutations of a finite field Fp, p > 2.
As usual we identify the finite field Fp with {0, 1, . . . , p − 1}. We need to calculate both in Z and in Fp, and in order to
avoid confusion, we denote addition and subtraction in Fp by ‘‘⊕’’, and ‘‘⊖’’. With this notation P ∈ Fp[x] is a (DR-) Costas
permutation if

P(i ⊕ k) ⊖ P(i) = P(j ⊕ k) ⊖ P(j)

implies k = 0 or i = j, for all i, j, k, i ⊕ k, j ⊕ k ∈ Fp.
Difference triangles are often used to help visualizing the Costas property and similar combinatorial concepts. We also utilize
them to describe the results of this paper in a simple way.
Recall that a difference triangle of a permutation P ∈ Fp[x] is a triangular array DT (P) of integers, which has p − 1 rows
T1(P), . . . , Tp−1(P), where Tk(P) is the vector

Tk(P) = (P(k) − P(0), P(1 + k) − P(1), . . . , P(p − 1) − P(p − k − 1)),

for k = 1, . . . , p − 1. Calculating in Fp, we obtain a p-difference triangle DTp(P) of P , whose rows are:

Tp,k(P) = (P(k) ⊖ P(0), P(1 ⊕ k) ⊖ P(1), . . . , P(p ⊖ 1) ⊖ P(p ⊖ k ⊖ 1)),
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for k = 1, . . . , p−1.Wedenote the number of distinct integers appearing in Tk(P) by |Tk(P)| and distinct elements appearing
in Tp,k(P) by

Tp,k(P)
. Note that a permutation P has the Costas property if and only if each row of its difference triangle

DT (P) consists of distinct integers. Since no R-periodic Costas permutations of {0, 1, . . . , p−1} exist, there is no permutation
of Fp, with distinct values in each row of its p-difference triangle.
Note that for such permutations P , the equation P(x ⊕ a) ⊖ P(x) = b has at most two solutions for all a, b ∈ Fp, a ≠ 0, in
other words they are APN. Therefore for an APN permutation P , any element in each row of DTp(P) (and hence of DT (P))
appears at most twice. If in addition one can control the number of repeating elements in each row of DT (P), one can obtain
interesting combinatorial objects, which almost have Costas property since P is Costas if no element repeats in a row of
DT (P). We use dispersion to quantify this argument.

We put
D(P, Fp)

 =
p−1

k=1

Tp,k(P)
 and |D(P)| =

p−1
k=1 |Tk(P)|. The reader can see easily that the latter quantity

coincides with the dispersion of P , that we defined in Section 1. With our notation introduced above, we write D(P) =

{(k, P(i⊕k)−P(i))|1 ≤ k ≤ p−1, 0 ≤ i ≤ p−1−k}. Since we study permutations of Fp, we focus on evaluating
D(P, Fp)


also, which we call the p-dispersion.

Clearly a Costas permutation of {0, 1, . . . , p − 1} has (maximum possible) dispersion p(p − 1)/2. Accordingly the
normalized dispersion is defined as

γ (P) =
2 |D(P)|

p(p − 1)
,

and hence γ (P) ≤ 1 for any permutation P of Fp. We note that the expected value of the normalized dispersion of a random
permutation is approximately 0.8, see [18,19,17]. Accordingly γ (P) is used as a randomness measure, see Section 3.6.4
in [17]. More precisely a permutation P is considered as being random (and hence as a favorable interleaver) if γ (P) is close
to 0.8. Earlier results on dispersion are only aboutmonomials. It is easy to see that |D(P)| =

D(P, Fp)
 in case of amonomial.

However these values may differ considerably when P is an arbitrary permutation.
In the next section, among other results we show that when p ≡ 5 mod 6, and P is a permutation of Carlitz rank 1, γ (P )

attains the value 3/4+5/4p for a2 = 0, −a1/a0 = ⌊
p−1
4 ⌋ or ⌊

3p−1
4 ⌋ mod p. Hence an appropriate choice of P ensures γ (P )

to be close to 0.8, yielding ‘‘random’’ permutations, or good candidates for use in turbo codes as interleavers. A lower bound
for γ (P ), when Crk(P ) = 1 is also given below, which is ≈ 0.5. This value is close to that of monomials.

3. Dispersion of permutations of Carlitz rank 1

Throughout this and the next sections P denotes a permutation of Fp of Carlitz rank 1, i.e., P = (a0x ⊕ a1)p−2
⊕ a2. We

first give an exact formula for the p-dispersion
D(P , Fp)

, when p ≡ 5 mod 6. We then evaluate |D(P )| when a2 = 0.

In what follows, the element ⊖
a1
a0

of the prime field Fp, which is the pole of the polynomial P ∈ Fp[x], is denoted by xp. As
it turns out, the integer in {0, 1, . . . , p − 1}, which xp is identified with, plays an important role in the real valued formulae
for the dispersion. Naturally this integer then has to be dealt with as a real number. To indicate which arithmetic has to be
applied, we denote this integer by xI .

Lemma 3.1. Let p ≡ 5 mod 6. For a fixed k, 1 ≤ k ≤ p − 1, and i ≠ j

P (i ⊕ k) ⊖ P (i) = P (j ⊕ k) ⊖ P (j) (4)

if and only if i ⊕ j ⊕ k = 2xp.

Proof. First we consider the case i = xp or i ⊕ k = xp.
We observe that in both cases we have

P (i ⊕ k) ⊖ P (i) =
1
a0k

.

Consequently if i = xp (thus i ⊕ k, j are both different from xp) and j ⊕ k = xp, we have

P (i ⊕ k) ⊖ P (i) = P (j ⊕ k) ⊖ P (j) =
1
a0k

.

If on the other hand i = xp and j ⊕ k ≠ xp or i ⊕ k = xp and j ≠ xp, then

P (i ⊕ k) ⊖ P (i) = P (j ⊕ k) ⊖ P (j)

if and only if j is a root of the quadratic equation

a20j
2
⊕ (a20k ⊕ 2a0a1)j ⊕ a20k

2
⊕ a0a1k ⊕ a21 = 0. (5)
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Applying the quadratic formula to Eq. (5), one obtains −3a40k
2 as discriminant. Consequently Eq. (5) has a solution in Fp if

and only if −3 is a square which applies if and only if p ≡ 1 mod 6.
Now assuming that none of the elements i, i ⊕ k, j, j ⊕ k is xp, Eq. (4) can be written as

⊖a0k
(a0(i ⊕ k) ⊕ a1)(a0i ⊕ a1)

=
⊖a0k

(a0(j ⊕ k) ⊕ a1)(a0j ⊕ a1)
.

Hence we obtain the equation

a20(i
2
⊕ ik ⊖ j2 ⊖ jk) ⊕ 2a0a1(i ⊖ j) = 0,

which can also be written as a0(i ⊖ j)(a0(i ⊕ j) ⊕ a0k ⊕ 2a1) = 0. Since a0 ≠ 0, this implies i ⊕ j ⊕ k = ⊖2 a1
a0

= 2xp, for
i ≠ j. �

Remark 3.1. As noted in the proof of Lemma 3.1, in case p ≡ 1 mod 6 and i = xp, j ⊕ k ≠ xp Eq. (5) has solutions, namely

j = xp ⊖
1 ±

√
⊖3

2
k.

Therefore the dispersion is smaller since D(P , Fp) has fewer elements.

The following proposition shows that it is sufficient to consider the case 0 ≤ xI ≤ (p − 1)/2.

Proposition 3.2. Let P (x) = (a0x ⊕ a1)p−2
⊕ a2 ∈ Fp[x] and P̃ (x) = (a0x ⊕ a0 ⊖ a1)p−2

⊕ b2 ∈ Fp[x]. ThenD(P , Fp)
 =

D(P̃ , Fp)
.

Proof. We first observe that with xp = ⊖
a1
a0

and x̃p = ⊖
a0−a1

a0
= ⊖1 ⊖ xp, we have x̃I = p − 1 − xI . Applying Lemma 3.1

we obtain

P (i ⊕ k) ⊖ P (i) = P (2xp ⊖ i) ⊖ P (2xp ⊖ k ⊖ i)

= (a0(⊖i ⊖ 1) ⊕ a0 ⊖ a1)p−2
⊖ (a0(⊖i ⊖ 1 ⊖ k) ⊕ a0 ⊖ a1)p−2

= P̃ (⊖i ⊖ 1) ⊖ P̃ (⊖i ⊖ 1 ⊖ k) = P̃ (ĩ ⊕ k) ⊖ P̃ (ĩ)

with ĩ = p ⊖ 1 ⊖ k ⊖ i. Since ĩ runs through the set {0, . . . , p ⊖ 1 ⊖ k} when i does, we have D(P , Fp) = D(P̃ , Fp), by the
definition of D(P , Fp). �

Theorem 3.3. Let p ≡ 5 mod 6 and P (x) = (a0x ⊕ a1)p−2
⊕ a2 ∈ Fp[x], a0 ≠ 0. Then

D(P , Fp)
 =


(p + 3)(p − 1) + 4xI(p − 2xI − 2)

4
: 0 ≤ xI ≤

p − 1
2

,

(p + 3)(p − 1) + 4(p − 1 − xI)(2xI − p)
4

:
p − 1
2

< xI ≤ p − 1.

Proof. First we assume that 0 ≤ xI ≤
p−1
2 . For j ≠ i, and for each pair (k, i) satisfying the above conditions, there exists at

most one j, such that i ⊕ j ⊕ k = 2xI and 0 ≤ j ≤ p − k − 1. Lemma 3.1 implies then that Eq. (4) holds. Let W be the set of
pairs (k, i), which admit such j. ThenD(P , Fp)

 = p(p − 1)/2 −
1
2

|W | . (6)

To determine the cardinality ofW we observe the following:
(i) For a given k, 1 ≤ k ≤ p−1, and0 ≤ i ≤ 2xI−k, the integer j, satisfying i⊕j⊕k = 2xI , is j = 2xI−k−i ∈ {0, . . . , 2xI−k}.

Note that 2xI − k ≤ p − k − 1.
(ii) For a given k, 1 ≤ k ≤ p − 1, and max{0, 2xI − k + 1} ≤ i ≤ 2xI , the integer j ∈ {0, 1, . . . , p − 1}, satisfying

i ⊕ j ⊕ k = 2xI , is j = p + 2xI − k − i. Note that p + 2xI − k − i > p − k − 1.
(iii) For a given k, 1 ≤ k ≤ p − 1, and 2xI + 1 ≤ i ≤ p − 1 − k, the integer j, satisfying i ⊕ j ⊕ k = 2xI , is

j = 2xI − k − i ∈ {2xI + 1, . . . , p − 1 − k}. Thus we can write W as the union of the disjoint sets

W1 = {(k, i) | 1 ≤ k ≤ p − 1, 0 ≤ i ≤ 2xI − k, i ≠ 2xI − k − i}
W2 = {(k, i) | 1 ≤ k ≤ p − 1, 2xI + 1 ≤ i ≤ p − k − 1, i ≢ 2xI − k − i mod p}.

We remark that k in fact, varies over 1 ≤ k ≤ 2xI in W1 and over 1 ≤ k ≤ p − 2 − 2xI in W2.
Note that the number of pairs (k, i) satisfying 1 ≤ k ≤ 2xI and 0 ≤ i ≤ 2xI − k is

2xI
k=1

(2xI − k + 1) =

2xI
k=1

k = 2xI(2xI + 1)/2,
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and since among these, there are xI pairs with i = 2xI − k − i, we have |W1| = 2xI(2xI + 1)/2 − xI = 2x2I . The number of
pairs (k, i) satisfying 1 ≤ k ≤ p − 2 − 2xI and 2xI + 1 ≤ i ≤ p − 1 − k is given by

p−2−2xI
k=1

k = (p − 2 − 2xI)(p − 1 − 2xI)/2.

On the other hand, (p − 1 − 2xI)/2 pairs satisfy 1 ≤ k ≤ p − 2 − 2xI , 2xI + 1 ≤ i ≤ p − 1 − k, and additionally
i ≡ 2xI − k − i mod p. Hence

|W2| = (p − 2 − 2xI)(p − 1 − 2xI)/2 − (p − 1 − 2xI)/2 = (p − 3 − 2xI)(p − 1 − 2xI)/2.

Finally by (6)D(P , Fp)
 = p(p − 1)/2 − x2I − (p − 3 − 2xI)(p − 1 − 2xI)/4

gives the result for 0 ≤ xI ≤
p−1
2 . The rest follows from Proposition 3.2. �

Corollary 3.4. If p ≡ 1 mod 6, then for 0 ≤ xI ≤ (p − 1)/2D(P , Fp)
 ≥

p2 − 6p + 13 + 4xI(p − 2xI − 2)
4

.

Proof. Let p ≡ 1 mod 6. For each 1 ≤ k ≤ p − 2 at most two more elements of D(P , Fp) can be the same and henceD(P , Fp)
 ≥

(p + 3)(p − 1) + 4xI(p − 2xI − 2)
4

− 2(p − 2). �

Given the p-dispersion, the exact value of the dispersion for the polynomial P can be determined when a2 = 0.

Theorem 3.5. Let p ≡ 5 mod 6 and let P (x) = (a0x ⊕ a1)p−2
∈ Fp[x], a0 ≠ 0. Then

D(P )
 =


(p + 3)(p − 1) + 4xI(p − 2xI − 1)

4
: 0 ≤ xI ≤

p − 1
2

,

(p + 3)(p − 1) + 4(p − 1 − xI)(2xI − p + 1)
4

:
p − 1
2

< xI ≤ p − 1.

Proof. We need to evaluate the cardinality of the set T of triples (i, j, k), 1 ≤ k ≤ p − 1, 0 ≤ i < j ≤ p − 1 − k, for which
P (i⊕k)⊖P (i) = P (j⊕k)⊖P (j) (i.e. i⊕j⊕k = 2xp) butP (i⊕k)−P (i) ≠ P (j⊕k)−P (j). Then |D(P )| =

D(P , Fp)
+|T |.

First suppose that i, j, i ⊕ k, j ⊕ k ≠ xp. Then

P (i ⊕ k) − P (i) =


1

a0(i ⊕ k) ⊕ a1
⊕ a2


−


1

a0i ⊕ a1
⊕ a2


=


1

a0(2xp ⊖ j) ⊕ a1
⊕ a2


−


1

a0(2xp ⊖ j ⊖ k) ⊕ a1
⊕ a2


=


⊖1

a0j ⊕ a1
⊕ a2


−


⊖1

a0(j ⊕ k) ⊕ a1
⊕ a2


.

Hence

P (i ⊕ k) − P (i) = (⊖P (j) ⊕ 2a2) − (⊖P (j ⊕ k) ⊕ 2a2) . (7)

Since a2 = 0, we haveP (i⊕k)−P (i) = P (j⊕k)−P (j) and thus the set T has no elements satisfying i, j, i⊕k, j⊕k ≠ xp.
For i = xp, hence j ⊕ k = xp, we have

P (i ⊕ k) − P (i) = P (xp ⊕ k) − P (xp)

= (a0(xp ⊕ k) ⊕ a1)p−2
− (a0xp ⊕ a1)p−2

=
1
a0k

and

P (j ⊕ k) − P (j) = P (xp) − P (xp ⊖ k)

= (a0xp ⊕ a1)p−2
− (a0(xp ⊖ k) ⊕ a1)p−2

=
1
a0k

− p.
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Now, the conditions 0 ≤ xI − k, xI ≤ p − 1 − k imply that k ≤ p − 1 − xI and k ≤ xI , i.e, 1 ≤ k ≤ min{p − 1 − xI , xI}. For
each k in this range we have exactly one element (k, i = xI , j = xI − k) in T . Therefore |T | = min{p − 1 − xI , xI} andD(P )

 =
D(P , Fp)

 + |T | =
D(P , Fp)

 + min{p − 1 − xI , xI},

giving the result. �

Corollary 3.6. Let p ≡ 5 mod 6 and let P (x) = (a0x ⊕ a1)p−2
∈ Fp[x], a0 ≠ 0. Then

D(P , Fp)
 =

D(P )
 if and only if

P (x) = a0xp−2 or P (x) = (a0x ⊕ a0)p−2 where a0 ∈ F∗
p is arbitrary.

We remark that Eq. (7) above suggests |D(P )| to be larger when a2 ≠ 0. Indeed, a careful analysis of the proof of
Theorem 3.5 yields that D(P ) has additional points exactly when one of P (j), P (j ⊕ k) is smaller than 2a2, and the other
one is larger. Naturally one expects that this happens most frequently if 2a2 ≈ (p − 1)/2. Hence the maximum value of
the dispersion is expected to occur when xI = a2 = ⌊

p−1
4 ⌋. Numerical results for p ≡ 5 mod 6, 5 ≤ p ≤ 71 confirm this

guess. One can also check easily that all Costas permutations of F5 are of Carlitz rank 1. The maximum values of γ (P ) for
small primes can be calculated, which show that for xI = a2 = ⌊

p−1
4 ⌋, and various values of a0, the normalized dispersion

of P is close to 1, i.e. such P are almost Costas. As one expects, considering the symmetries in DT (P ), the minimum values
are attained for xI = a2 =

p−1
2 . To exemplify, γ (P0) ≈ 0.94 and γ (P̄0) ≈ 0.78 for P0(x) = (8x + 2)9 + 2 ∈ F11 and

P̄0 = (x − 126)507 + 15 ∈ F509, respectively.

Remark 3.2. The concepts of ambiguity and deficiency are introduced in [8,9], in order to understand the injectivity and
surjectivity of the difference map Df ,a(x) when f : G1 → G2 is a permutation and G1, G2 are Abelian groups of the same
size. Although deficiency and p-dispersion for a permutation of Fp seem to be similar concepts, deficiency is invariant under
extended affine (EA) equivalence, but p-dispersion is not. We recall that two functions f , g : Fp → Fp are called EA-
equivalent if there exist affine permutations A1, A2 and an affine map A such that g = A1 ◦ f ◦A2 +A. Lemma 2 and Theorem
17 in [9] show that the deficiency of all permutations of Fp of Carlitz rank 1 is (p−1)(p−3)/2, since they are EA-equivalent
to the inversion. On the contrary, it follows from Theorem 3.3 and Corollary 3.4 above that the p-dispersion of permutations
in the same class, namely of those of Carlitz rank 1, vary considerably.

4. Dispersion and cycle structure

In this section we first recall the results of [15, Section 2] on the cycle decomposition of permutations P of Carlitz rank
1, (see also [22]). The polynomial

f (x) = x2 ⊖ (a0a2 ⊕ a1)x ⊖ a0 (8)

associated to P (x), plays the central role in studying the cycle structure of P (x). Let α, β ∈ Fp2 be the roots of f (x), then the
multiplicative orderm of α/β , a divisor of p − 1 or p + 1, determines the cycle structure of P (x). When a permutation P is
decomposed into a product of disjoint cycles, we write CP = [n1 × l1, n2 × l2, . . . , ns × ls] to indicate that the permutation
is composed of n1 cycles of length l1, n2 cycles of length l2,. . . ,ns cycles of length ls, l1 > l2 > · · · > ls ≥ 1.

Proposition 4.1 ([15, Theorem 2]). For a permutation P (x) = (a0x ⊕ a1)p−2
⊕ a2, let f be the associated polynomial in (8),

and α, β be the roots of f . Suppose that m is the order of α/β in Fp2 . Then CP = CP (m) depends on m as follows:

CP (m) =


[(t − 1) × m, 1 × (m − 1)] : m = (p + 1)/t, 1 ≤ t < (p + 1)/2,
[(t − 1) × m, 1 × (m − 1), 2 × 1] : m = (p − 1)/t, 1 ≤ t < (p − 1)/2,
[1 × (p − 1), 1 × 1] : m = 1,
[((p − 1)/2 − δ(f )) × 2, (1 + 2δ(f )) × 1] : m = 2,

with δ(f ) = 0 if f is irreducible and δ(f ) = 1 if f is reducible.

It follows that form = p±1we have only one nontrivial cycle having lengthm−1. If 2 < m < p−1, all nontrivial cycles
have the same lengthm, except for one of lengthm−1. Ifm = 2, all nontrivial cycles have length 2. As seen in Section 3, the p-
dispersion ofP depends only on⊖a1/a0. In this sectionwe showhow to choose the remaining parameters in order to obtain
a prescribed cycle structure. Furthermore we determine the number of permutations P (x) = (a0x ⊕ a1)p−2

⊕ a2 ∈ Fp[x]
with prescribed p-dispersion and cycle structure. Note that we partially answer a question raised in [13] also, where cycle
structure of various permutations are studied and finding their dispersion is proposed.

Theorem 4.2. Let p be an arbitrary odd prime. For any xp ∈ Fp and any integer m dividing p−1 or p+1, there is a permutation
P (x) = (a0x ⊕ a1)p−2

⊕ a2 ∈ Fp[x] with cycle decomposition CP (m) and xp = ⊖a1/a0.
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Proof. Throughout the proof, xp will be a fixed element of Fp. We address the cases m = 1, m = 2 and m > 2 separately.
For m = 1 we can choose α = β ∈ F∗

p for the root of (8), and consequently we obtain a0 = ⊖α2 and a1 = ⊖a0xp = α2xp.
From a0a2 ⊕ a1 = 2α we get a2 = xp ⊖ 2/α, which is an element of Fp. Summarizing, the permutations P (x) with fixed xp
and cycle decomposition CP (1) are given by

P (x) = (⊖α2x ⊕ α2xp)p−2
⊕ xp ⊖ 2/α, α ∈ F∗

p. (9)

Form = 2we have α = ⊖β , thus a0a2⊕a1 = 0. For an arbitrary a0 ∈ F∗
p we get a2 = ⊖a1/a0 = xp. Hence the permutations

P (x) with fixed xp and cycle decomposition CP (2) are given by

P (x) = (a0x ⊖ a0xp)p−2
⊕ xp, a0 ∈ F∗

p. (10)

For an integer m > 2 dividing p − 1 or p + 1 let γ ∈ Fp2 be an element of order m. If α, β ∈ Fp2 are the roots of (8) with
α/β = γ , then a1 = ⊖a0xp implies

γ =
α

β
=

a0a2 ⊖ a0xp ⊕


(a0a2 ⊖ a0xp)2 ⊕ 4a0
a0a2 ⊖ a0xp ⊖


(a0a2 ⊖ a0xp)2 ⊕ 4a0

.

With straightforward algebraic transformations this yields

(a2 ⊖ xp)2 =
(γ ⊕ 1)2

⊖γ a0
. (11)

Let c = ⊖(γ ⊕ γ −1) and thus (x ⊖ γ )(x ⊖ γ −1) = x2 ⊕ cx ⊕ 1, then

(γ ⊕ 1)2

⊖γ a0
=

⊖cγ ⊖ 1 ⊕ 2γ ⊕ 1
⊖γ a0

=
c ⊖ 2
a0

,

and Eq. (11) gives

(a2 ⊖ xp)2 =
c ⊖ 2
a0

. (12)

We emphasize that c is always an element of Fp regardless of γ being in Fp or not. Moreover c ⊖ 2 ≠ 0 since γ ≠ ⊖1. Thus

(11) is solvable for a2 in Fp if we choose a0 ∈ Fp such that


a0
p


=


c−2
p


, where


∗

∗


denotes the Legendre symbol. �

Theorem 4.3. Let p be an arbitrary odd prime, m be a divisor of p − 1 or p + 1 and let N (CP (m), xp) be the number of
permutations P (x) = (a0x ⊕ a1)p−2

⊕ a2 ∈ Fp[x] with given xp = ⊖a1/a0 ∈ Fp and cycle decomposition CP (m). Then

N (CP (m), xp) = p − 1 if m = 1, 2, and

N (CP (m), xp) =
p − 1
2

ϕ(m) if m > 2,

where ϕ denotes Euler’s phi-function.

Proof. Form = 1, 2 the result follows immediately from Eqs. (9) and (10), respectively. For the construction ofP with fixed
xp and cycle decompositionCP (m),m > 2,we choose γ among theϕ(m) elements of orderm inFp2 .We put c = ⊖(γ ⊕γ −1)
and note that each c ∈ Fp is obtained by two distinct choices for γ , since γ ≠ 1, ⊖1. Thus there are ϕ(k)/2 possible values

for c . We choose a0 ∈ Fp such that


a0
p


=


c−2
p


. This gives (p−1)/2 choices for a0. Finally we determine a2 so as to satisfy

Eq. (12). For each pair (c, a0) we have two choices for a2 since c ⊖ 2 ≠ 0, and the formula for N (CP (m), xp) follows. �

Theorem 4.4. Suppose p ≡ 5 mod 6. Let N(CP (m), xp) be the number of permutations P with p-dispersion associated to xp
and cycle decomposition CP (m). We have:

N(CP (m), xp) = 4N (CP (m), xp) if xI ∉


0,

p − 1
4

,
p − 1
2

,
3(p − 1)

4
, p − 1


,

N(CP (m), xp) = 3N (CP (m), xp) if xI ∈


0,

p − 1
2

, p − 1


, and

N(CP (m), xp) = 2N (CP (m), xp) if xI =
p − 1
4

,
3(p − 1)

4
.
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Proof. The proof easily follows from the observation that x = xI and x = (p − 1)/2 − xI yield the same values of the
expression 4x(p − 2x − 1). Moreover we have

D(P , Fp)
 =

D(P̃1, Fp)
 if 0 ≤ xI ≤ (p − 1)/2 and x̃I = p − 1 − xI , by

Proposition 3.2. �

We remark that the last case in Theorem 4.4 can occur only if p ≡ 1 mod 4 since xI is an integer.

5. Permutations of Carlitz rank n > 1

Let P be a permutation of Fq, with Crk(P ) = n, and suppose that P has a representation Pn as in (1), i.e.,

Pn(x) = (· · · ((a0x ⊕ a1)q−2
⊕ a2)q−2

⊕ · · · ⊕ ak)q−2
⊕ ak+1.

One can associate a rational linear transformation Rn to Pn as

Rn(x) =
αn+1x + βn+1

αnx + βn
, (13)

where αk = akαk−1 + αk−2 and βk = akβn−k−1 + βk−2, for k ≥ 2 and α0 = 0, α1 = a0, β0 = 1, β1 = a1, see [15].

The elements of the string On = {xi : xi =
−βi
αi

, i = 1, . . . , n} ⊂ P1(Fq) = Fq ∪ {∞} are (naturally) called the poles.
Corresponding to the rational transformation Rn, one can define a permutation Fn as Fn(x) = Rn(x) for x ∉ On, and
Fn(xn) = αn+1/αn. The maps Fn(x) and Rn(x) are linear if αn = 0. Since Pn(x) = Fn(x) for x ∉ On, the permutations Pn
and Fn coincide except for at most n elements of Fq, see [15,22] for details. Note that the permutations Fn when αn ≠ 0
and the permutations of Carlitz rank 1 are in one-to-one correspondence. Therefore any permutation of Carlitz rank nwith
corresponding rational transformation Rn, satisfying αn ≠ 0, differs from a permutation of Carlitz rank 1 only on a subset
of Fq of cardinality at most n.
Now we are ready to prove the following theorem for q = p, which is non-trivial when n is small in comparison to p.

Theorem 5.1. Let p ≡ 5 mod 6 and P be a permutation of Fp of Carlitz rank n.

(i) If n = 1 and P (x) = (a0x ⊕ a1)p−2, a0 ≠ 0, then the maximum value γM(P ) for the normalized dispersion is
γM(P ) = 0.75 +

5
4p . This value is attained for ⊖a0/a1 = ⌊

p−1
4 ⌋ and ⊖a0/a1 = ⌊

3p−1
4 ⌋.

(ii) If n = 2 andP has a representation of the formP2(x) = ((a0x⊕a1)p−2
⊕a2)p−2

−1/a2, a0a2 ≠ 0, then themaximumvalue
for the normalized dispersion satisfies γM(P ) ≥ 0.75+

5
4p −

4
p . WhenP2 is a permutation with⊖(a1a2 +1)/a0a2 = ⌊

p−1
4 ⌋

or ⊖(a1a2 + 1)/a0a2 = ⌊
3p−1

4 ⌋, then γ (P ) ≥ 0.75 +
5
4p −

4
p .

(iii) If n > 2 and P has a representation Pn as in (1), where αn in (13) is not zero, then the maximum value of the normalized
dispersion of P satisfies γM(P ) ≥ 0.75 +

5
4p −

2n
p .

Proof. The proof of Part (i) is a direct consequence of Theorem 3.5. When P is a permutation of Carlitz rank 2, and has a
representation P2 as in Part (ii), then the corresponding permutation F2 is of the form F2 = (−a0x− a1 − 1/a2)p−2, and P
andF2 differ only for at two elements of Fp. This means that at most 4 integers in each row of the difference triangle DT (F2)
change, which may cause at most 4 more integers in each row to repeat, implying Tk(P ) ≥ Tk(F2) − 4 for k ≥ 4. Adding
over k and normalizing we obtain the bound. The rest of (ii) follows from Part (i).
Part (iii) can be proved by following the argument used in the proof of (ii). The condition that αn ≠ 0 guarantees the
associated rational transformation Rn to be nonlinear, so that Fn is a permutation of Carlitz rank 1. �

We remark that although a permutation P of small Carlitz rank differs from a permutation with Carlitz rank 1 at only
a small number of elements in Fq, increased Carlitz rank provides wider-ranging properties for P . For instance the cycle
structure of permutations of Carlitz rank 1 is rather simple, however even when the Carlitz rank is 2 or 3, we get many
different possibilities of decomposition into cycles, see [15]. Therefore the above theorem shows thatwhen p is large enough,
by considering permutationswith Carlitz rank> 1, one can still obtain ‘‘random’’ permutations, but can also havemoreways
of decomposing them into cycles. The proof of part (ii) yields a method of specifying permutations P with larger Carlitz rank
and ensured lower bound for γ (P).

6. Differential uniformity

In this section we add some remarks on differential uniformity, and differently from other sections we consider fields Fq
where q can be a power of an odd prime.We first recall that a polynomial f ∈ Fq[x] is called perfect nonlinear if the difference
mapsDf ,a(x) = f (x+a)− f (x), a ∈ F∗

q . are permutations, in which case f , itself cannot be a permutation.When the equation
Df ,a(x) = b has at most 2 solutions for all b and all nonzero a in Fq, then f is called almost perfect nonlinear, abbreviated
as APN. Permutations P of Fq can be APN, and this is the best they can achieve, in other words among permutations, those
which are APN provide the highest resistance to differential cryptanalysis.
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For b ∈ Fq and a ∈ F∗
q , consider δf (a, b) = ♯{x ∈ Fq : Df ,a(x) = b}. Recall that the differential uniformity δf of f is defined as

δf = max
b∈Fq,a∈F∗

q
δf (a, b).

One of the essential properties of a permutation to be used in cryptography is to have low differential uniformity, see [4–6].
It is well known that the differential uniformity of a function is invariant under EA-equivalence. It is expected therefore,
and is easy to see that when q = pr , p ≡ 5 mod 6, and r is odd, permutations of Carlitz rank 1, being EA equivalent to
the inversion xq−2, are APN. It is surprising though to obtain a new class of permutations with differential uniformity 4,
when p ≡ 5 mod 6, and r is odd. This new class can be obtained in a straightforward manner by our approach; they are
permutations of Carlitz rank 2.

Theorem 6.1. Let q = pr , r ≥ 1, p ≡ 5 mod 6, and r be odd.

(i) Let P ∈ Fq[x] be a permutation of Carlitz rank 1. Then P is APN.
(ii) Let P ∈ Fq[x] be a permutation of Carlitz rank 2. Then P is differentially 4 uniform.

Proof. For the proof of (i) we first note that it is sufficient to show that xq−2 is APN, see [10, Theorem 8]. Proving that the
inversion, xq−2 is APN follows the proof of the case of characteristic 2. The equation (x ⊕ a)q−2

⊖ xq−2
= b has a solution

x ≠ 0, ⊖a if and only if bx2 ⊕ abx ⊕ a = 0 has a solution. Hence we have at most 2 solutions different from 0 and ⊖a.
Observe that x = 0, ⊖a are solutions when b = 1/a. Hence for xq−2 being APN, we have to exclude that bx2 ⊕ abx ⊕ a = 0
has solutions in Fq for b = 1/a. This applies if and only if −3 is not a square in Fq, which holds if and only if p ≡ 5 mod 6
and r is odd.
To prove (ii) we consider a representation of P in the form P2(x) = ((a0x ⊕ a1)q−2

⊕ a2)q−2
+ a3, a0a2 ≠ 0. Again

we associate a permutation F2 to it, which is a permutation of Carlitz rank 1. We note here that R2 in (13) is always
nonlinear. Now the permutations P and F2 differ only at the poles x1, x2, which are distinct elements of Fq, and we have
P (x1) = F2(x2), P (x2) = F2(x1), or in terms of cycles of P we have

P (x) = (F2(x1) F2(x2))F2(x), (14)

see [15] for details. As a consequence DP ,a(x) = P (x + a) − P (x) and DF2,a(x) = F2(x + a) − F2(x) differ at most at 4
positions. On the other hand (14) implies that only two of the values for DP ,a(x) which are different from those of DF2,a(x)
can be the same. As F2 is of Carlitz rank 1, hence is APN, δP (a, b) ≤ 4 for all a ∈ F∗

q , b ∈ Fq. �

Remark 6.1. Suppose that P is of Carlitz rank n, n > 2. Then P has a representation Pn as in (1). If the element αn in (13)
is non-zero then Rn is nonlinear. In this case the permutations P and Fn differ at most at n positions and the values of
DP ,a(x) and DFn,a(x) differ at most at 2n positions. The permutation Fn being APN, we get δP (a, b) ≤ 2n + 2. In particular
δP (a, b) ≤ 8 if n = 3 and a2a3 + 1 ≠ 0 for a2, a3 as in (1).

Our Theorem 6.1 adds to known results on differential uniformity in characteristic 2, where the inversion is the classical
example of an APN permutation (when the extension degree is odd). For further analysis of the differential uniformity of
power functions in characteristic 2 we may refer to [4–6]. We remark that in order that a polynomial can be implemented
easily, only sparse polynomials have been considered so far. However permutations of small Carlitz rank can be easily
implemented, although they have high degree and large weight, (see [16,23]), providing rare, if not the first examples of
such permutations.
For a permutation to be used in cryptography it must also be strong against linear attack, therefore it has to be highly
nonlinear. For various measures of nonlinearity we refer to [1,2,7,24] and the references therein. One of the methods is
to use the Walsh transform. A justification of this method to be utilized for functions defined over finite abelian groups
is given in [7]. Determining nonlinearity of a permutation of Carlitz rank 1 by the use of Walsh transform is equivalent to
the evaluation of corresponding Kloosterman sum. Binary Kloosterman sums can be evaluated, see [25]. However obtaining
exact values for Kloosterman sums in characteristic other than 2 is a hard problem. By Theorem 5.45 in [26] the absolute
value of a Kloosterman sum over Fq is bounded above by 2q1/2, at least guaranteeing a flat Walsh spectrum for P of Carlitz
rank 1. More is known in the ternary case, see Theorem 6.4 in [27]. When the Carlitz rank of P is n and n is small compared
to q, then the nonlinearity of P can be estimated from that of the associated permutation Fn of Carlitz rank 1. Work on this
problem is under progress.
As remarked above, the permutations of Carlitz rank 1 are all APN, since they are EA-equivalent to the inversion, however
the values of dispersion vary a lot. This is in accordance with the finding in [10] that the relation between Costas and APN
permutations is ‘‘quite erratic’’.

7. Conclusion

Wepresent classes of permutations possessing various properties, that have attracted interest due to diverse applications.
Pseudorandomnumber sequences generated by permutations of Carlitz rank 1 have beenwidely studied. The cycle structure
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of these permutations for instance determine the period lengths of the sequences [28]. The concept of dispersion of a
permutation on the other hand is used in coding theory; one generally looks for permutations with normalized dispersion
close to 0.8. But so far, the evaluation of the exact valuewas possible formonomials only, where the normalized dispersion is
0.5. Permutationswith favorable cycle structure are either difficult to implement or they lack other useful characteristics like
high dispersion. Functions with low differential uniformity are needed for use in cryptography, and in all applications easy
implementation is a crucial aspect. We show that permutations with small Carlitz rank provide examples of permutations
with many interesting features together, that would be difficult to obtain by the usual approach to permutations. Although
we focus on permutations with Carlitz rank 2 only, our methods can be easily extended to the case of larger Carlitz rank,
when necessary.
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