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h i g h l i g h t s

• Wavelets have unfolded their full computation efficiently in numerical and applied analysis.
• The properties of wavelet bases provide a rigorous analysis for dynamical systems.
• We construct in this work biorthogonal wavelet bases on a triangle.
• These bases are adapted to the study of the Sobolev spaces.
• The bases allow many concrete numerical examples as numerical simulation for elliptic problems or image processing.
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a b s t r a c t

We present in this paper new constructions of biorthogonal multiresolution analysis on
the triangle∆. We use direct method based on the tensor product to construct dual scaling
spaces on ∆. Next, we construct the associated wavelet spaces and we prove that the
associated wavelets have compact support and preserve the original regularity. Finally, we
describe some regular results which are very useful to establish the norm equivalences. As
applications, we prove that the wavelet bases constructed in this paper are adapted for the
study of the Sobolev spaces Hs

0(∆) and Hs(∆) (s ∈ N) and are easy to implement.
Published by Elsevier B.V.

1. Introduction

Given two multiresolution analyses Vj(R) and V ∗

j (R), the following assertions are equivalent:

L2(R) = V0(R)⊕ (V ∗

0 (R))
⊥. (1.1)

There is a bounded projection operator P0 on L2(R) such that

Ran P0 = V0(R) and Ker P0 = (V ∗

0 (R))
⊥. (1.2)

There are scaling functions ϕ for (Vj(R)) and ϕ∗ for (V ∗

j (R)) such that

⟨ϕ(x)|ϕ∗(x − k)⟩ = δk,0. (1.3)
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There are scaling filtersm0 for (Vj(R)) andm∗

0 for (V ∗

j (R)) such that

m0(ξ)m̄∗

0(ξ)+ m0(ξ + π)m̄∗

0(ξ + π) = 1. (1.4)

We then speak of biorthogonal multiresolution analysis introduced by J.C. Feauveau [1] and developed by A. Cohen et al. [2].
Moreover to the dual scaling functions ϕ, ϕ∗ (with associated filters m0,m∗

0) we may associate dual wavelets ψ,ψ∗

defined by

ψ̂(ξ) = e−i ξ2 m̄∗
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(1.5)

and

ψ̂∗(ξ) = e−i ξ2 m̄0


ξ

2
+ π


ϕ̂∗


ξ

2


. (1.6)

The functions ψ(x − k), k ∈ Z, are then a Riesz basis for the wavelet space W0(R) = V1(R) ∩ (V ∗

0 (R))
⊥ and the functions

ψ∗(x − k), k ∈ Z, are a Riesz basis for the dual wavelet spaceW ∗

0 (R) = V ∗

1 (R) ∩ (V0(R))⊥ such that

⟨ψ(x)|ψ∗(x − k)⟩ = δk,0. (1.7)

As usual, we define ψj,k and ψ∗

j,k for j ∈ Z and k ∈ Z by

ψj,k(x) = 2j/2ψ(2jx − k) (1.8)

and

ψ∗

j,k(x) = 2j/2ψ∗(2jx − k). (1.9)

We have of course the biorthogonality relationship

⟨ψj,k|ψ
∗

ℓ,p⟩ = δj,ℓδk,p. (1.10)

The construction of biorthogonal wavelet bases has been considered by many researchers [3,2,4–8]. The Biorthogonal
formalism is favored for operator equations in practical computations and allows a commutation property between scale
projectors and derivation [9].

We cannot define in the same way multiresolution analyses on general bounded domains or manifolds. The problem is
that, in bounded domains, classical invariance by dilation and translation are preserved for dilation, on the other hand they
lost in part their meaning for translation.

The search for wavelet bases on bounded domains and more complicated manifolds has been an active field for many
years, since the 90’s. Several approaches have been explored in wavelet literature. The first approach is the direct method
which is based on the usual tensor product of wavelets on the interval and restrictions of integer shifts of scaling functions
and wavelets to the domain [10,11,7,12–16]. The second approach is the decomposition method. It was introduced by Z.
Ciesielski and T. Figiel in 1982 [17,18] to construct spline bases of generalized Sobolev spaces W k

p (M) (k ∈ Z and 1 < p <
∞)whereM is a compact Riemannian manifold. This method is based on wavelets on a unit cube by taking tensor products
of wavelets on the interval and writing the domain or manifold as a disjoint union of parametric images of this cube. This
construction satisfies the lifting scheme which is simply a linear transformation of the wavelets [15]. The third approach
uses a multilevel decomposition of finite element spaces. This approach can be more tempting if one wants to combine
wavelet properties with the structural simplicity of finite element spaces.

It is clear that the constructions ofwavelet bases on boundeddomains are related towavelets on the interval. The problem
of existence of an orthonormal basis of L2([0, 1]) allowing the characterization of C s([0, 1]) and having simple algorithms
was treated by Y. Meyer [13]. There are related constructions of wavelets on the interval as well by P. Auscher [19], A.
Cohen et al. in 1992 [20]. All these constructions are based on Meyer’s work and gave a polynomial extension outside the
interval. In 1993, A. Jouini and P.G. Lemarié-Rieusset [7] defined a multiresolution analysis on the interval and introduced
new associated wavelet spaces.

In 1992, A. Jouini et al. [8] used the decomposition approach to construct on a two-dimensional open bounded set
biorthogonal wavelet bases adapted for the study of Sobolev spaces H1 and H1

0 . This approach was used again in 1999
by A. Cohen and R. Schneider [21] to construct biorthogonal wavelet bases (ψλ,ψλ)λ∈∇ of L2(Ω) where Ω is a bounded
domain of Rd (d ∈ N); these bases were shown to be bases of Sobolev spaces Hs(Ω) for −

1
2 < s < 3

2 . There are related
constructions as well by C. Canuto and coworkers in [3] and by R. Masson in [22]. In 2003, A. Jouini et al. [12] studied the
L-shaped domain L. They used the direct approach to construct orthogonal wavelet bases and the decomposition method to
construct biorthogonal wavelet bases. These bases have simple expressions and the specific geometry of the domain allows
to get higher regularity namely the study of the Sobolev spacesHk(L) (k ∈ Z). This construction turns out to bewell adapted
to the wavelet setting due to the simple geometry of the L-Shaped domain. In 2007, A. Jouini and M. Kratou [6] used the
decomposition method to construct biorthogonal wavelets on a compact Riemannian manifold with dimension n. These
bases were also adapted for the study of the Sobolev spaces H1 and H1

0 . Recently (in 2011), N. Ajmi et al. [23] constructed
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two orthonormal multiresolution analyses on the triangle ∆. In the first one, they described a direct method to define an
orthonormalmultiresolution analysis which is adapted for the study of the Sobolev spacesHs

0(∆) (s ∈ N). In the second one,
they added boundary conditions for constructing an orthonormal multiresolution analysis which is adapted for the study of
the Sobolev spaces Hs(∆) (s ∈ N). The associated wavelets preserve the original regularity and are easy to implement.

The decomposition approach turns out to have principal limitations and it does not induce Sobolev Spaces Hs when
|s| ≥ 3/2. The basic difficulty is that function spaces on general bounded domains or compact Riemannian manifolds are
usually defined in terms of open covering and associated charts, not in terms of partitions of the manifold. Moreover, more
regular spaces are more complicated to consider since regularity is directly related to the size of the support. The idea of
considering overlapping functions does not work since quite small overlapping domains cause several stability problems, in
particular in the orthonormal process. Finally, there are not general criteria available inwavelet theory that tell under which
conditions one has uniform estimates and norm equivalences on bounded domains or manifolds with specific geometry. In
particular, we do not have on the triangle regular biorthogonal wavelet bases which have compact support, give uniform
estimates and are easy to implement.

The other approaches described in wavelet literature as decomposition method or the tensorization of Meyer’s lemma
cause problems in computation or implementation. The first one gives complicated wavelets defined as charts with a
limitation in regularity and the second one gives only a generating systemwhich is not independent in the case of a triangle.
Then, we have more coefficients in numerical analysis defined as stability constants and the functions are not located near
the borders. The direct method used in this paper constitutes a very important method for the study of many problems of
mathematics and physics because we have the exact number of wavelets which have many applications as computation
and numerical simulation for elliptic problems or image processing (see [24,25]) and we give a good description of scaling
functions and associated wavelets specially near the boundaries. The biorthogonal formalism gives a great flexibility and it
is easy to implement. Such a construction has unfolded their full computation efficiently in numerical and applied analysis.
The nonlinear approximation is an important concept to adaptative approximation and the properties of the presentwavelet
bases provide a rigorous analysis for dynamical systems. More precisely, this paper is concerned with constructions in an
elementary way of biorthogonal wavelet bases on a triangle. These constructions are based on the usual tensor product of
the orthogonal scaling functions and wavelets of I. Daubechies [26]. The bases constructed here are regular, have compact
support and allow fast algorithms. Moreover, they are adapted for the study of some important functional spaces in
numerical analysis as Sobolev spaces.

Section 2 is devoted to the description of biorthogonal multiresolution analyses Vj(I) and V ∗

j (I) on the interval I . These
analyses will be useful for the remainder of the work.

In Section 3,we define and studywavelet bases on the interval. Our construction is based onMeyer’s Lemma (Lemma3.1).
This construction is very important to realize the main goal of this paper.

In Section 4, we shall use a direct method based on the results A. Jouini and P.G. Lemarié-Rieusset [7,12] to define a
biorthogonal multiresolution analysis (Vj(∆), V ∗

j (∆)) on a triangle∆.
In Section 5, we study and construct the associated wavelet bases on the triangle ∆. This construction is complicated

and technical due to the geometry of the triangle. In the first part, we study two particular cases (N = 1 and N = 2). These
examples permit to illustrate the constructions of wavelet bases of this paper and to explain clearly the central problem
between the tensor product and the geometry of the domain. In the second part, we give a description of thewavelet spaces.

In the last section, we prove some regularity results which give uniform estimates for extension operators on the scaling
spaces. These results are very important to characterize regular spaces namely Sobolev spaces Hs(∆) and Hs

0(∆) (s ∈ N) in
terms of discrete norm equivalences.

We recall that all bases constructed in this work have compact support and the same regularity as for Daubechies
bases [26].
NOTATIONS. We denote by

– MRA: Multiresolution analysis
– OMRA: Orthogonal multiresolution analysis
– BMRA: Biorthogonal multiresolution analysis.

2. The spaces Vj(I) and V ∗
j (I)

We start from the orthogonal multiresolution (Vj(R)) of I. Daubechies, having some Sobolev regularity HsN with sN =

(1− ln 3/ ln 4)N +o(N) and spanned by dilates and translates at scale 2j of a scaling function ϕ with compact support equal
to [0, 2N − 1].

Y. Meyer [13] showed that the restrictions to the interval [0, 1] of the scaling functions ϕj,k, − 2N + 2 ≤ k ≤ 2j
− 1,

constitute a basis of a multiresolution analysis, noted Vj([0, 1]). More precisely, we have the following lemma.

Lemma 2.1. Let j0 be the smallest integer satisfying 2j0 ≥ 4N −4. Then, for j ≥ j0, the functions ϕj,k/[0,1], 2−2N ≤ k ≤ 2j
−1,

form a Riesz basis of Vj([0, 1]).
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We denote by vj([0, 1]) the space generated by the functions ϕj,k with support being completely contained in [0,1]. A.
Jouini and P.G. Lemarié-Rieusset [7] defined a multiresolution analysis on the interval as the following.

Definition 2.1. A sequence {Vj}j≥j0 of closed subspaces of L2([0, 1]) is called a multiresolution analysis on L2([0, 1])
associated with Vj(R) if we have

(i) ∀j ≥ j0, vj([0, 1]) ⊂ Vj ⊂ Vj([0, 1]).
(ii) ∀j ≥ j0, Vj ⊂ Vj+1.

Remark 2.1. If I is a bounded interval of R the space Vj(I) is defined as the space of restrictions to I of elements of Vj(R).
More precisely, we may keep only the indexes k such that (2−jk, 2−j(k + 2N − 1)) ∩ I ≠ ∅.

In the general case of Remark 2.1, we have the following results from [12].

Lemma 2.2. Let I = [α, β]. For j ∈ Z, let αj the smallest integer which is greater than 2jα − 2N + 1 and let βj the greatest
integer which is smaller than 2jβ . The functions (ϕj,k)/I , αj ≤ k ≤ βj are linearly independent, and thus they are a basis for Vj(I).

Lemma 2.3. Under the assumptions of Lemma 2.2, there exists a constant c(j, I) such that for all sequences (λk)αj≤k≤βj we have
the inequality

c(j, I)


αj≤k≤βj

|λk|
2

≤

 β

α


k∈Z2

λkϕj,k


2

dx ≤


αj≤k≤βj

|λk|
2. (2.1)

If α or β is not a dyadic number, we may have lim inf j→+∞c(j, I) = 0: we have c(j, I) ≤ min(
 2−jαj
α

|ϕ|
2dx,

 β
2−jβj

|ϕ|
2dx). On

the other hand, when α and β are dyadic numbers, c(j, I) does not depend on j when j is big enough.

Definition 2.2. Letϕ be a compactly supported orthonormal scaling functionwith support [0, 2N−1]. The associatedMeyer
border functions are defined in the following way:

(i) (left border functions) for 1 ≤ p ≤ 2N − 2, the functions ϕ[l]
p belong to the linear span of the functions ϕ(x − k)|(0,+∞)

with −2N + 2 ≤ k ≤ −1 and satisfy


∞

0 ϕ(x − k)ϕ[l]
p (x)dx = δk,−p.

(ii) (right border functions) for 1 ≤ p ≤ 2N − 2, the functions ϕ[r]
p belong to the linear span of the functions ϕ(x− k)|(−∞,0)

with −2N + 2 ≤ k ≤ −1 and satisfy
 0
−∞

ϕ(x − k)ϕ[r]
p (x)dx = δk,−p.

We have from [7] the following definition of biorthogonal multiresolution analysis on the interval.

Definition 2.3. A sequence (Vj, V ∗

j ) of closed subspaces of L2([0, 1]) associatedwith a biorthogonalmultiresolution analysis
(Vj(R), V ∗

j (R)) of L
2(R) is called a biorthogonal multiresolution analysis of L2([0, 1]) if

(i) vj([0, 1]) ⊂ Vj ⊂ Vj([0, 1]) and v∗

j ([0, 1]) ⊂ V ∗

j ⊂ V ∗

j ([0, 1]).
(ii) Vj ⊂ Vj+1 and V ∗

j ⊂ V ∗

j+1.

(iii) L2([0, 1]) = V⊕

j (V
∗

j )
⊥.

Proposition 2.1. We denote by (ϕ∗

(j,k))αj≤k≤βj the dual system of the basis (ϕ(j,k))αj≤k≤βj . If α and β are dyadic numbers and
if moreover j0 is the smallest integer j such that 2jα and 2jβ belong to Z and 2j(β − α) ≥ 2N − 1, then for j ≥ j0 we have
αj = 2jα − 2N + 2 and βj = 2jβ − 1, and

(i) (interior functions) for 2jα ≤ k ≤ 2jβ − 2N + 1, we have ϕ∗

(j,k) = ϕ(j,k) = ϕj,k

(ii) (left border functions) for 2jα − 2N + 2 ≤ k ≤ 2jα − 1, k = 2jα − p, we have ϕ∗

(j,k)(x) = 2j/2ϕ[l]
p (2

j(x − α))

(iii) (right border functions) for 2jβ−2N+2 ≤ k ≤ 2jβ−1, k = 2jβ−p, we have ϕ∗

(j,k)(x) = 2j/2ϕ[r]
p (2

j(x−β)). In particular,
c(j, I) = c(j0, I).

Thus the functions (ϕ∗

(j,k))αj≤k≤βj are a basis for V ∗

j (I).
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3. Wavelet bases on the interval

The construction of wavelet bases on the interval has been extensively discussed in wavelet literature (see [10,20,7]). All
these constructions started from the orthonormal multiresolution analysis of I. Daubechies or spline bases.

We start again from the orthogonal multiresolution (Vj(R)) of I. Daubechies. The moments of the related wavelet ψ
satisfy


xkψ(x)dx = 0 for 0 ≤ k ≤ N − 1. We normalize the wavelet ψ by taking its support equal to [0, 2N − 1].

Y. Meyer [13] showed that the complementary part of Vj([0, 1]) in Vj+1([0, 1]), noted Wj([0, 1]), is automatically of
dimension 2j. He proved that the restrictions of the extremewaveletsψj,k, −2N+2 ≤ k ≤ −N and 2j

−2N+1 ≤ k ≤ 2j
−1

belong toVj([0, 1]). Then, by omitting these functions,we obtain a generating systemof (2j+1
+2N−2) vectors ofVj+1([0, 1]),

hence we have the following Meyer’s lemma.

Lemma 3.1. Let j0 be the smallest integer satisfying 2j0 ≥ 4N − 4. Then, for j ≥ j0, the functions ϕj,k/[0,1], 2− 2N ≤ k ≤ 2j
− 1,

(which form a Riesz basis of Vj([0, 1])) and the functionsψj,k/[0,1],−N+1 ≤ k ≤ 2j
−N, constitute a Riesz basis for Vj+1([0, 1]).

Definition 3.1. Letϕ be a compactly supported orthonormal scaling functionwith support [0, 2N−1]. The associatedMeyer
border wavelets are defined in the following way:

(i) left border scaling functions the family (ϕ{l}
p )1≤p≤2N−2 is the Gram–Schmidt orthonormalization of the family

(ϕ[l]
p )1≤p≤2N−2.

(ii) right border scaling functions the family (ϕ{r}
p )1≤p≤2N−2 is the Gram–Schmidt orthonormalization of the family

(ϕ[r]
p )1≤p≤2N−2.

(iii) left border wavelets the family (ϕ{l}
p )1≤p≤2N−2 ∪ (ψ

{l}
q )1≤q≤N−1 is the Gram–Schmidt orthonormalization of the family

(ϕ[l]
p )1≤p≤2N−2 ∪ (ψ(x + q)|(0,+∞))1≤q≤N−1.

(iv) right border wavelets the family (ϕ{r}
p )1≤p≤2N−2 ∪ (ψ

{r}
q )1≤q≤N−1 is the Gram–Schmidt orthonormalization of the family

(ϕ[r]
p )1≤p≤2N−2−2 ∪ (ψ(x − 2 + N + q)|(−∞,0))1≤q≤N−1.

Then, Meyer’s lemma reads as:

Proposition 3.1. Let j such that 2j
≥ 2N − 1. Then

(i) A Hilbertian basis for Vj((0, 1)) is given by the family (ϕ⊥

j,k)−2N+2≤k≤2j−1, with
• interior functions for 0 ≤ k ≤ 2j

− 2N + 1, ϕ⊥

j,k = ϕj,k

• left border functions for −2N + 2 ≤ k ≤ −1, k = −p, ϕ⊥

j,k = 2j/2ϕ
{l}
p (2jx)

• right border functions for 2j
− 2N + 2 ≤ k ≤ 2j

− 1, k = 2j
− p, ϕ⊥

j,k = 2j/2ϕ
{r}
p (2j(x − 1)).

(ii) A Hilbertian basis for Wj((0, 1)) is given by the family (ψ⊥

j,k)−N+1≤k≤2j−N , with
• interior wavelets for 0 ≤ k ≤ 2j

− 2N + 1, ψ⊥

j,k = ψj,k

• left border wavelets for −N + 1 ≤ k ≤ −1, k = −q, ψ⊥

j,k = 2j/2ψ
{l}
q (2jx)

• right border wavelets for 2j
− 2N + 2 ≤ k ≤ 2j

− N, k = 2j
− N + 1 − q, ψ⊥

j,k = 2j/2ψ
{r}
p (2j(x − 1)).

A. Jouini and P.G. Lemarié-Rieusset [7] proposed a new wavelet space Wj([0, 1]) by keeping the wavelets with support
being completely contained in [0,1] and replacing the collection of the wavelets on the borders 0 and 1. We have the second
important result from [7].

Proposition 3.2. Let j0 be the smallest integer satisfying 2j0 ≥ 4N − 4. For j ≥ j0, we denote

Xj = Vect {ψj,k, 0 ≤ k ≤ 2j
− 2N + 1;ϕj+1,2k+1, 0 ≤ k ≤ N − 2;ϕj+1,2k, 2j

− 2N + 2 ≤ k ≤ 2j
− N}. (3.1)

Then

(i) dim Xj = 2j.
(ii) There exists an integer J such that for every j ≥ J, Vj+1 = Vj ⊕ Xj.

4. The spaces Vj(∆) and V ∗
j (∆)

Starting from the orthogonal multiresolution analysis of I. Daubechies, we define Vj(R2) the multiresolution analysis
associated to the separable scaling function ϕ ⊗ ϕ : Vj(R2) is the tensor product Vj(R2) = Vj(R)⊗Vj(R).

The next domain we shall consider is the triangle∆ = {(x, y) ∈ [−1, 1]× [0, 1], y ≤ 1−|x|}. In the following, we study
a multiresolution analysis on∆.
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Definition 4.1. The space Vj(∆) is defined as the space of restrictions to∆ of elements of Vj(R2).

We have an obvious generating family of Vj(∆).

Proposition 4.1. For 2j
≥ 4N−4, Vj(∆) has the following basis: the family ϕj,k1 ⊗ϕj,k2/∆ with k1 = −2j

−2N+2+p, 0 ≤ p ≤

2j
−2 and−2N +2 ≤ k2 ≤ p; the family ϕj,k1 ⊗ϕj,k2/∆ with k1 = −2N +1+p, 0 ≤ p ≤ 2N −1 and−2N +2 ≤ k2 ≤ 2j

−1
and the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = 1 + p, 0 ≤ p ≤ 2j

− 2 and −2N + 2 ≤ k2 ≤ 2j
− 2 − p.

It is clear that Lemmas 2.1 and 2.2 prove that the system described in Proposition 4.1 is linearly independent. If we look
now at the supports of these functions, we can split these families into the following sets:

(i) interior functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j
+ 2N − 1 ≤ k1 ≤ −N and 0 ≤ k2 ≤ k1 + 2j

− 2N + 1; ϕj,k1 ⊗ ϕj,k2/∆ with
−N + 1 ≤ k1 ≤ 2j

− 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j
− 4N + 2

(ii) edge functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j
− 2N + 3 ≤ k1 ≤ −2j

+ 2N − 2 and 1 ≤ k2 ≤ k1 + 2j
+ 2N − 2; ϕj,k1 ⊗ ϕj,k2/∆

with −2j
+ 2N − 1 ≤ k1 ≤ 2j

− 4N + 2 and 2 − 2N ≤ k2 ≤ −1; ϕj,k1 ⊗ ϕj,k2/∆ with −2j
+ 2N − 1 ≤ k1 ≤ −2N and

k1 + 2j
− 2N + 2 ≤ k2 ≤ k1 + 2j

+ 2N − 2;ϕj,k1 ⊗ ϕj,k2/∆ with −2N + 1 ≤ k1 ≤ −N − 1 and k1 + 2j
− 2N + 2 ≤ k2 ≤

−k1 + 2j
− 4N + 1; ϕj,k1 ⊗ ϕj,k2/∆ with −N + 2 ≤ k1 ≤ 0 and −k1 + 2j

− 4N + 3 ≤ k2 ≤ k1 + 2j
− 2N; ϕj,k1 ⊗ ϕj,k2/∆

with 1 ≤ k1 ≤ 2j
− 4N + 2 and −k1 + 2j

− 4N + 3 ≤ k2 ≤ −k1 + 2j
− 1;ϕj,k1 ⊗ϕj,k2/∆ with 2j

− 4N + 3 ≤ k1 ≤ 2j
− 2

and 1 ≤ k2 ≤ −k1 + 2j
− 1

(iii) exterior corner functions: ϕj,k1 ⊗ϕj,k2/∆ with −2j
− 2N + 2 ≤ k1 ≤ −2j

+ 2N − 2 and 2− 2N ≤ k2 ≤ 0; ϕj,k1 ⊗ϕj,k2/∆

with 2j
− 4N + 3 ≤ k1 ≤ 2j

− 1 and 2 − 2N ≤ k2 ≤ 0
(iv) interior corner functions: ϕj,k1 ⊗ϕj,k2/∆ with−2N +1 ≤ k1 ≤ −N and−k1 +2j

−4N +2 ≤ k2 ≤ 2j
−1;ϕj,k1 ⊗ϕj,k2/∆

with −N + 1 ≤ k1 ≤ 0 and k1 + 2j
− 2N + 1 ≤ k2 ≤ 2j

− 1.

We define vj(∆) the space of elements of Vj(R2) with support in∆. It is clear that the interior functions described in (i)
form an orthonormal basis of vj(∆) and we have Vj(∆) = vj(∆)⊕ Xj(∆)where Xj(∆) is the space generated by the border
functions (edge and corner functions) described above.

We shall now construct a space V ∗

j (∆) which is in duality with Vj(∆) for the scalar product on ∆. We remark at first
that vj(∆) ⊂ V ∗

j (∆). Then, it is enough to construct a dual system of Xj(∆). The interior functions are already orthogonal to
Vj(∆) and orthonormal. We begin by the duality of the edge functions. Then, we proceed to the dualization of the exterior
corner functions. Due to the control of the supports of the scaling functions involved in those computations, we see in those
computations the global geometry of the open set and for each corner, the computations are the same as if we were in the
case of Lemma 2.2, and we find functions provided by tensor products (more precisely, we find the corner elements of the
tensor product as in Proposition 2.1). Finally, we construct in the same way a dual system of the interior corner functions.
We get a dual space X∗

j (∆) of Xj(∆). We write V ∗

j (∆) = (vj(∆)⊕ X∗

j (∆)) ∩ Hs
0(∆). Then, we have the following result.

Proposition 4.2. For j such that 2j
≥ 4N − 4, the spaces Vj(∆) and V ∗

j (∆) form a biorthogonal multiresolution analysis of
L2(∆).

To simplify notations, we denote by φj,k1,k2/∆ the Riesz basis of Vj(∆) and φ∗

j,k1,k2
the Riesz basis of V ∗

j (∆) where
(k1, k2) ∈ Mj and cardMj = dim Vj(∆) = dim V ∗

j (∆) = 22j
+ (6N − 5)2j

+ (2N − 2)2. All these functions are regular
(same regularity as Daubechies scale function). We denote by Pj (resp P∗

j ) the projection operator on Vj(∆) (resp V ∗

j (∆))
parallel to (V ∗

j (∆))
⊥ (resp (Vj(∆))

⊥). Thus, we have:

Pjf =


(k1,k2)∈Mj

⟨f /φ∗

j,k1,k2⟩φj,k1,k2/∆ (4.1)

and

P∗

j f =


(k1,k2)∈Mj

⟨f /φj,k1,k2⟩∆φ
∗

j,k1,k2 (4.2)

where ⟨f /g⟩∆ =

∆
f gdx.

5. The spacesWj(∆) and W ∗
j (∆)

Recall first that wavelet spaces are given by Wj(∆) = Vj+1(∆) ∩ (V ∗

j (∆))
⊥ and W ∗

j (∆) = V ∗

j+1(∆) ∩ (Vj(∆))
⊥. The

construction of wavelet spaces is very technical and complicated in biorthogonal case. N. Ajmi, A. Jouini and P.G. Lemarié-
Rieusset [23] show the complexity of this construction even in orthogonal case because the tensorization of Meyer’s Lemma
(Lemma 3.1) gives in our case only a generating system of Vj+1(∆) which is not linearly independent. Moreover, the
regularity of the bases is directly related to the length of the support.
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To explain this point, we study at first two particular cases (N = 1 and N = 2). We consider the Haar basis (which
corresponds to the case N = 1). Proposition 4.1 shows that Vj(∆) has the following basis: the family ϕj,k1 ⊗ ϕj,k2/∆ with
k1 = −2j

+ p, 0 ≤ p ≤ 2j
− 1 and 0 ≤ k2 ≤ p and the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = p, 0 ≤ p ≤ 2j

− 1 and
0 ≤ k2 ≤ 2j

− 1 − p. We can split these families into the following sets:

(i) interior functions: ϕj,k1 ⊗ ϕj,k2 with −2j
+ 1 ≤ k1 ≤ −1 and 0 ≤ k2 ≤ k1 + 2j

− 1; ϕj,k1 ⊗ ϕj,k2 with 0 ≤ k1 ≤ 2j
− 2

and 0 ≤ k2 ≤ −k1 + 2j
− 2

(ii) edge functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j
+ 1 ≤ k1 ≤ −2 and k2 = k1 + 2j

; ϕj,k1 ⊗ ϕj,k2/∆ with 1 ≤ k1 ≤ 2j
− 2 and

k2 = 2j
− 1 − k1

(iii) exterior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j and k2 = 0; ϕj,k1 ⊗ ϕj,k2/∆ with k1 = 2j
− 1 and k2 = 0

(iv) interior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with −1 ≤ k1 ≤ 0 and k2 = 2j
− 1.

We have dim Vj(∆) = 22j
+ 2j. We study now the spaceWj(∆). The construction of wavelets here is more simple due to

small support of the Haar basis. We have dimWj(∆) = 3 × 22j
+ 2j. Let Xj(∆) be a supplement of Vj(∆) into Vj+1(∆), then

Xj(∆) has the following Riesz basis:

(i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j
+ p, 0 ≤ k2 ≤ p and 0 ≤ p ≤ 2j

− 1 and the family ϕj,k1 ⊗ ψj,k2/∆ with
k1 = p, 0 ≤ k2 ≤ 2j

− p − 1 and 0 ≤ p ≤ 2j
− 1

(ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j
+ p, 0 ≤ k2 ≤ p and 0 ≤ p ≤ 2j

− 1 and the family ψj,k1 ⊗ ϕj,k2/∆ with
k1 = p, 0 ≤ k2 ≤ 2j

− p − 1 and 0 ≤ p ≤ 2j
− 1

(iii) the familyψj,k1 ⊗ψj,k2/∆ with k1 = −2j
+ p, 0 ≤ k2 ≤ p− 1 and the familyψj,k1 ⊗ψj,k2/∆ with k1 = p− 1, 0 ≤ k2 ≤

2j
− p − 1 and 1 ≤ p ≤ 2j

− 1.

We have exactly (3 × 22j
+ 2j) functions which are linearly independent because the third collection has a support in

the interior of ∆ and the boundary functions are in the sets (i) and (ii). More precisely, we can split these families into the
following sets:

(i) interior functions: ϕj,k1 ⊗ψj,k2 , ψj,k1 ⊗ ϕj,k2 , ψj,k1 ⊗ψj,k2 with −2j
+ 1 ≤ k1 ≤ −1 and 0 ≤ k2 ≤ k1 + 2j

− 1; ϕj,k1 ⊗

ψj,k2 , ψj,k1 ⊗ ϕj,k2 , ψj,k1 ⊗ ψj,k2 with 0 ≤ k1 ≤ 2j
− 2 and 0 ≤ k2 ≤ −k1 + 2j

− 2
(ii) edge functions: ϕj,k1 ⊗ψj,k2/∆, ψj,k1 ⊗ϕj,k2/∆, with−2j

+1 ≤ k1 ≤ −2 and k2 = k1 +2j
; ϕj,k1 ⊗ψj,k2/∆, ψj,k1 ⊗ϕj,k2/∆

with 1 ≤ k1 ≤ 2j
− 2 and k2 = 2j

− 1 − k1
(iii) exterior corner functions: ϕj,k1 ⊗ψj,k2/∆, ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j and k2 = 0; ϕj,k1 ⊗ψj,k2/∆,ψj,k1 ⊗ ϕj,k2/∆ with

k1 = 2j
− 1 and k2 = 0

(iv) interior corner functions: ϕj,k1 ⊗ ψj,k2/∆, ψj,k1 ⊗ ϕj,k2/∆ with −1 ≤ k1 ≤ 0 and k2 = 2j
− 1.

It remains to realize orthogonality for the scalar product of L2(∆) of the (4x2j
− 8) edge functions, the four exterior

corner functions and the four interior corner functions with V ∗

j (∆) by using Proposition 2.1. Then, we get a nice basis for
Wj(∆). Now, to construct a Riesz basis for the wavelet space W ∗

j (∆), we consider interior wavelets described in (i) (which
are orthogonal) and we add dual system of the 4x2j functions (edge functions, exterior corner functions and interior corner
functions) by using Proposition 3.1.

We study now the case N = 2. It is clear that this case is more complicated than the first one because the wavelets
described in the third collection (iii) does not have a support in the interior of ∆. Proposition 4.1 shows that Vj(∆) has the
following basis: the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j

+ p, − 2 ≤ p ≤ 2j
− 4 and −2 ≤ k2 ≤ p + 2, the family

ϕj,k1 ⊗ ϕj,k2/∆ with −3 ≤ k1 ≤ 0 and −2 ≤ k2 ≤ 2j
− 1 and the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = p, 1 ≤ p ≤ 2j

− 1 and
−2 ≤ k2 ≤ 2j

− 1 − p. We have dim Vj(∆) = 22j
+ 7 × 2j

+ 4. We describe now a basis of the associated spaceWj(∆). The
construction of wavelets here is different from the case of the Haar basis (N = 1). We have dimWj(∆) = 3 × 22j

+ 7 × 2j.
Let Xj(∆) be a supplement of Vj(∆) into Vj+1(∆), then Xj(∆) has the following Riesz basis:

(i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j
+ p, − 1 ≤ k2 ≤ p + 1 and −1 ≤ p ≤ 2j

− 4, the family ϕj,k1 ⊗ ψj,k2/∆

with −3 ≤ k1 ≤ 0 and −1 ≤ k2 ≤ 2j
− 2 and the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = p, − 1 ≤ k2 ≤ 2j

− p − 2 and
1 ≤ p ≤ 2j

− 2
(ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j

+ p, − 2 ≤ k2 ≤ p + 2 and −1 ≤ p ≤ 2j
− 4, the family ψj,k1 ⊗ ϕj,k2/∆

with −3 ≤ k1 ≤ 0 and −2 ≤ k2 ≤ 2j
− 1 and the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = p, − 2 ≤ k2 ≤ 2j

− 1 − p and
1 ≤ p ≤ 2j

− 2
(iii) the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j

+ p, 0 ≤ k2 ≤ p − 1 and 1 ≤ p ≤ 2j
− 4, the family ψj,k1 ⊗ ψj,k2/∆ with

−3 ≤ k1 ≤ 0 and 0 ≤ k2 ≤ 2j
− 4, the family ψj,k1 ⊗ ψj,k2/∆ with k1 = p, 0 ≤ k2 ≤ 2j

− 4 − p and 1 ≤ p ≤ 2j
− 4

and the family ψj,k1 ⊗ ψj,k2/∆ where (k1, k2) ∈ {(−2j
+ 1,−1), (−2, 2j

− 3), (−1, 2j
− 3), (2j

− 4,−1)}.
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Wehave exactly (3×22j
+7×2j) functionswhich are linearly independent due to Lemma 3.1.We can split these families

into the following sets:

(i) interior functions: ϕj,k1 ⊗ψj,k2 ,ψj,k1 ⊗ϕj,k2 ,ψj,k1 ⊗ψj,k2 with−2j
+3 ≤ k1 ≤ −2 and 0 ≤ k2 ≤ k1+2j

−3; ϕj,k1 ⊗ψj,k2 ,
ψj,k1 ⊗ ϕj,k2 , ψj,k1 ⊗ ψj,k2 with −1 ≤ k1 ≤ 2j

− 6 and 0 ≤ k2 ≤ −k1 + 2j
− 6

(ii) edge functions: ϕj,k1 ⊗ψj,k2/∆ with −2j
≤ k1 ≤ −2j

+2 and 1 ≤ k2 ≤ k1 +2j
+1; ϕj,k1 ⊗ψj,k2/∆ with −2j

+3 ≤ k1 ≤

2j
−6 and k2 = −1; ϕj,k1⊗ψj,k2/∆with−2j

+3 ≤ k1 ≤ −4 and k1+2j
−2 ≤ k2 ≤ k1+2j

+1; ϕj,k1⊗ψj,k2/∆with k1 = −3
and 2j

−5 ≤ k2 ≤ 2j
−4; ϕj,k1 ⊗ψj,k2/∆ with k1 = 0 and 2j

−5 ≤ k2 ≤ 2j
−4; ϕj,k1 ⊗ψj,k2/∆ with 1 ≤ k1 ≤ 2j

−6 and
−k1 +2j

−5 ≤ k2 ≤ −k1 +2j
−2; ϕj,k1 ⊗ψj,k2/∆ with 2j

−5 ≤ k1 ≤ 2j
−2 and 1 ≤ k2 ≤ −k1 +2j

−2; ψj,k1 ⊗ϕj,k2/∆

with −2j
− 1 ≤ k1 ≤ −2j

+ 2 and 1 ≤ k2 ≤ k1 + 2j
+ 2; ψj,k1 ⊗ ϕj,k2/∆ with −2j

+ 3 ≤ k1 ≤ 2j
− 6 and

−2 ≤ k2 ≤ −1; ψj,k1 ⊗ ϕj,k2/∆ with −2j
+ 3 ≤ k1 ≤ −4 and k1 + 2j

− 2 ≤ k2 ≤ k1 + 2j
+ 2; ψj,k1 ⊗ ϕj,k2/∆

with k1 = −3 and 2j
− 5 ≤ k2 ≤ 2j

− 4; ψj,k1 ⊗ ϕj,k2/∆ with k1 = 0 and 2j
− 5 ≤ k2 ≤ 2j

− 4; ψj,k1 ⊗ ϕj,k2/∆

with 1 ≤ k1 ≤ 2j
− 6 and −k1 + 2j

− 5 ≤ k2 ≤ −k1 + 2j
− 1; ψj,k1 ⊗ ϕj,k2/∆ with 2j

− 5 ≤ k1 ≤ 2j
− 2 and

1 ≤ k2 ≤ −k1 + 2j
− 1; ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j

+ 2 and k2 = 1; ψj,k1 ⊗ ψj,k2/∆ with −2j
+ 3 ≤ k1 ≤ −4 and

k1 + 2j
− 2 ≤ k2 ≤ k1 + 2j

− 1; ψj,k1 ⊗ ψj,k2/∆ with k1 = −3 and 2j
− 5 ≤ k2 ≤ 2j

− 4; ψj,k1 ⊗ ψj,k2/∆ with k1 = 0
and 2j

− 5 ≤ k2 ≤ 2j
− 4; ψj,k1 ⊗ψj,k2/∆ with 1 ≤ k1 ≤ 2j

− 6 and −k1 + 2j
− 5 ≤ k2 ≤ −k1 + 2j

− 4; ψj,k1 ⊗ψj,k2/∆

with k1 ≤ 2j
− 5 and k2 = 1

(iii) exterior corner functions: ϕj,k1 ⊗ ψj,k2/∆ with −2j
− 1 ≤ k1 ≤ −2j

+ 2 and −1 ≤ k2 ≤ 0; ϕj,k1 ⊗ ψj,k2/∆ with
2j

− 5 ≤ k1 ≤ 2j
− 2 and −1 ≤ k2 ≤ 0; ψj,k1 ⊗ϕj,k2/∆ with −2j

− 1 ≤ k1 ≤ −2j
+ 2 and −2 ≤ k2 ≤ 0; ψj,k1 ⊗ϕj,k2/∆

with 2j
− 5 ≤ k1 ≤ 2j

− 2 and −2 ≤ k2 ≤ 0; ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j
+ 1 and −1 ≤ k2 ≤ 0; ψj,k1 ⊗ ψj,k2/∆

with k1 = −2j
+ 2 and k2 = 0; ψj,k1 ⊗ ψj,k2/∆ with k1 = 2j

− 5 and k2 = 0; ψj,k1 ⊗ ψj,k2/∆ with k1 = 2j
− 4 and

−1 ≤ k2 ≤ 0
(iv) interior corner functions: ϕj,k1 ⊗ψj,k2/∆ with−3 ≤ k1 ≤ −2 and−k1 +2j

−6 ≤ k2 ≤ 2j
−2; ϕj,k1 ⊗ψj,k2/∆ with−1 ≤

k1 ≤ 0 and k1+2j
−3 ≤ k2 ≤ 2j

−2; ψj,k1 ⊗ϕj,k2/∆ with−3 ≤ k1 ≤ −2 and−k1+2j
−6 ≤ k2 ≤ 2j

−1; ψj,k1 ⊗ϕj,k2/∆

with −1 ≤ k1 ≤ 0 and k1 + 2j
− 3 ≤ k2 ≤ 2j

− 1; ψj,k1 ⊗ ψj,k2/∆ with −2 ≤ k1 ≤ −1 and 2j
− 4 ≤ k2 ≤ 2j

− 3.

Orthogonalization for the scalar product of L2(∆) of the (28 × 2j
− 110) edge functions, the forty six exterior corner

functions and the twenty eight interior corner functions with V ∗

j (∆) by using Proposition 2.1 gives a Riesz basis for Wj(∆).
Now, to construct a Riesz basis for the wavelet space W ∗

j (∆), we consider the (3 × 22j
− 21 × 2j

+ 36) interior wavelets
described in (i) (which are orthogonal) and we add dual system of the (28 × 2j

− 36) functions (edge functions, exterior
corner functions and interior corner functions) by using Proposition 3.1.

Theorem 5.1. Let 2j0 ≥ 4N − 4. Then:

(a) there exist (3 × 22j
+ (6N − 5)2j) functions Ψj,k1,k2 such that the functions φj,k1,k2/∆ for Vj(∆) where (k1, k2) ∈ Mj and

Ψj,k1,k2 where (k1, k2) ∈ Mj+1 \ Mj, form a Riesz basis for Vj+1(∆),
(b) there exist (3 × 22j

+ (6N − 5)2j) functions Ψ ∗

j,k1,k2
such that the functions φ∗

j,k1,k2/∆
for V ∗

j (∆) where (k1, k2) ∈ Mj and
Ψ ∗

j,k1,k2
where (k1, k2) ∈ Mj+1 \ Mj, form a Riesz basis for V ∗

j+1(∆).

Proof. (a) We consider interior wavelets ϕj,k1 ⊗ ψj,k2 , ψj,k1 ⊗ ϕj,k2 and ψj,k1 ⊗ ψj,k2 with −2j
+ 2N − 1 ≤ k1 ≤ −N and

0 ≤ k2 ≤ k1 + 2j
− 2N + 1 or −N + 1 ≤ k1 ≤ 2j

− 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j
− 4N + 2, and we complete this system

from the collection described above (edge and corner functions). Next, we realize orthogonality for the scalar product of
L2(∆) of edge and corner wavelets with V ∗

j (∆) by using Proposition 2.1.
(b) We keep interior wavelets ϕj,k1 ⊗ ψj,k2 , ψj,k1 ⊗ ϕj,k2 and ψj,k1 ⊗ ψj,k2 with −2j

+ 2N − 1 ≤ k1 ≤ −N and
0 ≤ k2 ≤ k1 + 2j

− 2N + 1 or −N + 1 ≤ k1 ≤ 2j
− 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j

− 4N + 2, and we construct
dual system Ψ ∗

j,k1,k2
of edge and corner wavelets by using Proposition 3.1. �

Remark 5.1. The general idea for constructing wavelets consists to take near wavelets which satisfy Proposition 3.1 or
Proposition 3.2. Next, we proceed to dualization of edge functions, exterior corner functions and interior corner functions.

6. Uniform estimates and Sobolev spaces

Definition 6.1. Let∆ = {(x, y) ∈ [−1, 1]×[0, 1], y ≤ 1−|x|}. Let us consider, for 2j
≥ 4N−4, the basis for Vj(∆) (resp the

basis for V ∗

j (∆)) given by the family (φj,k1,k2/∆)(k1,k2)∈Mj described in (4.1) (resp (φ∗

j,k1,k2
)(k1,k2)∈Mj described in (4.2)). Then

we define the extension operator Ej from Vj(∆) to Vj(R2) by the formula

Ejf =


(k1,k2)∈Mj

⟨f /φ∗

j,k1,k2⟩φj,k1,k2 . (6.1)
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To establish the main object of this section, we need the following results for extension operators and multiresolution
analyses on a triangle.

Proposition 6.1. Let ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|}. There exists a positive constant α such that for all j such
that 2j

≥ 4N − 4 and all f ∈ Vj(∆):

∥Ejf ∥2
L2(R2)

≤ α∥f ∥2
L2(∆). (6.2)

Proof. To prove this important result, we use special triangulations for [0, 1] × [0, 1] and R2 which are adapted to
scale because this condition is necessary for projects. In fact, we divide [0, 1] × [0, 1] into four triangles defined by: for
0 ≤ η ≤ 3, T η = {(x, y) ∈ [0, 1] × [0, 1]/(−1)η(x − y) ≥ 0 and (−1)E(

η
2 )(x + y − 1) ≥ 0}.

We triangulate R2 such that

R2
=


0≤η≤3


(k1,k2)∈Z2

T ηj,k1,k2

where

T ηj,k1,k2 = {(x, y)/(2jx − k1, 2jy − k2) ∈ T η}.

This triangulation is adapted to scale and also to our triangle ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|} because we
have

∆ =


Tηj,k1,k2

⊂∆

T ηj,k1,k2 .

We put φj,k1,k2(x, y) = 2jϕ(2jx − k1)ϕ(2jy − k2) and φk1,k2 = φ0,k1,k2 . Let us write
∆




(k1,k2)∈Z2

αk1,k2φj,k1,k2


2

dxdy =


Tηj,l1,l2

⊂∆

 
Tηj,l1,l2




(k1,k2)∈Z2

αk1,k2φj,k1,k2


2

dxdy;

then, 
Tηj,l1,l2




(k1,k2)∈Z2

αk1,k2φk1,k2


2

dxdy =


Tη




(k1,k2)∈Z2

αk1,k2φk1−l1,k2−l2


2

dxdy.

Let Cη be the set of indexes (k1, k2) such that the support of φk1,k2 has an intersection of non vanishing measure with
T η, Cηj,k1,k2 the set of indexes (l1, l2) such that the support of φj,l1,l2 has an intersection of non vanishingmeasure with T ηj,k1,k2
and Cj the set of indexes (k1, k2) such that the support of φj,k1,k2 has an intersection of non vanishing measure with∆.

We have Cj =


Tηj,k1,k2
⊂∆ Cηj,k1,k2 . The family (φk1,k2|Tη )(k1,k2)∈Cη is linearly independent. Then, there exists a positive

constant γ such that we have
Tη




(k1,k2)∈Z2

βk1,k2φk1,k2


2

dxdy ≥ γ


(k1,k2)∈Cη
|βk1,k2 |

2
;

hence,
Tηj,l1,l2




(k1,k2)∈Z2

αk1,k2φj,k1,k2


2

dxdy ≥ γ


(k1,k2)∈Cn

|αk1+l1,k2+l2 |
2

= γ


(k1,k2)∈Cηj,l1,l2

|αk1,k2 |
2

and then
∆




(k1,k2)∈Z2

αk1,k2φj,k1,k2


2

dxdy ≥ γ


Tηj,l1,l2
⊂∆


(k1,k2)∈Cηj,l1,l2

|αk1,k2 |
2

≥ γ


(k1,k2)∈Cj

|αk1,k2 |
2. �

We establish now the following important result which completes the precedent proposition to get equivalence norms
for Sobolev spaces (or other functional spaces as Besov spaces).
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Theorem 6.1. Let ∆ = {(x, y) ∈ [−1, 1]×[0, 1], y ≤ 1−|x|} and j0 ∈ N such that 2j0 ≥ 4N −4. Let (Vj(R2))j∈Z be a regular
multiresolution analysis of L2(R2). We assume that there exists a projection operator Aj onto Vj(R2) such that
(i) Aj+1oAj = AjoAj = Aj
(ii) ∥F∥

2
Hs(R2)

≈ ∥A0F∥
2
L2(R2)

+


j≥0 2
2js

∥Aj+1F − AjF∥
2
L2(R2)

.
If Pj is a projection operator from L2(∆) onto Vj(∆) such that, for a constant β and j ≥ j0, Pj satisfies:

∥Pjf ∥2
L2(∆) ≤ β∥f ∥2

L2(∆) (6.3)

then, we have

∀f ∈ Hs(∆), ∥f ∥2
Hs(∆) ≈ ∥Pj0 f ∥

2
L2(∆) +


j≥j0

22js
∥Pj+1f − Pjf ∥2

L2(∆). (6.4)

Proof. The case of the triangle and Proposition 6.1 give f = F/∆ and F = (F − AjF)+ AjF . We get

∥Pj+1f − Pjf ∥2
L2(∆) = ∥(Pj+1 − Pj)(F − AjF)/∆∥

2
L2(∆)

≤ β∥F − AjF∥
2
L2(∆)

where β is a positive constant independent of j. Then, we have
j≥j0

22js
∥Pj+1f − Pjf ∥2

L2(∆) ≤ β

j≥j0

22js
∥F − AjF∥

2
L2(∆)

≤ β

j≥j0

22js
∥F − AjF∥

2
L2(R2)

≤ β

j≥j0

22js

 
p≥j+1

(Ap − Ap−1)F


2

L2(R2)

≤ β

j≥j0

 
p≥j+1

2(j−p)s22ps
∥(Ap − Ap−1)F∥

2
L2(R2)

2

.

It is a convolution ℓ1oℓ2 ⊂ ℓ2, then we get the first inequality. To prove the reverse inequality, we write f = F/∆ and
F = E0(P0f )+


j≥0 Ej+1(Pj+1f − Pjf )where Ej is the extension operator described in Definition 4.1. Then, we have:

∥f ∥2
Hs(∆) ≤ ∥F∥

2
Hs(R2)

≈ ∥A0f ∥2
L2(R2)

+


j≥0

22js
∥Aj+1F − AjF∥

2
L2(R2)

and

Aj+1F − AjF =


l≥j

(Aj+1 − Aj)El+1(Pl+1f − Plf ).

Then, we get for a constantM:

22js
∥Aj+1F − AjF∥

2
L2(R2)

≤


l≥j

2js
∥(Aj+1 − Aj)El+1(Pl+1f − Plf )∥2

2

≤


l≥j

Mα∥Pl+1f − Plf ∥2
L2(∆)2

ls2(j−l)s.

It is a convolution ℓ2oℓ1 ⊂ ℓ2, then we get the first inequality. �

Remark 6.1. See that Theorem 6.1 described above does not depend on the formalism of the givenmultiresolution analysis
(orthogonal or biorthogonal).

Proposition 6.1 and Theorem 6.1 are very useful for analyzing regular functions on the triangle. Recall that Pj (resp P∗

j ) is
the projection operator onVj(∆) (respV ∗

j (∆)) parallel to (V
∗

j (∆))
⊥ (resp (Vj(∆))

⊥).We denote byQj (respQ ∗

j ) the projection
operator on Wj(∆) (resp W ∗

j (∆)) parallel to (W
∗

j (∆))
⊥ (resp (Wj(∆))

⊥). These projectors are completely described by the
scaling function constructed in Section 4 and the associated wavelets constructed in Section 5. We can now establish the
first main result of this section.

Theorem 6.2. Let 2j0 ≥ 4N − 4. Then:
(a) for f ∈ L2(∆), we have ∥f ∥2

L2(∆)
= ∥Pj0 f ∥

2
L2(∆)

+
j=∞

j=j0
∥Qjf ∥2

L2(∆)
,

(b) for f ∈ Hs(∆), we have ∥f ∥2
Hs(∆) ≈ ∥Pj0 f ∥

2
L2(∆) +

j=∞

j=j0
4sj

∥Qjf ∥2
L2(∆).
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Proof. (a) is a classical result inwavelet theory. (b) the first inequality follows fromProposition 6.1 and the second inequality
follows from Theorem 6.1. �

We use now dual multiresolution analysis and Remark 6.1 to characterize the following spaces.

Theorem 6.3. Let 2j0 ≥ 4N − 4. Then:
(a) for f ∈ L2(∆), we have ∥f ∥2

L2(∆)
= ∥P∗

j0
f ∥2

L2(∆)
+

j=∞

j=j0
∥Q ∗

j f ∥
2
L2(∆)

,

(b) for f ∈ Hs
0(∆), we have ∥f ∥2

Hs(∆) ≈ ∥P∗

j0
f ∥2

L2(∆)
+

j=∞

j=j∗ 4sj
∥Q ∗

j f ∥
2
L2(∆)

.

Proof. (a) is a classical result in wavelet theory. (b) follows from Proposition 6.1 and Theorem 6.1. �

The wavelet bases on a triangle constructed in this paper allow many concrete numerical examples. In fact, we can
use these bases for the study of the image-watermarking robust to the desynchronizations and we improve the general
robustness of the scheme by embedding in the wavelet transform domain by using the same method described in [27]. The
second example is to performa Scan-basedWavelet Compression of 3D semi-regularmultiresolutionmeshes [28]. Of course,
we can use these bases for applications to gas dynamics and scalar conservation laws or to improve integral formulation in
electromagnetism and scale-space approximations [29–31].

7. Conclusion

We used in this paper a direct method based on Lemma 2.2 to construct a biorthogonal multiresolution analysis on ∆.
This construction is very technical due to the specific geometry of the triangle. Moreover, it is difficult to analyze more
regular spaces since regularity is directly related to the size of the support. The analysis constructed in this paper is adapted
for the study of the Sobolev spaces Hs(∆) and Hs

0(∆) (s ∈ N). The associated wavelet bases are regular and have compact
support. More precisely, they are associated to simple algorithms. Proposition 6.1 and Theorem 6.1 permit to get the norm
equivalences in the two cases. We should notice that our construction can be achieved numerically in a satisfactory way
only for the first Daubechies scaling functions.
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