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a b s t r a c t

We present new formulae for the valuation of synthetic collateralized debt obligation
(CDO) tranches under a one-factor model. These formulae are based on the wavelet
theory and themethod used is calledWA[a,b]. We approximate the cumulative distribution
function (CDF) of the underlying pool by a finite combination of jth order B-spline basis,
where the B-spline basis of order zero is typically called a Haar basis. We provide an
error analysis and we show that for this type of distributions, the rate of convergence in
the approximation is similar regardless of the order of the B-spline basis employed. The
resulting formula for the Haar basis case is much easier to implement and performs better
than the formula for the B-spline basis of order one in terms of computational time. The
numerical experiments confirm the impressive speed and accuracy of the WA[a,b] method
equippedwith aHaar basis, independently of the inhomogeneity features of the underlying
pool. The method appears to be particularly fast for multiple tranche valuation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The last financial crisis has shown that one of the major source of problems for financial institutions was the credit risk
management. The credit derivatives market was the most innovative and fastest growing derivative market during the past
ten years. The rapid developmentwas due to newpossibilities thatwere offered by credit derivatives. Credit instruments are
flexible financial products that enable the efficient repackaging and transfer of credit risk. Credit derivatives are attractive
for yield seeking investors and banks that need to hedge their investments and fulfil the capital requirements. The most
popular securities traded on open markets are credit default swaps (CDS), default baskets, and CDOs. A traditional CDO is a
credit derivative security whose underlying collateral is a portfolio of risky bonds or bank loans. A synthetic CDO is a credit
derivative security whose underlying collateral is a portfolio (or pool) made up of CDS. In this paper, we focus our attention
on synthetic CDOs and will call them simply CDOs.

To offset the pool owner’s risk from these default swaps, a portion of the premiums from them is allocated to a collection
of securities called tranches of the CDO. There is a priority scheme for the tranches to absorb the pool losses up to fixed
maximum amounts for each tranche. Losses are based on the recovery adjusted CDS notional values. The Equity tranche is
the first to absorb the pool losses. After the Equity tranche is exhausted, losses will affect theMezzanine tranches, and finally
the Senior tranches. Investors take on exposure to a particular tranche, effectively selling credit protection to the CDO issuer,
and in turn, collecting the premium.

Valuation of CDOs is an important problem in credit risk management which requires efficient pricing methods. One
issue common to CDO pricing and related risk management is how to evaluate the pool’s loss distribution efficiently. From a
computational point of view, Monte Carlo simulation (MC) is the last resort because of its inefficiency, despite its flexibility.
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Widely usedmethods can be divided into two classes. The first class evaluates a pool’s loss distribution exactly, based on the
assumption that all obligors’ losses-given-default sit on a common lattice. Among thesemethods are the ABSmethod by [1],
the HWmethod proposed by [2], the LG method developed by [3] and the JKMmethod by [4]. The ABS and LG methods are
directly applicable to inhomogeneous pools. Although the HW and JKM methods are directly applicable to homogeneous
pools only, they can be applied indirectly to inhomogeneous pools by noting that in practice an inhomogeneous pool can
usually be partitioned into a small number of homogeneous pools. A closed-form solution is derived in [5] in the case of
homogeneous instruments. The second class of methods evaluates a pool’s loss distribution approximately. An example of
this class is the compound Poisson approximation method (CPA) by [6]. In [4] the authors present an improved compound
Poisson approximationmethod based on [7] to enhance the accuracy of the basic CPA [6]. Both the first class of methods and
the compound Poisson approximations, strongly rely on the assumption that the loss-given-default must sit on common
lattice. To alleviate this deficiency, [4] introduce the normal power (NP) approximation method, widely used in actuarial
science, to approximate the pool’s loss distribution. However, this approximation works out well for a large pool as a
consequence of the central limit theorem, but it may not capture some important properties such as skewness and fat
tails. The numerical experiments carried out in [4] on a wide variety of pools, show that JKM method is always faster than
HW and much faster than ABS. For most cases JKM is faster than CPA but slower than NP. Another numerical method
belonging to the second class of methods is the saddle point (SP) method by [8], which allows the computation of fully
inhomogeneous portfolios. It is well known from the literature that SP method fits the tail of the distributions particularly
well, however, as pointed out by [9], the method cannot deal properly with highly concentrated portfolios arising from an
unequal distribution of the adjusted notional values. This deficiencymay affect the Senior tranches in a CDOpricing problem.
Yet another approach called EAPmethod, presented in [10,11], uses a representation of the hockey stick function to directly
approximate tranche prices. The authors approximate the payoff function by a sumof exponentials over the positive real line
and consequently they do not need to compute the distribution of losses. As pointed out in [11], EAP method is slower than
JKMwhen dealing with very homogeneous pools. The ratio of computation time between multiple tranches evaluation and
single tranche evaluation on a single pool, increases with the size of the portfolio for both JKM and EAP method, although
it is significantly higher for EAP (see [10] for details). A method based on Laplace transform inversion is presented in [12]
within the multifactor model framework.

In this work, we focus on the recovery of the pool’s CDF from its characteristic function by means of a wavelets-based
method. Thismethodwas originally developedwithin a credit risk environment to recover a CDF on a bounded domain from
its Laplace transform bymeans of a Haar basis (see [13]). Themethodwas extended in [14] to invert Fourier transforms over
the entire real line with B-splines up to order one. Later on, it was applied to an option pricing problem in [15] and it was
called WA[a,b] method. We aim to use this machinery to efficiently price a CDO, assuming that the correlation structure of
default events is described by a one-factor model as in the literature. To this end, we approximate the CDF of the underlying
pool first by a finite combination of Haar wavelet functions and second by a finite combination of B-spline wavelets of order
one, where the Haar basis can be seen as a B-spline basis of order zero. It is well known that under a one-factor model, the
resulting CDF is a staircase like function. For this class of functions, we state a proposition showing that we reach a similar
rate of convergence regardless of the order of the B-splines employed. Furthermore, the resulting formula for the Haar basis
case ismuch easier to implement and performs better than the formula for the B-spline basis in terms of computational time.
To test this newmethodology we carry out the numerical experiments under the particular case of the one-factor Gaussian
copula model, although any other one-factor Lévy model can be accommodated (as for example in [16,17]) within this
approach. These numerical examples show the robustness and confirm the efficiency of theWA[a,b] method, independently
of the inhomogeneity features of the underlying pools. This pricing method is capable to obtain the price of a single tranche
of a CDO in about one tenth of a second with a relative error less than one percent. One of the main findings of this work is
the ability of this methodology to price multiple tranches of a CDO without adding significant extra computational time, in
contrast with JKM and EAP methods.

The rest of the paper is organized as follows. In Section 2 we present the pricing formulae and the default model. In
Section 3 we give an overview of some key aspects of the wavelet theory, we briefly explain the WA[a,b] method and we
compute the conditional expected cumulative losses.We also provide an error analysis. Section 4 is devoted to the numerical
experiments and finally Section 5 concludes.

2. The pricing framework

We consider a synthetic CDO tranche of size S with an attachment point l, a threshold that determines whether some
of the pool losses will be absorbed by this tranche. If the realized losses of the pool are less than l, then the tranche will
not suffer any loss, otherwise it will absorb losses up to its size S. The threshold S + l is called the detachment point of the
tranche.

We assume there are K names in the pool underlying the CDO. For name κ , its notional value and the recovery
rate of the notional value of the reference asset are Nκ and Rκ , respectively. Then the loss-given-default or the recovery
adjusted notional value of name κ is, Lκ = Nκ(1 − Rκ). Let 0 = t0 < t1 < · · · < tn = T be the set of premium
dates, where T denotes the maturity of the CDO tranche. Assume that the interest rates are deterministic. Let Li be the
pool’s cumulative losses up to time ti. Then, the losses absorbed by the specified tranche up to time ti, denoted by Li is,
Li = g(Li; l, S + l) = min(S, (Li − l)+), where x+

= max(x, 0).
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We assume that the fair spread for the tranche is a constant s per annum. The two important quantities to be determined
in synthetic CDO tranche valuation are the present value of the default leg, that is, the expected losses of the tranche over
the life of the contract, and the present value of the premium leg, i.e., the expected premiums that the tranche investor will
receive over the life of the contract. Mathematically, the two leg’s present values are,

PV (premium leg) = E


n

i=1

s(S − Li)(ti − ti−1)di


,

PV (default leg) = E


n

i=1

(Li − Li−1)di


,

where PV denotes present value and di, i = 1, . . . , n are the set of discount factors. These factors are deterministic, since
we are assuming deterministic interest rates as well. Therefore, the fair spread s is,

s =

E


n
i=1
(Li − Li−1)di


E


n
i=1
(S − Li)(ti − ti−1)di

 , (1)

where E[L0] = 0, due to the assumption that there is no default at time t0. Once the value of the spread is known, then the
value of the tranche to the tranche investor today is,

s · PV (premium leg) − PV (default leg). (2)

Noting that the tranche size S is constant and the time periods ti − ti−1 are fixed, it follows from (1) and (2) that the
valuation problem is now reduced to the computation of the expected cumulative losses E[Li], i = 1, . . . , n.

2.1. The default model

In order to compute the expectations E[Li], i = 1, . . . , n, we have to specify the default processes for each of the
names and the correlation structure of the default events. To this end, we consider a one-factor model under the conditional
independence framework.

We assume that the risk-neutral default probabilities πκ(t) = P(τκ < t), κ = 1, . . . ,K , that describe the default-time
distributions of all K names are available, where τκ is the default time of name κ . The dependence structure of the default
times is determined by the creditworthiness indexes Yκ through a one-factor model. The indexes Yκ are defined by,

Yκ =
√
ρκX +


1 − ρκϵκ , κ = 1, . . . ,K, (3)

where X is the systematic risk factor, ϵκ are the idiosyncratic factors that aremutually independent and are also independent
of X , and ρκ captures the correlation between Yκ and the single risk factor X . Conditional on a given value x of X , all
defaults events are independent. The risk-neutral default probabilities and the creditworthiness indexes are related by
πκ(t) = P(τκ < t) = P(Yκ < Hκ(t)), where Hκ(t) is the default barrier of the κth name at time t , i.e., Hκ(t) = Φ−1(πκ(t)),
withΦ the cumulative distribution function of the random variable ϵκ .

The conditional risk-neutral default probabilities are defined by,

πκ(t; x) = P(Yκ < Hκ(t)|X = x). (4)

Therefore, from (3) and (4) we have,

πκ(t; x) = Φ


Hκ(t)−

√
ρκx

√
1 − ρκ


.

Within the conditional independence framework, the expected cumulative losses E[Li] can be computed as,

E[Li] =


R

E[Li|X = x]ϕ(x)dx, (5)

where E[Li|X = x] = E [g(Li; l, S + l)|X = x] = E

min(S, (Li − l)+)|X = x


is the expectation of Li given X = x, Li =K

κ=1 Lκ1{Yκ<Hκ (ti)} andϕ is the probability density function of the randomvariable X . Therefore, the fundamental numerical
challenge in synthetic CDO tranche pricing, is how to evaluate efficiently the conditional expectation E[Li|X = x] for a fixed
abscissa x. Under the conditional independence framework, the default indicators 1{Yκ<Hκ (ti)} are independent and therefore
the characteristic function of Li given X = x can be readily obtained. Finally, the conditional expectation E[Li|X = x] is
computed by inverting its characteristic function. We give all the necessary details in Section 3.4.

The integration in (5) need to be approximated numerically using a quadrature rule. As stated in the introduction
section, we test the wavelets-based method under the one-factor Gaussian copula model, and therefore X and ϵκ are
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normally distributed and Φ and ϕ are, respectively, the distribution and the density function of the standard normal
distribution. For this reason, and without loss of generality, we use a Gauss–Hermite quadrature rule with M nodes. If we
note h(x) = E[Li|X = x] and make the change of variables u = x/

√
2 in (5), gives us,

E[Li] =
1

√
π


R
h(

√
2u)e−u2du ≃

1
√
π

M
m=1

wmh(
√
2um), (6)

wherewm, um, m = 1, . . . ,M , are the weights and nodes respectively, corresponding to a Gauss–Hermite quadrature ofM
points.

Guégan andHoudain propose in [17] a factormodel based on aNormal Inverse Gaussian (NIG) distributed common factor
but with standard normal idiosyncratic risks. In that case Φ remains the same, while ϕ is NIG-distributed (see [18]) and a
more general quadrature rule can be used to numerically integrate (5).

3. Conditional expectation computation: the WA[a,b] method

This section is devoted to the computation of the conditional expected losses E[Li|X = x] in (5). We carry out the
approximation by means of the WA[a,b] method based on a family of wavelets called B-spline and we provide an error
analysis.

A natural and convenient way to introduce wavelets is following the notion of multiresolution analysis (MRA). Here we
provide the basic definitions and properties regarding MRA and B-spline wavelets, for further information see [19–22].

3.1. Wavelets and dual wavelets

We start with the definition of a Riesz basis, as follows,

Definition 1. A countable set {fn} of a Hilbert space is a Riesz basis if every element f of the space can be uniquely written
as f =


n cnfn, and there exist positive constants A and B such that,

A∥f ∥2
≤


n

|cn|2 ≤ B∥f ∥2.

Definition 2. A functionψ ∈ L2(R) is called an R-function if {ψj,k} defined asψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z, is a Riesz
basis of L2(R).

If we assume thatψ is an R-function, then there exists a unique Riesz basis {ψ l,m
} of L2(R), which is dual to {ψj,k} in the

sense that

ψj,k, ψ

l,m

= δj,lδk,m, for all j, k, l,m ∈ Z, and δp,q is the Kronecker delta defined in the usual way as,

δp,q =


1, p = q,
0, otherwise.

With the above definitions, we can give the definition of wavelets.

Definition 3. An R-function ψ ∈ L2(R) is called an R-wavelet, or simply a wavelet, if there exists a function ψ ∈ L2(R),
such that {ψj,k} and {ψj,k} defined as ψj,k(x) = 2j/2ψ(2jx − k), j, k ∈ Z, are dual bases of L2(R). If ψ is a wavelet, then ψ is
called a dual wavelet corresponding to ψ .

Some definitions relevant to our present work are given below,

Definition 4. Let ψ be the wavelet function in Definition 3.

(i) A wavelet ψ is said to have a vanishing moment of order s if


R xpψ(x)dx = 0, p = 0, . . . , s − 1. All wavelets must
satisfy this condition for p = 0.

(ii) Awaveletψ is an orthogonal (ON)wavelet if the family {ψj,k} forms an orthonormal basis of L2(R), that is,

ψs,t , ψu,v


=

δs,uδt,v , for all s, u, t, v ∈ Z.
(iii) A wavelet ψ is called a semi-orthogonal (SO) wavelet if the family {ψj,k} satisfies,


ψs,t , ψu,v


= 0, s ≠ u, for all

s, u, t, v ∈ Z.

A dualwaveletψ is unique and is itself awavelet. The pair (ψ,ψ) is symmetric in the sense thatψ is also the dualwavelet
of ψ . If ψ is an orthogonal wavelet, then it is self-dual in the sense of ψ ≡ ψ . Moreover, it is important to emphasize that
if f ∈ L2(R) then,

f =

+∞
j,k=−∞


f , ψj,k

 ψj,k =

+∞
j,k=−∞


f ,ψj,k


ψj,k.
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For each j ∈ Z, let Wj denote the closure of the linear span of {ψj,k : k ∈ Z}, namely, Wj := closL2(R)

ψj,k : k ∈ Z


. Then,

L2(R) can be decomposed as a direct sum of the spacesWj,

L2(R) =

•
j∈Z

Wj := · · · u W−1 u W0 u W1 u · · · , (7)

in the sense that every function f ∈ L2(R) has a unique decomposition,

f (x) = · · · + g−1(x)+ g0(x)+ g1(x)+ · · · ,

where gj ∈ Wj, j ∈ Z.
Ifψ is an orthogonal wavelet, then the subspacesWj of L2(R) are mutually orthogonal and consequently, the direct sum

in (7) becomes an orthogonal sum,

L2(R) =


j∈Z

Wj := · · · ⊕ W−1 ⊕ W0 ⊕ W1 ⊕ · · · . (8)

Obviously, every SO wavelet generates an orthogonal decomposition (8) of L2(R), and every ON wavelet is also an SO
wavelet.

3.2. Multiresolution analysis, scaling functions and B-splines

Any wavelet, semi-orthogonal or not, generates a direct sum decomposition (7) of L2(R). For each j ∈ Z, let us consider
the closed subspaces,

Vj = · · · u Wj−2 u Wj−1, j ∈ Z,

of L2(R). These subspaces have the following properties,

(i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·,
(ii) closL2


j∈Z Vj


= L2(R),

(iii)


j∈Z Vj = {0},
(iv) Vj+1 = Vj u Wj, j ∈ Z,
(v) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1, j ∈ Z.

Observe that every function f ∈ L2(R) can be approximated as closely as desirable by its projections Pjf in Vj as described
by (ii).

If the reference subspace V0, say, is generated by a single function φ ∈ L2(R) in the sense that,

V0 := closL2(R)

φ0,k : k ∈ Z


,

where φj,k(x) := 2j/2φ(2jx − k), then all subspaces Vj are also generated by the same φ, namely,

Vj := closL2(R)

φj,k : k ∈ Z


, j ∈ Z. (9)

Definition 5. A function φ ∈ L2(R) is said to generate a multiresolution analysis (MRA) if it generates a nested sequence of
closed subspaces Vj that satisfy (i), (ii), (iii) and (v) in the sense of (9), such that {φ0,k} forms a Riesz basis of V0. If φ generates
a MRA, then φ is called a scaling function.

Typical examples of scaling functions φ are the jth order cardinal B-splines, Nj(x), defined recursively by a convolution,

Nj(x) =


∞

−∞

Nj−1(x − t)N0(t)dt =

 1

0
Nj−1(x − t)dt, j ≥ 1,

where,

N0(x) = χ[0,1)(x) =


1, if x ∈ [0, 1),
0, otherwise.

We note that cardinal B-spline functions are compactly supported, since the support of the jth order B-spline function Nj is
[0, j + 1], and they have as the Fourier transform,

Nj(w) =


1 − e−iw

iw

j+1

.

To describe the space V0 that Nj generates, we define πn as the collection of all polynomials of degree at most n, and Cn

denotes the collection of all functions f such that f , f (1), . . . , f (n) are continuous everywhere.
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Fig. 1. Scaling (φ2,3) and wavelet (ψ2,3) functions.

The subspace V0 generated by Nj consists of all functions f ∈ C j−1
∩ L2(R) such that the restriction of each function f to

any interval [k, k + 1), k ∈ Z, is in πj. From property (v) of an MRA, we can now identify all other subspaces Vj, namely,

Vj = {f ∈ C s−1
∩ L2(R) : f |

[
k
2j
, k+1

2j
)
∈ πs, k ∈ Z}.

Since splines are only piecewise polynomial functions, they are very easy to implement in a computer code.
From the nested sequence of splines subspaces Vj, we have the orthogonal complementary subspaces Wj, such that,

Vj+1 = Vj ⊕Wj, j ∈ Z. Just as the B-spline of order s is the minimally supported generator of {Vj} we can find the minimally
supported ψ s

∈ W0 that generates the mutually orthogonal subspaces Wj. These compactly supported functions will be
called B-wavelets of order s. In Chapter 6 in [19], explicit formulas for all ψ s and their duals are derived.

In this paper we consider φj
= Nj as the scaling function which generates a MRA and we restrict ourselves to the orders

j = 0, 1. Clearly, for j = 0 we have the scaling function of the Haar wavelet system. In this case, the wavelet function is (see
Fig. 1),

ψ j(x) =


1, if 0 ≤ x <

1
2
,

−1, if
1
2

≤ x < 1,

0, otherwise.

In this paper we use theWA[a,b] method for approximating the CDF associated to the pool’s losses, and thereforewe carry
out the approximation on a bounded interval [a, b]. For this reason, it is convenient to give a short review about B-splines
on a bounded interval. We refer the reader to [21] for a detailed description of scaling functions on a bounded interval.

For sake of clarity, let us assume that [0, n], n ∈ N, is the working interval. We must distinguish between interior
B-splines and boundary B-splines. We have,

Nj(x − k), k = 0, . . . , n − j − 1.

These are the interior B-splines for the bounded interval [0, n]. The remaining B-splines,
Nj(x − k), k = −j, . . . ,−1, and
Nj(x − k), k = n − j, . . . , n − 1,

are the boundary B-splines for the interval [0, n]. Here, the first group is for the boundary x = 0, while the second group is
for the boundary x = n.

3.3. TheWA[a,b] method

In this section, we explain briefly the WA[a,b] method and refer the reader to [14] for further details.
Let us consider a probability density function f ∈ L2(R) associated to a certain continuous random variable X , and its

Fourier transform,

f (w) =


+∞

−∞

e−iwxf (x)dx. (10)
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We can expect that the mass in the tails tends to zero at infinity, so it can be approximated in a finite interval [a, b] by,

f c(x) =


f (x), if x ∈ [a, b],
0, otherwise.

Following the theory of MRA in a bounded interval, we can approximate f c(x) ≃ f cm,j(x) for all x ∈ [a, b], where,

f cm,j(x) =

(j+1)·(2m−1)
k=0

c jm,kφ
j
m,k


(j + 1) ·

x − a
b − a


, j ≥ 0,

with convergence in L2-norm. Note that we are not considering the left and right boundary scaling functions. For sake of
simplicity, we set the coefficients corresponding to the boundary basis functions equal to zero. Observe that in the case that
j = 0 (Haar wavelets) there are no boundary functions.

Themain idea behind theWavelet Approximationmethod is to approximatef byf cm,j and then to compute the coefficients
c jm,k by inverting the Fourier Transform. After some algebraic manipulation and the application of Cauchy’s integral formula,
we end up with the expressions,

c jm,0 ≃
1
π

 π

0
ℜ(Qm,j(reiu))du, (11)

and,

c jm,k ≃
2
πrk

 π

0
ℜ(Qm,j(reiu)) cos(ku)du, k = 1, . . . , (j + 1) · (2m

− 1), (12)

where r ≠ 1 is a positive real number and,

Qm,j(z) =

2
m
2 (j + 1)z−

2m(j+1)a
b−a f  2m(j+1)

b−a i · log(z)

(log(z))j+1

(b − a)(z − 1)j+1
.

In practice, both integrals in (11) and (12) can be easily computed by means of the Trapezoidal Rule.

3.4. Computation of E[Li|X = x]

By definition,

E[Li|X = x] =


R
min


S, (y − l)+


fLi(y|x)dy,

where fLi(y|x) is the conditional probability density function ofLi given X = x. This function is a sumof Dirac delta functions
and takes values in the interval [0,Σ], whereΣ =

K
κ=1 Lκ . Thus,

E[Li|X = x] =

 Σ

0
min


S, (y − l)+


fLi(y|x)dy. (13)

Taking into account that,

min

S, (y − l)+


=

0, if y < l,
y − l, if l ≤ y < S + l,
S, if y ≥ S + l,

and assuming that 0 ≤ l < S + l ≤ Σ , we can split the integral in expression (13) into two parts,

E[Li|X = x] =

 S+l

l
(y − l)fLi(y|x)dy +

 Σ

S+l
SfLi(y|x)dy. (14)

As it is also well known in the context of generalized functions, the derivative of the Heaviside step function is a Dirac
delta. In this context (and of course in the context of regular functions) we can integrate by parts the first integral in
expression (14) and directly the second integral, and we get,

E[Li|X = x] = S −

 S+l

l
FLi(y|x)dy, (15)

where FLi(y|x) is the conditional cumulative distribution function of Li given X = x.
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As shown in [13], the Haar wavelets system constitutes a suitable basis to approximate stepped functions like FLi . Since
FLi is supported on the interval [0,Σ] and FLi ∈ L2 ([0,Σ]), we can apply the WA[a,b] method with [a, b] = [0,Σ] to
approximate FLi .

3.4.1. Approximation with the Haar system (j = 0)
We consider the approximation,

FLi(y|x) ≃ F j
Li,m(y|x) :=

2m−1
k=0

c jm,k(x)φ
j
m,k

 y
Σ


, y ∈ [0,Σ],

where we write c jm,k(x) to underline the dependence of the coefficients on x. If we replace FLi by F j
Li,m in expression (15),

gives us,

E[Li|X = x] ≃ Ej
m[Li|X = x] := S −

2m−1
k=0


c jm,k(x)

 S+l

l
φ

j
m,k

 y
Σ


dy


= S − 2m/2


k1 + 1
2m

·Σ − l

c jm,k1(x)+

Σ

2m

k2−1
k=k1+1

c jm,k(x)+


S + l −

k2
2m

·Σ


c jm,k2(x)


, (16)

where k1 and k2 are integers such that, k1 =


2m
Σ
l

and k2 =


2m
Σ
(S + l)


, and ⌊x⌋ denotes the greatest integer less than or

equal to x, and this completes the proof.
The remaining part of this section is devoted to the computation of the coefficients cm,k(x). LetfLi(ω|x) := E


e−iωLi |

X = x

be the characteristic function of the random variable Li given X = x, i.e., the Fourier transform of the corresponding

density fLi . Under the conditional independence framework, the default indicators 1{Yκ<Hκ (ti)} are independent, and
therefore,

E

e−iωLi |X = x


=

K
κ=1

E

e−iωLκ1{Yκ<Hκ (ti)} |X = x


=

K
κ=1


πκ(ti; x)e−iωLκ + 1 − πκ(ti; x)


.

It is worth noting that ifFLi represents the Fourier transform of FLi , it is straightforward to see that,

FLi(ω|x) =

fLi(ω|x)− e−iΣω

iω
.

Finally, if we consider,

Qm(z) =

2
m
2FLi


2m
Σ
i · log(z)|x


log(z)

Σ(z − 1)
,

then we can recover the coefficients cm,k(x) following (11) and (12).

3.4.2. Approximation with B-splines scaling functions (j = 1)
We consider the approximation,

FLi(y|x) ≃ F j
Li,m(y|x) :=

2(2m−1)
k=0

c jm,k(x)φ
j
m,k


2y
Σ


, y ∈ [0,Σ],

where we write c jm,k(x) to underline the dependence of the coefficients on x. If we replace FLi by F j
Li,m in expression (15),

gives us,

E[Li|X = x] ≃ Ej
m[Li|X = x] := S −

2(2m−1)
k=0


c jm,k(x)

 S+l

l
φ

j
m,k


2y
Σ


dy

,

where,

φ
j
m,k


2y
Σ


=

2m/2

1 −

2m+1
·
y
Σ

− k − 1
 , k

2m+1
·Σ ≤ y <

k + 2
2m+1

·Σ,

0, otherwise.
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If we define αk =
k

2m+1Σ, γk =
k+2
2m+1Σ and βk = (αk + βk)/2, then,

Ej
m[Li|X = x] = S − 2m/2


k∈I1

c jm,k(x)


1{βk≤l} ·

 γk

l


−

2m+1

Σ
y + k + 2


dy

+ 1{βk>l} ·

 βk

l


2m+1

Σ
y − k


dy +

 γk

βk


−

2m+1

Σ
y + k + 2


dy



+


k∈I2

c jm,k(x)

 βk

αk


2m+1

Σ
y − k


dy +

 γk

βk


−

2m+1

Σ
y + k + 2


dy



+


k∈I3

c jm,k(x)


1{βk<S+l} ·

 βk

αk


2m+1

Σ
y − k


dy +

 S+l

βk


−

2m+1

Σ
y + k + 2


dy



+ 1{βk≥S+l} ·

 S+l

αk


2m+1

Σ
y − k


dy


, (17)

where I1 = {k : αk ≤ l < γk}, I2 = {k : αk > l, γk ≤ S + l} and I3 = {k : αk ≤ S + l < γk}.

Result 1. If we define I1(a, b) :=
 b
a


2m+1

Σ
y − k


dy and I2(c, d) :=

 d
c


−

2m+1

Σ
y + k + 2


dy, then,

I1(a, b) = (b − a)

2m

Σ
(b + a)− k


,

I2(c, d) = (d − c)


−
2m

Σ
(c + d)+ k + 2


.

Finally, if we use Result 1, then the expression (17) can be written in compact form as,

Ej
m[Li|X = x] = S − 2m/2


k∈I1

c jm,k(x)


1{βk≤l} · I2(l, γk)+ 1{βk>l} ·


I1(l, βk)+ I2(βk, γk)



+


k∈I2

c jm,k(x)


I1(αk, βk)+ I2(βk, γk)


+


k∈I3

c jm,k(x)


1{βk<S+l} ·


I1(αk, βk)+ I2(βk, S + l)



+ 1{βk≥S+l} · I1(αk, S + l)


.

The coefficients c jm,k(x) are to be computed following a similar procedure like in Section 3.4.1. In this case, we consider,

Qm(z) =

2
m
2 +1FLi


2m+1

Σ
i · log(z)|x


(log(z))2

Σ(z − 1)2
.

3.5. Error analysis

We distinguish three sources of error in the computation of the conditional expected losses E[Li|X = x] in (5) by means
of the WA[a,b] method. These are:

(A) The approximation error at scalem,

E(x) := E[Li|X = x] − Ej
m[Li|X = x] =

 S+l

l


FLi(y|x)− F j

Li,m(y|x)

dy.

(B) The discretization error, which results when computing the integrals (11) and (12) by means of the Trapezoidal Rule.
(C) The roundoff error. This type of error arises after multiplying by the factor 1

rk
in (12).
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Here, we focus on the study of the error of type (A), and we refer the reader to [14] for a detailed analysis of the error of
types (B) and (C).

Looking at,

|E(x)| =

 S+l

l


FLi(y|x)− FLi,m(y|x)


dy
 ,

then, by the Cauchy–Schwarz inequality, we have,

|E(x)| ≤

 S+l

l
1 dy

1/2

· ∥FLi(·|x)− FLi,m(·|x)∥2 =
√
S · ∥FLi(·|x)− FLi,m(·|x)∥2, (18)

where ∥ · ∥2 indicates the norm restricted to the space L2 ([l, S + l]).
Following the theory of MRA in Section 3.2, we can write,

FLi(y|x) =

(j+1)·(2m−1)
k=0

c jm,k(x)φ
j
m,k


(j + 1) ·

y
Σ


+


p≥m

(j+1)·(2p−1)
k=0

djp,k(x)ψ
j
p,k


(j + 1) ·

y
Σ


, (19)

where djp,k are the wavelet coefficients defined as,

djp,k :=

 Σ

0
FLi(y|x) · ψ̃

j
p,k


(j + 1) ·

y
Σ


dy, (20)

with ψ̃ j the jth order dual wavelet (note that in the case of the Haar system, the jth order wavelet is the same as the jth order
dual wavelet, that is, ψ j

= ψ̃ j).
If we consider expression (19) and taking into account that {ψ

j
p,k}p,k∈Z is a Riesz basis, then,

∥FLi(·|x)− F j
Li,m(·|x)∥

2
2 =

p≥m

(j+1)·(2p−1)
k=0

djp,k(x)ψ
j
p,k


(j + 1) ·

y
Σ


2

2

≤ C

p≥m

(j+1)·(2p−1)
k=0

|djp,k(x)|
2,

where C is a certain constant. It is worth remarking that part of the coefficients on the right hand side of the inequality
are zero, since the norm has been taken over the interval [l, S + l]. As we can observe, the approximation error depends on
the size of the coefficients djp,k. We aim to demonstrate that for stepped functions like FLi , the size of the coefficients djp,k is
similar in the presence of a jump discontinuity, regardless of the order of the B-spline basis employed. To this end, we state
the following proposition (for sake of simplicity we drop the explicit dependence of djp,k(x) on x and thus, we write djp,k).

Proposition 1. Let us assume that FLi has a unique jump discontinuity at y0 ∈ [0,Σ]. Then,

|djp,k| =


O

2−

p
2


, if y0 ∈ [0,Σ] ∩ supp ψ̃ j

p,k,

0, otherwise.

Proof. If we assume first that j = 0 and we take into account the fact that suppψ j
p,k

 y
Σ


=
 k
2pΣ,

k+1
2p Σ


, then,

djp,k =

 Σ

0
FLi(y|x) · ψ̃

j
p,k

 y
Σ


dy =

 k+1
2p Σ

k
2p Σ

FLi(y|x) · ψ
j
p,k

 y
Σ


dy

= 2
p
2

 k+1
2p Σ

k
2p Σ

FLi(y|x) · ψ j

2p y
Σ

− k

dy.

If we make the change of variables u = 2p y
Σ

− k, gives us,

djp,k = 2−
p
2Σ

 1

0
FLi


u + k
2p

Σ |x


· ψ j(u)du. (21)

Let us define u0 = 2p y0
Σ

− k. If y0 ∉ suppψ j
p,k then u0 ∉ [0, 1] and therefore djp,k = 0, since FLi is constant and ψ

j has one
vanishing moment. If y0 ∈ suppψ j

p,k then u0 ∈ [0, 1]. Without loss of generality we can assume that u0 <
1
2 and we can

split the integral in expression (21) into three parts,

djp,k = 2−
p
2Σ

 u0

0
F−

Li
· ψ j(u)du +

 1
2

u0
F+

Li
· ψ j(u)du +

 1

1
2

F+

Li
· ψ j(u)du


,

where F−

Li
and F+

Li
are the constant values of FLi evaluated on left and the right side of the jump discontinuity, respectively.
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Finally, following the definition of ψ j, we have,

|djp,k| = 2−
p
2Σ |F−

Li
− F+

Li
|u0.

In case that j = 1, we note that suppψ j(t) = [0, 3] and ψ̃ j
p,k(t) =

s̄
s=0 h

k
p,sψ

j
p,s(t), for certain coefficients hk

p,s and
s̄ > 0, s̄ ∈ N. Therefore, ψ̃ j

p,k


(j + 1) ·

y
Σ


is supported on the whole interval [0,Σ] (see [19,23] for details). Thus,

djp,k =

 Σ

0
FLi(y|x) · ψ̃

j
p,k


2y
Σ


dy =

 Σ

0
FLi(y|x) ·

s̄
s=0

hk
p,sψ

j
p,s


2y
Σ


dy

= 2
p
2

s̄
s=0

hk
p,s

 s+3
2p

Σ
2

s
2p

Σ
2

FLi(y|x) · ψ j

2p 2y
Σ

− s

dy.

If we make the change of variables u = 2p 2y
Σ

− s, gives us,

djp,k = 2−
p
2
Σ

2

s̄
s=0

hk
p,s

 3

0
FLi


u + s
2p

·
Σ

2
|x


· ψ j(u)du. (22)

Let us define u0 = 2p 2y0
Σ

− s. If y0 ∉ suppψ j
p,s then u0 ∉ [0, 3] and therefore the integral in (22) is zero, since FLi is constant

and ψ j has two vanishing moments. If y0 ∈ suppψ j
p,s then u0 ∈ [0, 3] and then, only some of the terms on the right hand

side of (22) remain. �

Remark 1. The result in Proposition 1 can be easily extended to the general case of havingmore than one jumpdiscontinuity
and therefore, the approximation error is similar regardless of the order of the B-spline basis employed when dealing with
stepped shape functions. Further, we note that an analogous argument holds when the order of the B-spline basis is greater
than one. We can conclude that enlarging the order of the wavelet basis does not improve the accuracy of the proposed
method, while the difficulty of the implementation increases as well as the CPU time needed. We confirm the theoretical
results along the numerical examples section.

4. Numerical experiments

In this section, we carry out several numerical experiments1 to evaluate the efficiency and robustness of the WA[a,b]

method bymeans of Haar and B-spline basis.We use aMonte Carlomethod based on 100 sampleswith onemillion scenarios
each as our benchmark. A point estimate for the price of the tranche is given by the mean and we provide a 95% confidence
interval based on the calculation of the 2.5% and 97.5% quantiles.

To compute the coefficients for the WA[a,b] method at the scale of approximation m we consider r = 0.9995, 2m

subintervals when applying the Trapezoidal Rule in the Haar case and 2m+1 in the B-spline case. These parameters are
the optimal values to control the discretization and roundoff errors of the method, as shown in [14]. The Gauss–Hermite
quadrature is carried out withM = 20 nodes. With this number of nodes we keep a good balance between the accuracy and
the speed of the method, as demonstrated in [13]. Proceeding this way, the number of coefficients used for the Haar basis is
2m and for the B-spline basis is 2m+1

− 1.
The parameters corresponding to the numerical examples have been taken from the literature (mainly from [11]) andwe

list them below. The results presented are based on a sample of five pools of a variety of sizes and different types in terms
of the notional values of the underlying reference entities. The notional values and sizes for each pool are summarized as
follows,

Pool 1. Nκ = 100, κ = 1, . . . , 100.

Pool 2. Nκ = 50, κ = 1, . . . , 50, Nκ = 100, κ = 51, . . . , 100.

Pool 3. Nκ = 50, κ = 1, . . . , 50,Nκ = 100, κ = 51, . . . , 100,Nκ = 150, κ = 101, . . . , 150, Nκ = 200, κ =

151, . . . , 200.

Pool 4. Nκ = 20, κ = 1, . . . , 80, Nκ = 50, κ = 81, . . . , 160, Nκ = 100, κ = 161, . . . , 240, Nκ = 150, κ =

241, . . . , 320, Nκ = 200, κ = 321, . . . , 400.

Pool 5. Nκ = κ, κ = 1, . . . , 125.

Thus, the higher the pool number, the more heterogeneous is the pool, with Pool 1 indicating a completely homogeneous
pool in terms of notional values.

1 The programs were coded in C language and run on a Dell Vostro 320 with Intel Core 2 Duo E7500 2.93 GHz processor and 4 GB RAM.
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Table 1
Risk-neutral cumulative default probabilities.

Time (years) Probability

1 0.72%
2 1.85%
3 3.28%
4 4.95%
5 6.80%
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Fig. 2. Loss-given-default associated to Pool 2 (top left), Pool 3 (top right), Pool 4 (bottom left) and Pool 5 (bottom right).

For each name, the common risk-neutral cumulative default probabilities are given in Table 1. The recovery rate is
assumed to be 40% for all names. Thus, the loss-given-default of name κ is 0.6Nκ . Fig. 2 shows the loss-given-default
corresponding to the pools ranging from 2 to 5. The maturity of a CDO deal is T = 5 years and the premium dates are
ti = 1, i = 1, . . . , 5 years from today (t0 = 0). The continuously compounded interest rates are r1 = 4.6%, r2 = 5%, r3 =

5.6%, r4 = 5.8% and r5 = 6%. Thus, the corresponding discount factors are di = e−riti , i = 1, . . . , 5. All CDO pools have four
tranches that are determined by the attachment points 0, 3%, 7% and 10%, with the last detachment point being 15%. The
constants ρκ are 0.25, κ = 1, . . . ,K .

We evaluate the accuracy and CPU time of the WA[a,b] method at different scales of approximation, ranging from 6 to 9,
and we present the results in Tables 2 and 3, where in the first case we deal with a completely homogeneous pool (Pool 1),
while in the second case the pool is the most heterogeneous (Pool 5) in our set of examples. In both examples, we price
the tranche with attachment point 3% and detachment point 7%. We observe that, in most of the scales, we reach the same
accuracy with Haar and B-spline wavelets, as expected. However, the computational effort is greater with B-splines. It is
worth remarking that Haar wavelets at scale six, are capable to compute the CDO spread with an error less than 1% in about
one tenth of a second.

Thus, for the next examples, we consider the WA[a,b] provided with a Haar basis. In Table 4 we present the minimum
and maximum relative errors calculated with M = 20 and M = 40 nodes in the expression (6), arising in the computation
of the first four tranches with reference pools Pool 2, Pool 3 and Pool 4 respectively. For M = 20, the minimum errors are
reached in the first tranches, while the maximum errors correspond to the last tranches. The maximum relative error can



574 L. Ortiz-Gracia / Journal of Computational and Applied Mathematics 292 (2016) 562–575

Table 2
Relative errors arising in the computation of the CDO spread for Pool 1 corresponding to the tranche with attachment point 3% and detachment point 7%.
The reference value is 642.47 and the 95% confidence interval is [640.98, 644.18].

Scale m Haar Error CPU time (s) B-splines Error CPU time (s)

6 643.89 2.22 · 10−3 0.09 645.34 4.47 · 10−3 0.19
7 645.88 5.31 · 10−3 0.18 643.53 1.66 · 10−3 0.45
8 643.49 1.59 · 10−3 0.39 643.03 8.78 · 10−4 0.84
9 643.33 1.35 · 10−3 0.89 642.85 5.98 · 10−4 1.87

Table 3
Relative errors arising in the computation of the CDO spread for Pool 5 corresponding to the tranche with attachment point 3% and detachment point 7%.
The reference value is 645.96 and the 95% confidence interval is [644.62, 647.51].

Scale m Haar Error CPU time (s) B-splines Error CPU time (s)

6 645.01 1.47 · 10−3 0.12 646.33 5.74 · 10−4 0.24
7 646.88 1.43 · 10−3 0.23 646.11 2.34 · 10−4 0.53
8 646.11 2.34 · 10−4 0.52 646.08 1.87 · 10−4 1.12
9 646.11 2.34 · 10−4 1.00 646.08 1.87 · 10−4 2.19

Table 4
Minimum (mE) and maximum (ME) relative errors when computing the first four tranches with Haar wavelets at scale of approximation 6.

Pool MC mE (M = 20) ME (M = 20) mE (M = 40) ME (M = 40)

2 (2142.75, 646.65, 278.34, 124.24) 7.51 · 10−4 1.29 · 10−2 6.21 · 10−4 5.15 · 10−3

3 (2231.47, 638.95, 269.88, 119.34) 7.30 · 10−4 3.03 · 10−2 8.74 · 10−4 3.44 · 10−3

4 (2272.25, 631.43, 265.10, 116.81) 1.72 · 10−4 5.55 · 10−2 1.58 · 10−5 1.30 · 10−2

Table 5
Ratio of CPU times used by themethod to compute simultaneously the
first four tranches over those used to compute only the first tranche.

Pool m = 6 m = 7 m = 8 m = 9

2 1.09 1.12 1.21 1.39
3 1.03 1.07 1.11 1.21
4 1.02 1.03 1.06 1.11

be reduced when considering M = 40 instead of M = 20 at the cost of doubling the CPU time. For sake of simplicity, we
have not provided confidence intervals in this table.

Finally, we present in Table 5 the ratio of CPU times employed to compute simultaneously the spread corresponding
to the first four tranches, over those used to compute only the first tranche. The ratio is computed at different scales of
approximation and considering Pools 2–4 as the underlying pools. We can observe that at scale six, almost no extra time
of computation is required, in contrast to EAP method which has a considerable higher ratio even when using only a few
terms, as shown in [10]. Further, with the WA[a,b] method, the ratio decreases when increasing the number of entities in
the reference pool. However, for JKMmethod, this ratio tends to grow rapidly with the size of the pool (see [10] for details).
The efficient behaviour of WA[a,b] method is partly due to the compact support of the Haar basis, since each time that we
compute the conditional expected losses in (16), only a few coefficients per tranche have to be considered.

5. Conclusions

In this work we have investigated and developed new formulae to value synthetic CDO tranches within a one-factor
model framework, which leads to a stepped shape CDF. The methodology is based on the WA[a,b] method and uses Haar
and B-spline wavelets as the bases. Haar wavelets can be seen as order zero B-spline wavelets. We approximate the CDF
associated to the pool’s losses and we use the resulting expansion to price either one or multiple CDO tranches. From a
theoretical point of view, we show that for staircase like functions the accuracy is the same regardless of the order of the
B-spline basis employed. This result is confirmed along the numerical experiments, which are carried out with the Gaussian
copula default model. Further, the method based on Haar wavelets is very easy to implement and the computational cost
is lower when compared to the B-splines based method. Therefore, the Haar basis happens to be the most suitable one to
perform the valuation, keeping a good balance between efficiency and easiness of implementation. We have shown that
WA[a,b] method works out well independently of the inhomogeneous features of the underlying pool and it is capable to
price simultaneously several tranches of a CDO at the same computational effort than for only one tranche.
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