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Abstract

The present paper proposes a new approach to the classical problem of the

harmonic oscillations of a thin wing in a flow of non-viscous incompressible

fluid. The problem is reduced to a dual integral equation, permitting appli-

cation of numerical methods. The numerical experiments are performed by us-

ing some advanced fast non-stationary iterative methods, with the help of the

two-dimensional Fast Fourier Transform. There is given a brief survey on the

iterative methods, to evaluate the most efficient algorithms in application to the

considered problem of the flapping wing theory.

Key words: flapping wing; dual integral equation; numerical algorithm; Toeplitz

blocks; conjugate gradients; bi-conjugate gradients

1 Introduction

The aerohydrodynamics of birds’ flight and swimming of fishes and dolphins was a

subject of a very intensive investigation since the beginning of the 20th century, a

historical survey on the mathematical simulation is presented in [1]. Among recent
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works, let us cite those on applications to the flight theory in bionics [2–6]. How-

ever, reproduction of outer characteristics of motion of biological individual cannot

give complete understanding of the motion work. This in fact requires an adequate

mathematical analysis. That is why some fundamental methods were developed based

on computer simulation. Since the basic property of the unsteady flow around bodies

is generation of vortex wakes, one of classical approaches is connected with the vortex

element method, well developed in various versions [7–10]. Some aerodynamic theories

for flexible airfoils and wings are discussed in [11–17]. In particular cases these theo-

ries give classical predictions known for rigid airfoils. At last, it should be noted that

there are several commercial programs which permit numerical study of the problem

under consideration. In the 3d case commercial programs require, as a rule, very huge

computer resources.

Within the model of incompressible and non-viscous fluid, in the case of wing

placed in a uniform stream and harmonically oscillating in time, the 3d problem can

be reduced to a dual integral equation which is an expansion of the classical integral

equation, known in the lifting surface theory, to the non-stationary problem [18]. Many

approximate analytical and numerical approaches have been proposed to solve this dual

integral equation. In particular, efficient asymptotic techniques can be applied to the

cases of large and small aspect ratio of the wing. However, the answer to the question

about appropriate algorithms, which can provide the desired precision in real time,

is still unclear. The mesh reduction method under consideration leads to the dual

integral equation in the 3d theory, hence this reduces significantly the size of the mesh.

Nevertheless a dense system of nodes distributed over the two-dimensional domain

generates a fully populated matrix of too huge dimension, to be practicable when

implemented on personal computers.

In [19] the authors apply a fast algorithm to a simpler dual integral equation. Physi-

cally, the used characteristic hyper-singular kernel arises in the 3d problem of harmonic

oscillations of the wing in the motionless fluid, under conditions of a linear theory of

small perturbations. This problem is therefore a particular case of the present study if

the velocity of the incoming stream is equal to zero. In this particular case the kernel

of the integral equation can be calculated explicitly, which in fact turns out a charac-

teristic hyper-singular kernel of two variables. Furthermore, the discretization process

with a two-dimensional rectangular grid leads to a matrix with double symmetry and

all real eigenvalues. The fast algorithm proposed in [19] is based on the idea of iterative
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construction of the inverse matrix via a certain variation of the Newton’s method ap-

plied in the matrix form, namely the Newton-Hotelling-Schulze’s method. The authors

use an advanced numerical technique of the data compression and data partitioning,

to speed-up the matrix inversion process. For this purpose they apply such non-linear

approximations as wavelets, low-rank and tensor approaches. The obtained inverse ma-

trix can be multiplied by the right-hand side, to calculate the unknown vector. This

can also be used as a preconditioner in some non-stationary iterative algorithms.

In contrast to the simple integral equation with the characteristic kernel described in

the previous paragraph, the kernel arising in the problem at hand cannot be calculated

in explicit form. Therefore, this requires a special treatment, to provide its efficient

numerical calculation. So far as an appropriate numerical treatment of the kernel is

arranged, the fast numerical algorithm to find the solution can be constructed in the

way allied to [19]. In particular, in the present work the well-known approach

of the iterative solver with a two-dimensional circulant preconditioner is

used [20, 21], to provide efficient solution.

In section 2 we give a physical formulation of the problem and reduce the corre-

sponding boundary value problem to a basic dual integral equation. In section 3 we

present an analytical treatment for the kernel of the initial integral equation to the

form, suitable to apply an efficient numerical scheme. In section 4 we perform a dis-

cretization of the dual integral equation, reducing it to a System of Linear Algebraic

Equations (SLAE). Sections 5 and 6 cover some modern approaches to improve the

efficiency of the applied algorithms, namely, a FFT-based matrix-vector multiplication

and a preconditioning technique [22–25]. Finally, some numerical experiments and

conclusions are given in the last two sections.

2 Problem Formulation and the Basic Dual Integral

Equation

Let a thin wing of the size (−ℓ, ℓ)×(−c, c), rectangular in plan, be placed into a uniform

stream of non-viscous incompressible fluid, see Fig. 1. The velocity vector of the incom-

ing flow is constant and directed along axis x: v̄ = {u0, 0, 0}. We assume that the os-

cillations of the wing are harmonic in time, therefore, in the linear aerodynamic theory

all physical quantities in the perturbed motion have the following form: F̃ (x, y, z, t) =

Re[F (x, y, z) exp(−iωt)]. Let function z = W̃ (x, y, t) = Re[W (x, y) exp(−iωt)] define

3



the shape of the wing.

If the fluid is incompressible and the motion is potential (vortex-free) then the

continuity equation implies

div v̄ = 0, v̄ = gradϕ, =⇒ ∆ϕ = 0. (1)

Once the potential ϕ is known, the aerodynamic pressure can be determined from the

Lagrange-Cauchy integral:
∂ϕ̃

∂t
+

p̃

ρ
+

ṽ2

2
= F (t), (2)

where ρ is the mass density of the fluid.

In frames of the linear aerodynamic theory we assume that:

(i) the wing is an absolutely thin plate which is weakly curved and weakly inclined

with respect to direction of incidence, axis x.

(ii) the added perturbations of velocity and pressure caused by the oscillations of

the plate are asymptotically small when compared, respectively, with the velocity and

the pressure in the incoming flow. If any perturbed quantity is marked by an accent

sign, then this hypothesis implies:

v̄ = ū0 + v̄ ′, (|v ′|/u0 ≪ 1), p = p0 + p ′, (|p ′|/p0 ≪ 1), ϕ = ϕ0 + ϕ ′. (3)

By substituting expressions (3) into Eq. (2) and keeping only linear terms for all

perturbed quantities, one obtains:

vx = u0 + v′x, vy = v′y, vz = v′z, =⇒ ∂ϕ̃

∂t
+

p̃

ρ
+ u0 ṽx = F (t),

=⇒ p ′

ρ
+ u0 v

′
x − iωϕ ′ = 0 , =⇒ p ′

ρ
+ u0

∂ϕ ′

∂x
− iωϕ ′ = 0 .

(4)

Let the wing be defined by the equation z = W (x, y) which is in fact a complex

amplitude in the time-harmonic regime. Then the slip boundary condition over the

wing surface is

vz|S =
dW

dt
=⇒ v′z|S =

∂W

∂t
+ (u0 + v′x)

∂W

∂x
+ v′y

∂W

∂y
+ v′z

∂W

∂z
. (5)

It follows from hypothesis (i) above that |∂f/∂x| ≪ 1, |∂f/∂y| ≪ 1. Then, in the

linear approximation, for the process harmonic in time, boundary condition (5) can be

rewritten in the following form:

v′z|S = u0
∂W

∂x
− iωW , =⇒ ∂ϕ ′

∂z

∣∣∣∣
S

= u0
∂W

∂x
− iωW . (6)
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The last hypothesis of the linearized aerodynamic theory is applied as follows:

(iii) the slip boundary condition (6) may be satisfied on projection of domain S to

the horizontal plane xy, instead of the true curved surface.

Therefore, in the forthcoming discussions we imply that domain S is a plane rect-

angular domain S = (−ℓ, ℓ)× (−c, c), a certain subset of the plane xy.

Let us consider the full space, filled of the fluid, separately for z > 0 and z < 0,

where all physical quantities will be marked by + or −, respectively. The interface

plane z = 0 is a union of domain S, a certain vortex sheet which is carried away to

x → +∞ by the flow, and the rest domain where all physical quantities should be

continuous when crossing plane z = 0.

It is clear from Eq. (4) that if function ϕ ′ is harmonic then function p ′ is harmonic

too: ∆p ′ = 0. Application of the double Fourier transform with respect to variables x

and y reduces the Laplace equation for function p ′ to the ordinary differential equation

regarding variable z:

P (α, β, z) =

∫∫ ∞

−∞
p ′(x, y, z)ei(αx+βy)dαdβ,

∂2P

∂z2
− (α2 + β2)P = 0, (7)

whose solution is

P±(α, β, z) = A±(α, β)e
∓ rz, r(α, β) = (α2 + β2)1/2. (8)

Since boundary condition (6) should be valid for both sides of the wing, z = +0 and

z = −0, it follows from (6) that function ∂ϕ ′/∂z is even with respect to variable z,

hence function ϕ ′ is odd with respect to z. Then one can conclude from Eq. (4) that

function p ′ is odd with respect to z. This implies

P±(α, β, z) = ±A(α, β)e∓ rz, =⇒

p ′
±(x, y, z) = ± 1

4π2

∫∫ ∞

−∞
A(α, β)e−i(αx+βy)∓ rz dαdβ.

(9)

Let us introduce the new unknown function γ(x, y), as follows:

p ′
+(x, y,+0) =

1

2
[p ′

+(x, y,+0)− p ′
−(x, y,−0)] =

{
γ(x, y), (x, y) ∈ S,

0, (x, y) /∈ S.
(10)

The trivial value of this function outside domain S, occupied by the wing, follows from

the continuity of aerodynamic pressure outside the wing.
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It should be noted that physical meaning of the introduced function γ directly

follows from relation (10): this is half the difference between the values of aerodynamic

pressure above and below the wing.

It is evident from (9) and (10) that

A(α, β) =

∫∫ ∞

−∞
γ(ξ, η)ei(αξ+βη)dξdη =

∫∫

S

γ(ξ, η)ei(αξ+βη)dξdη. (11)

Now, by substituting Eq. (11) to Eq. (9), one finally obtains the expression for aerody-

namic pressure in terms of the introduced function γ:

p ′
±(x, y, z) = ± 1

4π2

∫∫

S

γ(ξ, η)dξdη

∫∫ ∞

−∞
ei[α(ξ−x)+β(η−y)]∓ rz dαdβ. (12)

Keeping this relation in mind, in order to express the potential ϕ in terms of

function γ, one should inverse relation (4) relatively function ϕ. This can formally be

considered as a partial differential equation regarding function ϕ. Under the condition

of no perturbation when moving to infinity upstream, its solution tending to zero as

x → −∞ can easily be resolved by a standard mathematical method, to give

ϕ ′
±(x, y, z) = − 1

ρu0

∫ x

−∞
eiω(x−ζ)/u0p ′

±(ζ, y, z)dζ =

= ± 1

4π2ρ

∫∫

S

γ(ξ, η)dξdη

∫∫ ∞

−∞

ei[α(ξ−ζ)+β(η−y)+ω(x−ζ)/u0 ]∓ rz

i(u0α + ω)
dαdβ

∣∣∣∣
x

ζ=−∞
,

(13)

where the Cauchy-type singularity at point α = −ω/u0 is taken as a principal-value

singular integral. The key point here is to calculate the limit as ζ → −∞:
∫ ∞

−∞

eiα(ξ−ζ)dα

i(u0α+ ω)
=

e−iω(ξ−ζ)/u0

u0

∫ ∞

−∞

ei[(α+ω/u0)(ξ−ζ)]

i(α + ω/u0)
dα =

=
e−iω(ξ−ζ)/u0

u0

∫ ∞

−∞

e−iαζ

iα
dα = −2e−iω(ξ−ζ)/u0

u0

∫ ∞

0

sin(αζ)

α
dα =

= −2e−iω(ξ−ζ)/u0

u0

π

2
sign(ζ) = −πe−iω(ξ−ζ)/u0

u0
sign(ζ) → π

u0
e−iω(ξ−ζ)/u0 .

(14)

Therefore, representation (13) takes the following form:

ϕ′
±(x, y, z) = ± 1

4π2ρu0

∫∫

S

K±
ϕ (ξ − x, η − y, z)γ(ξ, η)dξdη , (15a)

where (µ = ω/u0)

K±
ϕ (ξ, η, z) =

∫∫ ∞

−∞

ei(αξ+βη)∓ r(α,β)z

i(α + µ)
dαdβ − πe−iµξ

∫ ∞

−∞
eiβη∓ r(µ,β)z dβ . (15b)
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Now, by satisfying the boundary condition (6), one can easily derive from (15) the

following basic dual integral equation of the problem at hand:

1

4π2ρu0

∫∫

S

K(ξ − x, η − y) γ(ξ, η)dξdη = iωW − u0
∂W

∂x
, (16a)

with

K(ξ, η) =

∫∫ ∞

−∞

ei(αξ+βη)

i(α + µ)
r(α, β) dαdβ − πe−iµξ

∫ ∞

−∞
eiβη r(µ, β) dβ . (16b)

Once integral equation (16) is solved by this or that way, all physical characteristics

can easily be calculated as some integrals of the basic unknown function γ(x, y). For

instance, the full aerodynamic force is connected with the dual integral

P =

∫ 1

−1

∫ 1

−1

γ(x, y)dxdy, (17)

and the propulsive thrust, which is the suction force [1], is defined as a limiting value

of the single integral:

T =
πc

2ρu2
0

lim
x→−1

∫ λ

−λ

|γ(x, y)|2dy. (18)

Therefore, the principal feature of any method applied to this problem is that this

should provide fast computations, to construct an efficient solution to the dual integral

equation (16). Under the condition that kernel (16b) is itself a dual integral, which

cannot be calculated in a closed form, one can easily estimate the number of arithmetic

operations required. If a certain grid has Nx nodes along the direction of propagation

and Ny nodes in the transversal direction then, taking into account the convolution

property of the kernel, one needs to apply O [(NxNy)
2] arithmetic operations, only to

calculate all elements of a matrix under disretization. After that one needs to solve

the matrix equation, which with a direct treatment, say by the Gauss elimination

technique, requires O [(Nx Ny)
3] operations. Even in the case Nx ∼ Ny ∼ 102, this

is of the order ∼ 1012 which is too huge, at least for personal computers. The main

conclusion from this discussion is that any applied numerical algorithm, to be efficient,

should be fast. Just this point is the main goal of the present study.

3 Analytical Treatment of the Kernel

Let us rewrite the basic integral equation (15) in the dimensionless form, by
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introducing the new variables: x̃ = x/c, ỹ = y/ℓ (below tildes are omitted):

c

4π2ρu2
0

∫ 1

−1

∫ 1

−1

K(ξ − x, η − y)γ(ξ, η)dξdη = iνW − ∂W

∂x
, (|x, y| ≤ 1), (19)

where ν = ωc/u0 is the Strouhal number, λ = ℓ/c is the aspect ratio of the wing.

The kernel in Eq. (19) is

K(ξ, η) = −πe−iνξ

λ
I1(η) + I2(ξ, η), (20)

where

I1 =

∫ ∞

−∞

√
β2 + (λν)2eiβηdβ, I2 =

∫ ∞

−∞

eiαξdα

iλ(α + ν)

∫ ∞

−∞

√
β2 + (λα)2eiβηdβ, (21)

and the integral over variable α is treated as the singular Cauchy-type integral, regard-

ing the singularity at the simple pole as α → −ν.

The first integral in the kernel (21) can be calculated explicitly, by using the value

of the tabulated integral [26]:

I1(η) =

∫ ∞

−∞

√
β2 + (λν)2eiβηdβ = 2

∫ ∞

0

√
β2 + (λν)2 cos(βη)dβ =

= −2 lim
ε→+0

∂

∂ε

∫ ∞

0

cos(βη)e−ε
√

β2+(λν)2dβ =

= −2 lim
ε→+0

∂

∂ε

ελν√
ε2 + η2

K1(λν
√

ε2 + η2) = −2
λν

|η|K1(λν|η|),

(22)

where K1 is the Macdonald function [27].

The internal integral in I2, over variable β, can be calculated by analogy. This

permits representation of I2 as a single integral over variable α:

I2(ξ, η) =

∫ ∞

−∞

eiαξ

iλ(α + ν)

[
−2

λ|α|
|η| K1(λ|αη|)

]
dα. (23)

The direct numerical calculation of integral (23) is complicated because of irregular

behavior of the integrand at the origin and at the infinity. A suitable transformation of

the integral is based on the explicit extraction of the integrand’s asymptotics for both

α → 0 and α → ∞:

I2 =
2i

|η|

∫ ∞

−∞

[(
1

α+ ν
− 1

α

)
|α|eiαξ

(
K1(λ|αη|)−

1

λ|αη|

)
+

+

(
1

α+ ν
− 1

α

)
eiαξ

λ|η| + sign(α)eiαξK1(λ|αη|)
]
dα = I12 + I22 + I32 .

(24)
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The first integral can be reduced to the semi-infinite interval (0,∞), in the following

way:

I12 =
2i

|η|

∫ ∞

−∞

(
1

α + ν
− 1

α

)
|α|eiαξ

[
K1(λ|αη|)−

1

λ|αη|

]
dα =

=
2i

|η|

∫ ∞

0

(
eiαξ

α + ν
− eiαξ

α
+

e−iαξ

ν − α
+

e−iαξ

α

)[
αK1(λα|η|)−

1

λ|η|

]
dα =

=
4iν

λ

∫ ∞

0

α cos(αξ)− iν sin(αξ)

α(ν2 − α2)

[
λαK1(λα|η|)

|η| − 1

η2

]
dα

=
4iν

λ

∫ ∞

0

α cos(αξ)− iν sin(αξ)

α(ν2 − α2)

[
λαK1(λα|η|)

|η| − 1

η2

]
dα,

(25a)

where the Cauchy-type singular integral is, see [28]:
∫ ∞

0

= lim
ε→+0

(∫ ν−ε

0

+

∫ ∞

ν+ε

)
. (25b)

The integrals in (25b) both are absolutely convergent, since the integrand decreases

as O(1/α2) with α → ∞, and its behavior is O
(
α|η| ln(λα|η|)

)
with α → 0, due to

the asymptotics of the Macdonald function for small α [27]. As a result, the quantity

I12 becomes a regular function for all values |ξ, η| < ∞. This means that with any

discretization this function may be considered as a usual continuous function.

The quantities I22 and I32 can be expressed in an explicit form, by using some

tabulated integrals [26]:

I22 =
2i

λη2

∫ ∞

−∞

(
eiαξ

α + ν
− eiαξ

α

)
dα=

2

λη2

∫ ∞

−∞

{
sin(αξ)

α
− e−iνξ sin[(α + ν)ξ]

α + ν

}
dα

=
2

λη2
[
π sign(ξ)− πe−iνξsign(ξ)

]
=

2π sign(ξ)

λη2
(
1− e−iνξ

)
,

(26)

and

I32 =
2i

|η|

∫ ∞

−∞
sign(α)eiαξK1(λ|αη|)dα = − 4

|η|

∫ ∞

0

sin(αξ)K1(λα|η|)dα =

= − 4

|η|
πξ

2λ|η|
√
ξ2 + (λη)2

= − 2πξ

λη2
√
ξ2 + (λη)2

.

(27)

4 Numerical Implementation

The numerical algorithm to solve the basic dual integral equation (19) is based upon

a discretization, by introducing a two-dimensional discrete mesh. The discrete scheme
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should take into account the analytical properties of Eq. (19). The present authors do

not know any published work with a thorough investigation of the functional properties

of the basic dual integral equation (19). However, some qualitative properties of its

kernel are evident. As follows from Eq. (22), by using the asymptotic behavior of

the Macdonald function for small argument: K1(ζ) = O(1/ζ), ζ → +0, as well as

from Eqs. (26),(27), the kernel in Eq. (19) is hyper-singular along the wing-span, i.e.

over variable y: O[1/(η − y)2], η → y. According to the general theory [29,30], if

the solution of the one-dimensional hyper-singular integral equation is bounded on the

interval [−1, 1], then this solution is unique and automatically vanishes at the side

edges y = ±1. Moreover, within the so-called Method of Discrete Vortices (MDV)

[10], it is proved that a simplest quadrature formula may be applied over variable η,

to construct an appropriate discrete numerical scheme. For this purpose, one may

divide the whole interval [−1, 1] to Ny equal small sub-intervals of length hy = 2/Ny

and to choose a set of nodes taken, to be more specific, at the central points of each

sub-interval: ηk = yk = −1 + (k − 1/2)hy, k = 1, .., Ny.

Regarding the regular part of the kernel I12 , the simple integration along y-axis

can be performed in discrete form as the sum of the integrals over small sub-intervals

(yk − hy/2, yk + hy/2). Application of this idea, with y = ym (m = 1, .., Ny), leads to

∫ 1

−1

I12 γ(ξ, η)dη =
4iν

λ

Ny∑

k=1

∫ yk+hy/2

yk−hy/2

{∫ ∞

0

G(α, λ, η−ym)g(α, ν, ξ−x)dα

}
×

× γ(ξ, η)dη =
4iν

λ

Ny∑

k=1

hyγ(ξ, yk)

∫ ∞

0

G(α, λ, yk−ym)g(α, ν, ξ−x)dα,

(28)

where the two new functions have been introduced, as follows:

G(α, λ, η − y) =
λαK1(λα|η − y|)

|η − y| − 1

(η − y)2
,

g(α, ν, ξ − x) =
cos[α(ξ − x)]

ν2 − α2
− i

ν sin[α(ξ − x)]

α(ν2 − α2)
.

(29)

The integration of the continues integrand in Eq. (28) over variable α on the semi-

infinite interval is attained numerically in a simple way. As mentioned above, the

integrand decreases as O(1/α2) at α → ∞. Thus, the computation can efficiently be

performed by splitting this integral to the two ones:
∫ ∞

0

G(α, λ, yk− ym)g(α, ν, ξ−x)dα=

(∫ ν−ε

0

+

∫ B

ν+ε

)
G(α, λ, yk− ym)g(α, ν, ξ−x)dα, (30)
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where parameter B should be taken sufficiently large, and parameter ε – sufficiently

small, as follows from Eq. (25b).

It is proved in [10] that, in the discrete form, the integration of the hyper-singular

kernels may be performed just in the same way like for continuous functions. This

implies for y = ym:

∫ 1

−1

I22γ(ξ, η)dη =
2π
[
1−e−iν(ξ−x)

]
sign(ξ−x)

λ

Ny∑

k=1

γ(ξ, yk)

∫ yk+hy/2

yk−hy/2

dη

(η−ym)2
=

=
2π
[
1− e−iν(ξ−x)

]
sign(ξ − x)

λ

Ny∑

k=1

hyγ(ξ, yk)

(yk − ym)2 − (hy/2)2
,

(31)

while the discretization of the hyper-singular kernel I32 implies, with the use of a certain

tabulated integral:

∫ 1

−1

I32γ(ξ, η)dη = −2π(ξ−x)

λ

Ny∑

k=1

γ(ξ, yk)

∫ yk+hy/2

yk−hy/2

1√
(ξ−x)2 + λ2(η−ym)2

×

× dη

(η − ym)2
=

2π

λ

Ny∑

k=1

γ(ξ, yk)

[√
(ξ − x)2 + λ2(yk + hy/2− ym)2

(ξ − x)(yk + hy/2− ym)
−

−
√
(ξ − x)2 + λ2(yk − hy/2− ym)2

(ξ − x)(yk − hy/2− ym)

]
.

(32)

The discretization of the remaining integral I1 (4) in the kernel over variable η can

be treated as a usual hyper-singular integral, by analogy to I22 and I32 . For this aim

let us extract explicitly its hyper-singular behavior. The rest is again a continuous

11



function and can be calculated by analogy to I12 , as follows (y = ym):

−πe−iν(ξ−x)

λ

∫ 1

−1

I1γ(ξ, η)dη = −πe−iν(ξ−x)

λ

∫ 1

−1

[
−2

λν

|η−ym|
K1(λν|η−ym|)

]

×γ(ξ, η)dη =
2πe−iν(ξ−x)

λ

∫ 1

−1

{[
λνK1(λν|η − ym|)

|η − ym|
− 1

(η − ym)2

]
+

+
1

(η − ym)2

}
γ(ξ, η)dη =

2πe−iν(ξ−x)

λ
×

×
Ny∑

k=1

γ(ξ, yk)

∫ yk+hy/2

yk−hy/2

[
G(ν, λ, η − ym) +

1

(η − ym)2

]
dη =

2πe−iν(ξ−x)

λ
×

×
Ny∑

k=1

γ(ξ, yk)

[
hy G(ν, λ, yk − ym) +

hy

(yk − ym)2 − (hy/2)2

]
,

(33)

since function G is continuous.

It should be noted that expressions (32) and (33) in the aggregate correspond to

the standard discretization in the classical theory of lifting surface in a stationary flow

(ν = 0), in frames of the MDV [10].

Now let us pass to the numerical treatment along the chord direction, i.e. along

axis x. The MDV prescribes [10] that the following mesh structure may be arranged, to

provide stable calculations, by introducing the two different grids – separately for the

internal variable ξ and the external one x. With this treatment, the nodes of the former

are placed in the middle between respective nodes of the latter: ξj = −1 + jhx, xn =

ξn+hx/2, (n, j = 1, ..Nx), hx = 2/(Nx+1). Here Nx is the dimension of the grid along

the chord direction x. It is proved in [10] that such a grid guarantees the automatical

validity of the Kutta-Joukowski hypothesis of bounded aerodynamic pressure just on

the edge closest to a node of the external grid. Since in our case x1 = −1+ 3hx/2, but

xNx = −1+(Nx+1/2)hx = 1−hx/2, hence the trailing edge x = 1 is the closest one to

the node xNx . Therefore, the applied discretization grids provide the Kutta-Joukowski

condition on the true trailing edge x = 1. Within this method, the quadrature formula

for the Cauchy-type integral over variable ξ is simply a summation over grid nodes

ξ = ξj, (j = 1, ..Nx), then multiplying this sum by the grid step hx.

The performed discretization leads to the following representation of the left-hand

12



side in Eq. (19)–(21):

hxc

2πλρu2
0

Nx∑

j=1

Ny∑

k=1

γ(ξj, yk)

[
2iνhy

π

∫ ∞

0

G(α, λ, yk − ym)g(α, ν, ξj − xn)dα+

+hye
−iν(ξj−xn)G(ν, λ, yk−ym)+hy

e−iν(ξj−xn)[1−sign(ξj−xn)]+sign(ξj−xn)

(yk − ym)2 − (hy/2)2

+

√
(ξj−xn)2+λ2(yk+hy/2−ym)2

(ξj − xn)(yk + hy/2− ym)
−
√
(ξj−xn)2+λ2(yk−hy/2− ym)2

(ξj − xn)(yk − hy/2− ym)

]
.

(34)

Let us rewrite our problem in the following matrix form

Aγ = u . (35)

It should be noted that, when arranging the dicretization, index j is related to the

internal variable along axis x, index n – to the external variable along the same axis,

index k is coupled with the internal variable along axis y, and index m – with the

external variable along the same axis. The structure of the matrix A is such that each

its block Am,k corresponds to a chosen pair of nodes m, k on y-axis (m, k = 1, .., Ny),

and the elements of this block are values of the kernel taken for nodes n, j on x-

axis (n, j = 1, .., Nx). The vector γ = γ(ξj, yk) also has a block structure, where

each block k contains the values of the unknown function γ at the nodes ξj of the

corresponding yk-band. Mathematically, this is expressed in the following indexing

γ(ξj, yk) = γj+(k−1)Nx , where j = 1, .., Nx and k = 1, .., Ny. The right-hand side vector

u = (iνW − ∂W/∂x)(xn, ym) is written similarly. The indices of this vector have the

form u(xn, ym) = un+(m−1)Nx with n = 1, .., Nx and m = 1, .., Ny.

In other words, the matrix element am,k
n,j is located at the intersection of the row

number n+ (m− 1)Nx and the column number j+ (k− 1)Nx. Let us note, that upper

indices in the matrix designate the number of a block and the lower ones – the position

of the element in this block. Herewith, inside each block one moves along x-axis, while

the change of the block itself changes location on the grid along variable y.

Since the dimension of the unknown vector γ in Eq. (35) is Nx ·Ny (this means Ny

blocks with Nx elements in each of them), the total number of elements in matrix A is

(Nx ·Ny)
2 and obviously, the matrix is fully populated.

However, substituting quantities ξ, x, y in their discrete form to Eq. (16), one can

see that the kernel depends only on the difference of indices, namely:

yk − ym = (k −m)hy, ξj−xn = (j − n)hx − hx/2 (36)

13



As a result, the number of distinct elements of the matrix A is significantly reduced,

because in each block there are only 2Nx − 1 essentially different elements an,j = aj−n.

Moreover, the blocks of the matrix are also repeated Am,k = Ak−m. The properties of

such matrices and their advantages are discussed in the next section.

5 Matrix-Vector Multiplication

It is well-known in which way one can reduce the cost of the matrix-vector multiplica-

tion in the case when the matrix is sparse. Also, there are some approaches for dense

matrices if they have some special structure, in particular for Vandermonde, Cauchy,

Toeplitz and Hankel matrices. The matrix of the system (35) also possesses a certain

specific structure. Namely, it is Block-Toeplitz with Toeplitz Blocks (BTTB), or two-

level Toeplitz matrix. This means that each block Am,k of our matrix is represented

by a Toeplitz matrix.

A matrix is called Toeplitz if its elements depend only on the difference of the

indices [25], in other words, if an,j = an−j Thus, the full information about the matrix

coefficients can be collected in the first row and first column of the matrix and it

is sufficient to define only one vector of length 2Nx − 1 in the memory storage for

the matrix of dimension Nx · Nx [31–34]. In the BTTB case the Toeplitz structure

spreads out into blocks of the matrix. In our case there is also a symmetry in a block

distribution, hence Am,k = A|m−k|, or in the matrix representation

A =




A0 A1 . . . ANy−2 ANy−1

A1 A0 A1 ANy−2

... A1 A0 . . .
...

ANy−2 . . .
. . . A1

ANy−1 ANy−2 . . . A1 A0




. (37)

where each block Am,k is represented by the non-symmetric Toeplitz matrix

Am,k =




am,k
0 am,k

−1 . . . am,k
−(Nx−2) am,k

−(Nx−1)

am,k
1 am,k

0 am,k
−1 am,k

−(Nx−2)
... am,k

1 am,k
0

. . .
...

am,k
Nx−2

. . .
. . . am,k

−1

am,k
Nx−1 am,k

Nx−2 . . . am,k
1 am,k

0




. (38)

14



It is clear, that, by knowing the structure of the matrix A, we need to collect only the

first row and the first column of it to storage all matrix just in one vector of length

2NxNy−1. This is a big advantage for the matrix with dense structure and it provides

a good basis, to construct a fast matrix-vector multiplication algorithm [32–34].

In the case of one-level Toeplitz matrices this algorithm is based on the convolution

theorem and the application of the Fast Fourier Transform (FFT) [22, 24, 25]. This

theorem can be expressed in the matrix form: Cλ = w, where λ is an arbitrary known

vector of length Nx, vector w is the resulting unknown right-hand side, matrix C is a

periodic Toeplitz matrix with elements

C =




c0 cNx−1 . . . c2 c1

c1 c0 cNx−1 c2
... c1 c0

. . .
...

cNx−2
. . .

. . . cNx−1

cNx−1 cNx−2 . . . c1 c0




. (39)

which is often called a circulant matrix. The singular value decomposition of such a

matrix is well known and can be represented as C = F−1ΛF , where the Fourier matrix

F is a special type of the Vandermonde matrix with the elements Fnm = e2πinm/N ,

and matrix Λ is a diagonal matrix with singular values of C on its diagonal, which

can be obtained by multiplying the Fourier matrix by the first row of C. Thus, the

multiplication of the matrix C by a vector can be done by applying the FFT method

three times with the computational cost 3·N log2(N), since each FFT can be performed

with N log2(N) operations.

In order to apply this algorithm to a Toeplitz matrix, one can extend the Toeplitz

matrix to a matrix of a larger size but with circulant property [23]

(
S ⊠
⊠ S

)(
λ

0

)
=

(
Sλ

⊠λ

)
(40)

Such extension can be done for any one-level Toeplitz matrix S. However, in the
two-level case this approach should be applied on each level [20]. Application of this
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technique on the block level can be expressed as the following matrix Ã =



Ã0 Ã1 . . . ÃNy−2 ÃNy−1 0 ÃNy−1 . . . Ã2 Ã1

Ã1 Ã0 Ã1 ÃNy−2 ÃNy−1 0 ÃNy−1 Ã2

... Ã1 Ã0 . . .
...

... ÃNy−1 0
. . .

...

ÃNy−2 . . .
. . . A1 Ã2 . . .

. . . ÃNy−1

ÃNy−1 ÃNy−2 . . . Ã1 Ã0 Ã1 Ã2 . . . ÃNy−1 0

0 ÃNy−1 . . . Ã2 Ã1 Ã0 Ã1 . . . ÃNy−2 ÃNy−1

ÃNy−1 0 ÃNy−1 Ã2 Ã1 Ã0 Ã1 ÃNy−2

... ÃNy−1 0
. . .

...
... Ã1 Ã0 . . .

...

Ã2 . . .
. . . ÃNy−1 ÃNy−2 . . .

. . . Ã1

Ã1 Ã2 . . . ÃNy−1 0 ÃNy−1 ÃNy−2 . . . Ã1 Ã0




(41)

where each block Ã|m−k| is an extension of A|m−k| to a circulant matrix, like in (26).

Here, to be more specific, we assume that Nx = Ny = 2M . Similarly to the BTTB,

the matrix of the type (41) is called Block-Circulant with Circulant Blocks (BCCB)

or two-level circulant matrix [20]. It is easily seen that in our case its dimension is

(4NxNy)
2. Like the one-level circulant matrix, the singular value decomposition of the

BCCB can be performed by the application of the two-dimensional FFT algorithm.

The matrix-vector multiplication and the solution of the SLAE with the matrix (41)

cost together O(6 · 4NxNy log2(4NxNy)) arithmetic operations.

However, to perform fast matrix-vector multiplication algorithm we also need to

extend our vector for an appropriate form [20]. For a vector z of dimension NxNy this

extension can also be done in the two-level way:

eT =


 z1 0 z2 0 . . . zNy−1 0

2Nx elements︷ ︸︸ ︷
zNy 0

︸ ︷︷ ︸
2NxNy elements

0 0 . . . 0 0
︸ ︷︷ ︸

2NxNy elements


 , (42)

where the superscript T denotes the transpose operation and the superscript above the

initial vector z means its block. After the multiplication is performed, some additional

work should be done to collect proper information from the vector of dimension 4NxNy

in a vector of dimension NxNy. Firstly, we ”cut the tail” and keep only the first part

of the obtained array, for j ≤ 2NxNy, by taking only first Ny blocks (n ≤ Ny). In the

same way we collect only first part of each block by restricting index j ≤ Nx. In other

words, after the multiplication Ãe = s̃, we take only snj = s̃nj , j = 1, 2, . . . , Nx, n =

1, 2, . . . , Ny.
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It is easy to estimate that the application of the described ideas inside the BiCG

algorithm reduces the total computational cost to Nit · 48NxNy log2(4NxNy).

6 Preconditioning Technique

As shown in the next section, the application of the BiCG algorithm efficiently solves

the linear system (35), but the number of iterations significantly depends on the size

of the numerical grid. This behavior is connected with the condition number of the

matrix A and with the distribution of its eigenvalues. To improve these parameters,

one may apply the preconditioning technique [22, 23]. It means, that instead of solving

the initial SLAE, one can more efficiently solve the modified system

P−1Aγ = P−1u, (43)

where P is a preconditioner matrix, which reduces the condition number of the matrix

P−1A and aggregates its eigenvalues around 1. With this treatment, the number of

iterations of the BiCG method can be significantly reduced. The preconditioned BiCG

method [35,36] can be rewritten in the following form:

αi = (r̂i−1, P
−1ri−1)/(ẑi, Azi),

γi = γi−1 + αizi,

ri = ri−1 − αiAzi,

r̂i = r̂i−1 − αiA
T ẑi,

βi = (r̂i, P
−1ri)/(r̂i−1, P

−1ri−1),

zi+1 = P−1ri + βizi

ẑi+1 = (P T )−1r̂i + βiẑi.

(44)

It is assumed that the inverse to the preconditioner matrix can be easily constructed,

this means that the system Pwi = ri can be solved efficiently. In the case of one-

level Toeplitz matrices the construction of the preconditioner matrix is done by using

the circulant preconditioner [37-42], because, as discussed in the previous section, the

solution to the SLAE with such a matrix can be constructed by applying the rapid

FFT scheme. The same idea can be applied in the two-level case, where BCCB should

be taken as the preconditioner matrix.

The generalization of the T.Chan optimal circulant preconditioner in the two-level

case can be easily constructed from the elements of the initial matrix [20,21]. Its first
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row vector is as follows:

cj,1i,1 =





a1,11,1, i = j = 1

(Ny − (j − 1))a1,j1,1 + (j − 1)a
Ny−(j−2),1
1,1

Ny
i = 1, j > 1

(Nx − (i− 1))a1,11,i + (i− 1)a1,1Nx−(i−2),1

Ny
i > 1, j = 1

c̄j,1i,1/(NxNy) i > 1, j > 1

(45)

where

c̄j,1i,1 = (Ny − (j − 1))(Nx − (i− 1))a1,j1,i + (j − 1)(Nx − (i− 1))a
Ny−(j−2),1
1,i

+(Ny − (j − 1))(i− 1)a1,jNx−(i−2),1 + (j − 1)(i− 1)a
Ny−(j−2),1

Nx−(i−2),1 ,
(46)

and, as before, the superscripts refer to the block number and subscripts – to the

elements inside this block. It is easy to calculate, that total number of operations for

such an algorithm is Nit ·N(6 log2(N) + 48 log2(4N)).

A more advanced fast method to solve SLAEs with the two-level Toeplitz matrix

can be found in [3]. The method is based on the construction of the inverse matrix via

iterative Newton-Hotelling-Schulze’s method with the use of the wavelet transforms

and the low-rank tensor approximations. However, from the physical point of view,

the authors in the discussed paper do not take into account the Kutta-Joukowski

hypothesis. The kernel of the integral equation is a characteristic hyper-singular kernel.

As a result, in the case of the rectangular grid [3], the matrix T of the SLAE is of

doubly-symmetrical form and all its eigenvalues are real, this allows the authors to

solve it by using the simple CG algorithm. For example, there are required only 39

iterations of the CG method without preconditioning to achieve the accuracy 10−11 on

the rectangular grid N = Nx ·Ny = 1024, and only 15 iterations with the usage of the

optimal T.Chan preconditioner (45)-(46).

It can easily be seen that the eigenvalues of our matrix A from the system (35)

are complex-valued, but the multiplication of the matrix A by the T.Chan two-level

circulant preconditioner aggregate the most part of the eigenvalues of the resulting

matrix around the real value 1. This fact decreases essentially the number of iterations

in the BiPCG method.

Another efficient version from the family of CG methods is the Conjugate Gradient

Squared method (CGS), which preconditioned version can be written out as follows
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[35]:

αn = (r̃, rn−1)/(r̃, AC
−1zn),

gn = rn−1 + (r̃, rn−1)qn−1,

qn = gn − αnAC
−1zn,

γn = γn−1 + αnC
−1(gn + qn),

rn = rn−1 − αnAC
−1(gn + qn),

βn = (r̃, rn)/(r̃, rn−1),

zn+1 = gn + βn(qn + βnzn)

(47)

One can derive from this algorithm a CGS method without preconditioning by

simply putting matrix C to be the unit matrix. Also, this method does not involve the

transpose of the initial matrix, which can be a good advantage in some cases.

7 Numerical Experiments

We have performed many tests by using the discussed methods applied to Eq. (19).

First, we test three different iterative methods such as CGNE, BiCG and CGS. As

shown in the numerical examples, in the case when the number of nodes Nx = Ny = 26,

i.e. the overall size of the matrix is N = 212, the CGNE and CGS methods diverge,

while the BiCG solves the problem in 165 iterations with the accuracy 10−10. When

the T.Chan BCCB preconditioner is used, only 42 steps are needed to attain the same

accuracy.

For the first method, namely the CGNE, it is clear that the condition number of

the matrix ATA is too large and certainly, this is the main reason of the divergency of

the method. Regarding the CGS method, it is well known that, being faster than the

BiCG, it is not so stable as the latter. Specifically, for the numerical experiment under

consideration, the CGS method without preconditioner can only give the accuracy

10−7 for Nx = Ny = 26. For this reason we recommend to use the BiCG method in the

problem under discussion.

In the table 1 the speed of the different modifications of the BiCG approach is

reflected in comparison with the Gauss elimination method. The ”fast BiCG” refers

to the BiCG with the fast matrix-vector multiplication for the BTTB matrix and

the ”fast BiPCG” - to the preconditioned method with both the fast matrix-vector

multiplication and the T.Chan two-level circulant preconditioner. In our calculations,

similarly to [1], we take the following parameters: c = 0.1m, ℓ = 0.5m, u0 = 10m/s,
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ρ = 1.225 kg/m3.

Once the values of the dimensional quantities c and u0 are chosen, the value of

the dimensionless Strouhal number ν = ωc/u0 is defined only by the circular frequency

ω = 2πf , where f is a cyclic frequency measured in Hertz. Since under natural physical

conditions the cyclic frequency f is unlikely greater than 15Hz, then with the accepted

physical parameters the Strouhal number ν is certainly less than 1. That is why all

examples below with the demonstrated numerical results are presented for 0 < ν < 1.

For each of these methods it is indicated the overall number of arithmetic operations,

needed to evaluate the corresponding algorithm. It is notable, that one iteration of the

fast BiPCG is more expensive than one iteration of the fast BiCG, since the former

involves 6N log2(N) additional operations, needed to construct the fast solution of the

convolution system. However, due to the application of the preconditioning technique,

the total number of iterations in the fast BiPCG is much smaller than in the fast

BiCG. As a result, the overall cost of the fast BiPCG is at least twice cheaper than its

non-preconditioned version.

For the last two algorithms the number of iterations needed to attain the desired

accuracy is also presented. It is clear that the classical BiCG algorithm needs the same

amount of iterations as the fast BiCG, for this reason the corresponding row is omitted

in the table 1.

From the computational point of view, not only the total number of operations

is critical. Another important parameter is the memory allocated to collect the data

involved in the algorithm. In our case the more expensive data in this sense is the

matrix storage. It is clear that for both the Gauss elimination technique and the

classical BiCG method (first two rows in the table 1) one needs to collect the matrix

with N2 non-zero elements. However, for the ”fast” versions of BiCG, presented in

the last two rows of the table 1, only the allocation of vectors with the maximum

size 4N log2(4N) is needed. In particular, this explains why both the Gauss and the

classical BiCG cannot solve the system larger than with N2 = (16384×16384) elements

in the used PC.

The comparison of the two ”fast” algorithms shows that in practice, the difference

between these two methods is insignificant. However, for extremely high number of

nodes N = 49 only the fast BiPCG can solve the problem.

Table 1. Dependence of the execution time upon total number of nodes N (s = sec),

with an Intel Core i7-3770 four-cores CPU and 4 GB of DDR3 SDRAM
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Method number of nodes N = Nx ·Ny = 4M

M=4 M=5 M=6 M=7 M=8 M=9

256 1024 4096 16384 65536 262144

Gauss 0.013 s 1.615 s 158.1 s - - -

N3 1.7 · 107 1.1 · 109 6.9 · 1010 4.4 · 1012 2.8 · 1014 1.8 · 1016
BiCG 0.014 s 1.125 s 32.63 s - - -

Nit · 2 ·N2 6.3 · 106 1.4 · 108 3.1 · 109 7.8 · 1010 2.1 · 1012 -

fast BiCG 0.024 s 0.189 s 0.828 s 3.69 s 35.08 s -

Nit · 48N log2(4N) 5.9 · 106 3.8 · 107 2.6 · 108 1.8 · 109 1.4 · 1010 -

Nit 48 65 93 145 242 -

fast BiPCG 0.015 s 0.115 s 0.516 s 1.67 s 11.43 s 59.78 s

Nit · 54N log2(4N) 2.9 · 106 1.8 · 107 1.1 · 108 6.5 · 108 3.9 · 109 2.2 · 1010
Nit 21 27 35 46 62 77

Finally, Figs. 2–6 show the calculated solution vector |γ| in some cross-sections of

the wing, in the case W (x, y) ≡ 1. It is notable that the qualitative behavior of the

solution in our problem is absolutely different from the calculations presented in [3],

where the resultant vector is symmetric. It is easily seen that with higher number

of nodes it is possible to calculate large values of the unknown vector near the edge

x = −1 more accurately. It should also be noted that the magnitude of the solution

grows with the increasing parameter ν.

Analogous solution in the case, when wing’s surface is a periodic function along the

span, is demonstrated in Fig. 7.

8 Conclusions

1. The integral equation of the oscillating wing is adopted for application of various

fast numerical schemes. The kernel of the basic dual integral equation possesses

a hyper-singular behavior along the wing span, variable y, and a Cauchy-type

singular behavior along the chord, variable x. In the case ν = 0 the equation

corresponds to the classical theory of wing in the stationary stream (the lifting

surface theory) [18].

2. In the discrete form the basic equation is reduced to a SLAE with a specific Block-

Toeplitz matrix structure. Various non-stationary iterative methods are tested
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to solve the problem at hand. The Bi-Conjugate Gradient Method demonstrates

higher efficiency than other improved versions of the CG method. It is established

that among other tested methods, the BiPCG method with the help of the two-

dimensional FFT can solve the problem for extremely high number of nodes with

an appropriate time and computer memory.

3. For the correct treatment of the basic dual integral equation the Kutta-Joukowski

hypothesis should be applied, this means that the solution is bounded at the

trailing edge x = 1 and unbounded at the leading edge x = −1. The qualitative

properties of the solution are absolutely different from those in the problem for

wing’s vibration in the motionless fluid [19]. The solution of the latter is symmet-

ric along both wing-span and chord directions. In contrast to this, the solution of

the problem at hand is symmetric along the wing-span direction and, due to the

Kutta-Joukowski condition, is strongly asymmetric along the chord direction.

4. The constructed exact numerical method allows us to estimate the precision of

the approximate asymptotic solution valid in the case of large aspect ratio λ ≫ 1

[1]. Table 2 demonstrates the comparison between the present direct numerical

values of the aerodynamic force acting over the surface of the wing, namely the

quantity (17). It is clearly seen from Table 2 that the numerical results approach

the asymptotic one with increasing λ, for all values of the Strouhal number on

the interval ν ∈ (0, 1), W (x, y) ≡ 1. Thus, for λ = 10 the maximum relative

error of the asymptotic solution is around 17%, and for λ = 20 is around 9%.

5. Let us briefly specify what is new in the present work and what is

already available in the literature.

• The basic dual integral equation is well known in the two cases: (i)

the stationary flow (u0 6= 0, ω = 0) [10,18], and (ii) the oscillations of the

plate placed in a fluid at rest (u0 = 0) harmonic in time (ω 6= 0) [19]. The

considered case of the harmonic oscillations of the plate in a uniform

flow (u0 6= 0, ω 6= 0) is less known, and a standard derivation requires

a huge amount of mathematical transformations, like in [18]. Here we

give a short development by using the double Fourier transform.

• In those two cases above, (i) and (ii), the kernel of the basic inte-

gral equation can be written explicitly in terms of some elementary
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functions. In the problem at hand the kernel (20)-(21) is expressed

in terms of the dual Fourier transform, which cannot be calculated

explicitly. The representation for the kernel in the form (24)–(27) is

absolutely new, and the key point there is the extraction of its regular

part (25a) as a certain integral, which can be implemented numerically

in a simple way, plus two singular kernels of some explicit elementary

form. This idea is allied to some classical ideas in the theory of asymp-

totic expansions (see, for example [30], with further helpful references),

which is to retain the singularities of the integrand in (23), for small

and large arguments, in a regular part of the kernel, and to extract all

singularities of the kernel explicitly.

• Once the disretization of the dual integral equation is performed, the

arising matrix is of a Toeplitz-Blocks structure. Since in the case of

the dual equation the total size of the grid grows as the second power

of the linear grid dimension, then the computer expenses grow as the

sixth power of the linear dimension, if one applies any direct numerical

implementation like Gauss elimination technique or something similar.

Hence, in practice, this equation cannot be numerically resolved with

a required precision. The natural idea is then to take into account

the specific geometric structure of the matrix under the disretization.

The numerical treatment applied in the present paper is based on

the preconditioned bi-conjugate gradient method with the two-level

T.Chan circulant preconditioner, which is absolutely new when being

applied to the problem on plate’s harmonic oscillation in the flow.

• Generally, the application of the numerical techniques applied, namely,

the BiPCG with a circulant preconditioner, is of course not new. How-

ever, the present authors could not find in literature a detailed compar-

ison of various algorithms applied to the matrix of the specific structure

arisen. The detailed analysis of application of various iterative meth-

ods from the CG-family of algorithms allows us to identify a certain

method, which is the best for the considered types of problems, in the

sense of both the running time and the random-access memory. This

is in fact a combination of the BiPCG method and the fast matrix-

vector multiplication on each iteration step performed by the two-level
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convolution with the FFT algorithm.
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Table 2. The amplitude of the aerodynamic force |P | · 10−3 versus parameters ν and

λ: comparison between the numerical values for different λ

and the “asymptotic” value for λ → ∞ [1]: W (x, y) ≡ 1

ν 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ = 5 0.467 0.891 1.294 1.718 2.169 2.652 3.216 3.827 4.503 5.279

λ = 10 0.552 1.013 1.438 1.861 2.327 2.835 3.419 4.052 4.751 5.538

λ = 20 0.601 1.077 1.504 1.935 2.401 2.919 3.498 4.143 4.857 5.643

asymp. 0.647 1.128 1.537 1.927 2.333 2.776 3.273 3.833 4.463 5.168

References

[1] M.A. Sumbatyan, A.E.Tarasov, A mathematical model for the propulsive thrust of

the thin elastic wing harmonically oscillating in a flow of non-viscous incompressible

fluid, Mechanics Research Communications, 2015, 68, 83–88.

[2] K.D. Jones, A collaborative numerical and experimental investigation of flapping-

wing propulsion, AIAA Paper No. 2002-0706, 2002, 1-14.

[3] J.M.Birch, M.H.Dickinson, Spanwise flow and the attachment of the leadingedge

vortex on insect wings Nature, 2001, 412, 729-733.

[4] S.P. Sane, M.H.Dickinson, The control of flight force by a flapping wing: lift and

drug production, J. Experiment. Biol., 2001, 204, 2607-2626.

[5] D.A.Read, F.S.Hover, M.S.Triantafyllou, Forces on oscillating foils for propulsion

and maneuvering, J. Fluids Struct., 2003, 17, 163-183.

24



[6] R.Ramamurti, W.C. Sandberg, A three-dimensional computational study of the

aerodynamic mechanisms of insect flight, J. Experiment. Biol., 2002, 205, 1507-

1518.

[7] A. Leonard, Vortex methods for flow simulation, J. Comput. Phys., 1980, 37, 289-

335.

[8] R.I. Lewis, Vortex Element Methods for Fluid Dynamic Analysis of Engineering

Systems, Cambridge University Press: Cambridge, 2005.

[9] G.Morgenthal, Aerodynamic Analysis of Structures Using High-resolution Vortex

Particle Methods: PhD thesis, University of Cambridge. Department of Engineering:

Cambridge, 2002.

[10] S.M.Belotserkovsky, I.K. Lifanov, Method of Discrete Vortices, CRC Press: Boca

Raton, Florida, 1992.

[11] D.A.Peters, M.A.Hsieh, A.Torrero, A state-space airloads theory for flexible air-

foils, J. Amer. Helicopter Soc., 2007, 52, 329-342.

[12] W.P.Walker, M.J. Patil, Unsteady aerodynamics of deformable thin airfoils, J.

Aircraft, 2014, 51, 1673-1680.

[13] C.O. Johnston, W.H.Mason, C.Han, Unsteady thin airfoil theory revisited for a

general deforming airfoil, J. Mech. Sci. Tech., 2010, 24, 2451-2460.

[14] D.Mateescu, M.Abdo, Theoretical solutions for unsteady flows past oscillating

flexible airfoils using velocity singularities, J. Aircraft, 2003, 40, 153-163.

[15] J.M.Anderson, K. Streitlien, D.S. Barrett, M.S.Triantafyllou, Oscillating foils of

high propulsive efficiency, J. Fluid Mech., 1998, 360, 41-72.

[16] I.H.Tuncer, M.Kaya, Optimization of flapping airfoils for maximum thrust and

propulsive efficiency, AIAA journal, 2005, 43, 2329-2336.

[17] U.Gulcat, Propulsive force of a flexible flapping thin airfoil, J. Aircraft, 2009, 46,

465-473.

[18] R.L.Bisplinghoff, H.Ashley, R.L.Halfman, Aeroelasticity, Addison-Wesley: Cam-

bridge, 1955.

25



[19] I.V.Oseledets, E.E.Tyrtyshnikov, Approximate inversion of matrices in the pro-

cess of solving a hypersingular integral equation, Computational Mathematics and

Mathematical Physics, 2005, 45, 302–313.

[20] D.A.Bini, A family of modified regularizing circulant preconditioners for two-

levels Toeplitz systems, Computers and Mathematics with Applications, 2004, 48,

755–768.

[21] C.Van der Mee, G.Rodriguez, S. Seatze, Fast computation of two-level citculant

preconditiones, Numerical Algorithms, 2006, 41, 275–295.

[22] G.H.Golub, C. F. van Loan, Matrix Computations , Johns Hopkins Univ.

Press: Baltimore, Md., 1996.

[23] E. E.Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Springer:

New York, 1997.

[24] C.Van Loan, Computational Frameworks for the Fast Fourier Transform,

SIAM: Philadelphia, 1992.

[25] W.H.Press, S.A. Teukolsky, W.T.Vetterling, B.P. Flannery, Numerical

Recipes: The Art of Scientific Computing, 2nd Edition, Cambridge University

Press: Cambridge, 1992.

[26] A.P. Prudnikov, Y.A.Brychkov, O.I.Marichev, Integrals and Series, Vol. 1, Gor-

don & Breach: Amsterdam, 1986.

[27] M.Abramowitz, I. Stegun. Handbook of Mathematical Functions, Dover: New

York, 1965.

[28] F.D.Gakhov, Boundary Value Problems, Pergamon Press: Oxford, 1966.

[29] S.G. Samko, Hypersingular Integrals and Their Applications, CRC Press: Boca

Raton, Florida, 2002.

[30] M.A. Sumbatyan, A. Scalia, Equations of Mathematical Diffraction Theory, CRC

Press: Boca Raton, Florida, 2005.

[31] W.Trench, An algorithm for the inversion of finite Toeplitz matri-

ces,SIAM Journal on Applied Mathematics, 1964, 12, 512–522.

26



[32] F. de Hoog, A new algorithm for solving Toeplitz systems of equa-

tions,Linear Algebra and its Applications, 1987, 88/89, 123–138.

[33] G.Ammar, W.Gragg, Superfast solution of real positive definite

Toeplitz systems, SIAM Journal on Matrix Analysis and Applications, 1988,

9, 61–76.

[34] V.V.Voevodin, E. E.Tyrtyshnikov, Computational Processes with Toeplitz

Matrices, Nauka: Moscow, 1987.

[35] Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-

ods, 2nd Edition, (edited by R.Barrett, M.Berry), SIAM: Philadelphia, 1994.

[36] R.H-F.Chan, X-Q. Jin. An Introduction to Iterative Toeplitz Solvers, SIAM:

Philadelphia, 2007.

[37] G. Strang, A proposal for Toeplitz matrix calculations, Studies in Applied

Mathematics, 2001,23(2), 494–510.

[38] T. Chan, An optimal circulant preconditioner for Toeplitz systems,

SIAM Journal on Scientific and Statistical Computing, 1988, 9, 766–771.

[39] R.H.Chan, M.K.Ng, Conjugate gradient methods for Toeplitz sys-

tems,SIAM Review , 1996, 38, 427–482.

[40] M.Van Barel, G.Heinig, P.Kravanja, A stabilized superfast solver for

nonsymmetric Toeplitz systems, SIAM Journal on Matrix Analysis and Appli-

cations , 2001, 23, 494–510.

[41] M. Stewart, A superfast Toeplitz solver with improved numerical sta-

bility, SIAM Journal on Matrix Analysis and Applications, 2003, 25, 669–693.

[42] I. V.Oseletets, E. E. Tyrtyshnikov, A unifying approach to the con-

struction of circulant preconditioners, Linear Algebra and its Applications,

2006, 435–449.

27



Legends to Figures

1. Flapping elastic wing in the homogeneous flow of a non-viscous incompressible fluid.

2. Solution |γ| versus variable x on the central chord of the wing (y = 0), for various

number of nodes N : ν = 0.4, W (x, y) ≡ 1.

3. Solution |γ| versus variable y on the central wing-span line (x = 0), for various

number of nodes N : ν = 0.4, W (x, y) ≡ 1.

4. Solution |γ| versus variable x on the central chord of the wing (y = 0), for various

Strouhal number ν: N = 49 = 262144, W (x, y) ≡ 1.

5. A scaled-up fragment from Fig. 4.

6. Solution |γ| versus variable y on the central wing-span line (x = 0), for various

Strouhal number ν: N = 49 = 262144, W (x, y) ≡ 1.

7. Solution |γ| versus variable y on the central wing-span line (x = 0), for various

number of nodes N : ν = 0.4, W (x, y) = cos(πy).
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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