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1. Introduction

In this paper, we consider the numerical solution of the v 2ll-k .ow.. Korteweg—

de Vries (KdV) equation,

Ut(x;t) = aummr(xat) + 6U(I7t)ux(xat)7 (xat) €9:= U’vb] X [0,00), (1)

OZ,ﬁER7 0‘67&07

where, as is usual, the subscript denotes the partia. lerivative w.r.t. the given
variable. Typical values of the parameters cons..'~red .or this equation are, e.g.,

a = —1, 8 =—6. The equation (1) is completea ~ith the initial conditions
u(z, 0) = up(z), x € [a,b], ar pu.iodic boundary conditions. (2)

Consequently, ug will be assumed  bhe a ~eriodic function, smooth enough (as
a periodic function) so that the soluti n u turns out to be smooth as well.! For
sake of brevity, when not necessar, we shall hereafter skip the arguments (x,t)
for u and its derivatives.

This equation, origin 'ly prop ised to describe wave propagation on the sur-
face of shallow water, 1as theu seen rediscovered as the continuum limit of the
Fermi-Pasta-Ulam ex, ~.mer . [54] (see also [3]), and one of its main features
is that of possess o soliton solutions. It has been the subject, for about half
a century, of many inve.tigations both from a theoretical point of view (see,
e.g., [26, 5, 4, 3", 45, 35, 29, 36]) and from its numerical approximation. In
this regars’, besiac  the first numerical approaches in [49, 1, 50, 7], conservative
method. har ¢ be m developed by using various approaches [33, 25], including
Galer . methoeds [53, 41, 52, 6, 34, 22], finite difference schemes [2, 55, 42], op-
eratc - splitti 1g and exponential-type integrators [32, 31], structure and energy-

- reserving methods [51, 23, 39, 43, 37, 48].

1 Ideally, in the most favourable case where u is analytic, its n-th Fourier coefficient decays
« <ponentially with n, whereas it decays as n=" if uw € C". A fast decay of the Fourier
¢ officients, in turn, is useful in view of what we are going to study in Sections 2 and 3. We

refer, e.g., to [38] for more refined regularity results.




From a mathematical point of view, the equation (1) has a *-Ha. ltonian
structure, since it can be written in Hamiltonian form in twe dih reut ways [44].

In particular, we shall consider here the following Hamilton. * formulation,

)
uy = J E’H[u],
where J = 2 and £%H[u] is the functional de wvati .” of the Hamiltonian
functional
L 2, B s
Hlu] = 3 —a(ug)”® + U (3)

Consequently, because of the periodic bound’ ry conditions, the Hamiltonian

functional turns out to be conserved,
Hu)(t) = H|'(0) vt > 0. (4)

Due to the bi-Hamiltonian structure t.. e are, however, infinitely many invari-
ants. Among them, the simple. 0., = hose conservation can be easily derived

from (1), is
b
U[u]z/uu e UR() = U(0), V> 0. (5)

In more details, (3) r pre: ants she energy of the system, whereas (5) is the mass.
Consequently, the conser . .ion properties (4) and (5) are important for the
correct numeric..l sim.'2tion of such problem. In particular, the conservation of
the energy wi'. fo, ow from a suitable space semi-discretization, able to preserve
the Hamiltoniw. structure of the problem. For this reason, in this paper we
are conc rne’. with the numerical solution of problem (1)—(2), while exactly
conserving (. '~'14) and (5).

Y 7ith thi premise, the structure of the paper is as follows: in Section 2 we
c2~* the | _olem into Hamiltonian form, by considering a Fourier-type expansion
n space next, in Section 3 we consider a semi-discrete problem, which amounts

t0 a .arge-size Hamiltonian system of ODEs; in Section 4 we sketch the basic

2See any book of calculus of variations, for the definition of functional derivative, e.g., [27].

See also [40, 30].




facts about Hamiltonian Boundary Value Methods (HBVMSs), -hich e shall
use to solve the problem in time while conserving the Ha ailt. »ian, and also

e

explaining the details about their efficient implementation “ . the considered
problem; in Section 5 we collect a number of test probl ms; at last, in Section 6
we report a few concluding remarks.

We conclude this section by stressing the fact 1 aat +'.c ~fficient implementa-

tion of the methods is an important feature, wh n solvine che high-dimensional

ODE problems derived from the semi-discretization ¢ the PDE.

2. Fourier expansion in space

Since the solution u(x,t) of (1) * « I - for is periodic in space, we shall
consider its space expansion along the t¢ «owing orthonormal basis for periodic

functions in L?[a, b],

A T —a .
sj(x) = \/i—a"ﬂ(%rjb—a)’ i=1,2,...,

with ;0 the Krone ker ¢ lt7, such that for all allowed values of ¢ and j:

/a ' ) e \da = 0,y = / " (@) s;(z)dz, / ' i) s@)de=0. (7

Consequently, © - suitable time dependent coefficients g;(t),p;(¢), one has the

expansio .:

iz, t) = coqo(t) + Y lej(@)g; (1) + 5 (2)p; (1)] (®)

j=1
wherc we t7 e into account that (see (6)) co(z) = (b — a)~/2. Clearly, from
8) it { lows that the periodic boundary conditions are fulfilled for all ¢. The

e.~ans'om (8) can be cast in a more compact form, by defining the infinite




vectors

as follows:

u(x,t) = cogo(t) + c(x) T q(t) . s(x)"\1). (10)

Moreover, we set the vectors

containing the first derivatives of th> L. ~is functions ¢;(x) and s;(z), and sim-
ilarly the vectors ¢’ (z), s”(x), < t«), = “(x) with the second and third deriva-

tives, respectively. We also define the vectors
! i) Pa(t)
q(t) = l IV p(t) =] p2A(t) |,

containing the t'me '~rivatives of the coefficients ¢;(t) and p;(t), respectively.

In so doing, v - ¢ 1 easily compute the partial derivatives of u(z,t):

= codo(t) + e(x) T 4(t) + s(x) " p(t),

= d(2)Tq(t) + &' (x) p(t), (11)
= "(2)"q(t) + 8" () "p(t),

= "(x)"q(t) + 8" (x) "p(t).

“he foll wing results hold true.

T euma 1. Let us define the infinite matriz?

3Hereafter, for all matrices, all the entries not explicitly defined are assumed to be 0.




2
p= 2T (12)
b—a 3
Then:
¢(x) = ~Ds(x), S@) D),
c’(z) = —D?c(x), s (») = - D?s(x), (13)
c"(z) = D3s(x), s .\ = —D3c(x).

Proof For the first derivatives, one has:

21y .
C;(x)zimsj(x% /(1,)7 1)_acj(m)7 .]:132)"'3

which, in vector form, can be v **n a- the first line in (13). The proof for the

other derivatives is similar. [
Lemma 2. With referer ;e to (1°) and (5) one has:

a0(t) = coUlu] (0). (14)
Consequently, qo(* ) is con. ant.

Proof In fact “om (10) one has, by taking into account that co = (b—a)~'/2:

b
Uty - [ ulet)de = (b — a)eoqo(t) = 5 ao(t), £ >0.

v a

v

Conseque. v, si'.ce U[u] is conserved (see (5)), one has then

qo(t) = qo := coU[u](0), vVt >0,
S requred. O

- virtue of Lemmas 1 and 2, the equations (10)—(11) can be written as (see

(.) and (12)—(14)):

u(z,t) = o + c(x) "q(t) + s(z) "p(t), Ug := P uo(x)d, (15)




and

w(z,t) = c(z)"4(t) +s(z) "p(t),

us(z,t) = —[Ds()]"q(t) +[De(x) p(t). (16)
Uza(2,1) = —[D%c(x)]"q(t) — [D*s(N"p(t
Uses(2,t) = [D’s(2)]"q(t) — [D (@), (1),

respectively.

Remark 1. As is clear from (6)—(7), the . nser. “.on property (5) is fulfilled
by the function u(x,t) defined in (15).

Lemma 3. With reference to the nov wu,.. “?'—(16), one obtains that the prob-

lem (1)-(2) can be rewritten as th follo. ing formal set of ODEs,*

) re 2
q = D [—QD2p+ %_/ S (UO + (CTQ) =+ (STP)) dz |,

b
-D [_aozq v‘ﬁ/a e (i + (cTq)+ (sp) do |,

p 2

with the initial co .ditions

b b
q(0) = [ <v)ug(x)dr =: qo, p(0) = / s(x)ug(z)dz =: po. (18)

Proof Le us su” stitute u; and ugq, from (16) into (1). Multiplying by e(x),

then int ora’.ng i | space, and considering that

b b
/ e(x)e(x)Tdz = / s(z)s(z)Tdz = I, (19)

*.1e identity operator,

b b
/ c(z)s(z) dz :/ s(z)e(x)'dz = O, (20)

4Hereafter, for sake of brevity, we shall sometimes omit the arguments of the functions.




and wu, = (u?),/2, provide us with the equation

b
Gg=—aD3p+ g/ c(u?) da. (21)

Integrating by parts and taking into account the perio iic bou. dary conditions,

one then obtains

b b W)
/ c(u?),dx = —/ culde = ;/ s Adx.

Substitution into (21) then provides us wit. the firs . equation in (17). The

second equation is similarly proved by mult,, 'ving (1) by s(z), integrating in
space, and considering that

b b b
/ s(u?) dz = —/ Jut —D/ cu’dz.

Finally, (18) follows by multiplying (2, by ¢(x) and s(x), respectively, then

integrating in space. [J
The following result tl :n nc'ds true.

Theorem 1. With re erence .~ matriz D defined in (12), system (17) can be

formally written as®

\ 0H(q,p)
[ d 1 9q
= ®D , (22)
P ) ~1 0H(q,p)
op

which ¢ Har iltor ian, with Hamiltonian
1 T 2 T 2 B T T3
Hq,p)z{a(q D?*q+p Dp)+§ (to+c'q+s'p) dz|. (23)

Chis la *er, in turn, is equivalent to the functional H[u] defined in (3), via the

e. mans’om (15).

5As is usual, ® denotes the Kronecker product.




Proof With reference to (23), it is straightforward to prove the.’

OH . 3

9H(a,p) _ —aD2q+é/ c(ip+c g+ p) da,
8(] 2 a

oH b o

% = —aD’p+ g/ 3(u0+CT( +ST1~\2d93~
p a '

Consequently, (17) is equivalent to (22)—(23). In _.ler v, prove that (23) is
equivalent to H[u] as defined in (3), it suffices to « ~r «der hat

h

b
/ (Go+c'q+ sTp)3 dx = / e,

because of (15), and

b
q'D’q+p'D’p = TDs s(@TDqupTDc(:z:)c(x)TDp]dx
b

20,,,

\\

by virtue of (16) and (19). O

3. Fourier-Galerkin spa~- <semi-discretization

In order for problem (.7—(1¢) to be solvable on a computer, one needs to
truncate the infinite xpe ision (15) to a finite sum. Therefore, having fixed a

conveniently large salue V > 1, one approximates (15) as

u(e )~ wt) = o+ Y le(@)g(0) +si@p (0] (24)

j=1
We can still po. the expansion (24) in vector form as (15), by formally replacing

the infin"we v ctor= (9) by

() s1(z)
c(x) = : s s(a) = : ;
en (@) sn ()
(25)
a1(t) p1(t)
q(t) = . opt)= : ;
an (t) pn ()




having length N. Similarly, the matrix (12) is formally replacew »v the N x N

matrix

(26)

'@

For the sake of simplicity, we continue to use the ~ame not- .ion for the truncated
version of the infinite vectors and matrices: clearly, 1. reafter, they will denote
the finite ones. Consequently, expressions si. ~ilar . /76) hold true for the partial
derivatives of 4, and (19)-(20) continue f~=~-' " to hold. Nevertheless, the
function (24) does not satisfy the equation (. anymore. However, in the spirit
of Galerkin methods, by requiring the -es’dual be orthogonal to the functional
space

Vn =span{co(- o (x, s1(z),...cn(z), sn(x)},

to which the approximation (24) belungs for all ¢, one formally obtains again
the equations (17), with t"ie init. 1 conditions formally still given by (18). Con-
sequently, Theorem 1 conti. “es ormally to hold, even though the Hamiltonian
(23) is now only an a sprec .ima*ion to the functional H defined in (3). Neverthe-
less, it is known fr m the “¥ cory of Fourier methods [21] that, under regularity
assumptions on . (an.' thus, on the initial condition ug), one has that the trun-
cated approxi aav ons to u and H converge more than exponentially to them, as
N — 00, as we ~etched in footnote 1 (this fact is usually referred to as spectral

accuracy .

Rem ark 2 A criterion for getting an estimate for N is to check that both the

resia al corr :sponding to the initial condition (see (15) and (18)),
Eo = |luo — o — ¢"qo — s "pollz, = [luo(z) — a(x,0)] L, (27)

w < ‘he difference of the values of H(qo,po) is within the round-off error level,

Jor nearby values of N.

10




Finally, in order to obtain a full space semi-discretization, one . 2eds to
compute the integrals appearing in (17), whose argument . ar  trigonometric
polynomials of degree at most 3N in the space variable. Vor this purpose,
as observed in [9], one can use a composite trapezoid . rule, evaluated at the
abscissae,

h—
Ti=a-+1 a7 1=0, ..,7, (28)
m

with m a suitably large natural number. In pe ‘icui.., Vm > 3N the inte-
grals are exactly computed (see, e.g., [24, TL. 5.1.4]). For this reason, we shall

hereafter consider the value

m =30 + 1. (29)

Consequently, the truncated problem ‘1., I wving dimension 2N, with the in-
tegrals computed via the composit trape -oidal rule at the abscissae (28)—(29),
define the semi-discrete problem in . »acc to be integrated in time. The cor-
responding semi-discrete Hamilto. *an 18 then formally still given by (23), with
the integral appearing in it ~~mputed via the composite trapezoidal rule based

at the abscissae (28)—(2° .

4. Hamiltonian B. ' fars Value Methods

In order to r otw.~ a fully discrete method, we now need to integrate the
Hamiltonian r.o. 'em (17)-(18), having dimension 2N, by taking into account
that the vecie = : s, q, p, and matrix D, are defined by (25)—(26). As observed
in [47], it s i portant to obtain a Hamiltonian semi-discrete ODE problem, from
the space ». mi-c.scretization of a PDE with Hamiltonian structure. In fact, in
such a case « \e may use a suitable geometric integrator (see, e.g., [47, 40, 30, 10]),
for eti.ient’y solving the resulting Hamiltonian ODE problem. Hereafter, we
shall co. sider Hamiltonian Boundary Value Methods (HBVMs) for numerically
su. e (17)—(18). They are a class of energy-conserving Runge-Kutta methods
v alcu has been studied in a series of papers (see, e.g., [11, 12, 13, 14, 8, 15]).

1 "oreover, HBVMs have been also generalized along several directions, including

11




the application to Hamiltonian PDEs [4, 9] (the reader is also . ~ferre.’ to the
recent monograph [10]).

A HBVM(k, s) method is the k-stage Runge-Kutta meuv. -~ A defined by the
Butcher tableau (see, e.g., [14, 10])

where, by setting {P;};>0 the Legendre poly. ~mial b: sis orthonormal on [0, 1],
ie.,

1
PiEHi, / Pi(l‘)Pj(x)dw_—Oij’, Vi,ij,l,...,
0

(bs, ¢;) are the weights and abscissae ¢ tuc O 1ss-Legendre quadrature formula

of order 2k (i.e., Pu(c;) =0,i=1 ., k), and

Po(er) . Fo 1(c1)
Ps — : : c kas
PO/Jk) . Ps_l(ck)
( Jot Pola,dz oo [ Peoy(a)da
I, = ; : € RF*s, (31)
fOCk Po(l')dx . fOCk PS,1<$)CL'IJ
by
Q - e RF*F,
by

By u ing stsndard arguments in the analysis of such methods (see, e.g., [14, 10]),

it is | nssible to prove the following result.

Cheore n 2. Forall s=1,2,..., and k > s, the HBVM(k, s) method (50):
is symmetric and has order 2s;

e when k = s it reduces to the (symplectic) s-stage Gauss collocation method;

12




e it is energy-conserving, when applied for solving (17)-(z.) for ill k >

3s/2.

Remark 3. Because of the result of Theorem 2, hereaftr , we si.. 'l consider the

7

choice

k:Fﬂ s=1,2,. ., (32)

for all HBVM(k, s) methods. Consequently, theu are ene gy-conserving and of
order 2s, when applied for numerically solving (17, (18). Moreover, because

of the expansion (15), the semi-discrete so’tiorn. ~le- satisfies the conservation

property (5).

Let us now study the efficient i .. '~entation of a generic HBVM(k, s)
method when applied for solving (17)—_8) by using a timestep At = h. By
setting, with reference to (23) and (.5),

q 90
Yy = ; H(y) = H(qvp)v Yo ‘= ’ (33)
b Po

and considering matrix D a.Snecd at (26), one has that (17)—(18) can be formally

rewritten as

D
y="H(y), y(0) = yo, J = . (34)
-D
By also sett’ g
[ Y VH(Y7)
'€ eR¥NF VH(Y):= : , (35)

i o., the stage vector of the method (30) applied for solving (33)—(34), and VH
~valuate 1 at the stages, respectively, one obtains the nonlinear set of k vector

~~mations,

Y =e®uyo+hL P/ Q@ JVHY), e=(1,...,1)T eRF.  (36)

13




Once this system has been solved, the approximation y; ~ y(..' is c. nputed

as:

k
Y1 =yo+hY bJVH(Y;). (37)
i=1

Remark 4. It is worth mentioning that, when s =1 r~4d k = 2, according to
(82), the quadrature in (37) is exact and one retricocs the averaged vector field

method [46] for solving (17)-(18).

According to [13], we now derive a more cowu. ~nien, tormulation of the discrete
problem (36). For this purpose, by set. -y necrearter I the identity matrix of

dimension 2N, and defining the vectcr

70\

N = : =r Q@ JVH(Y), (38)
78—1 /’

one has that (36) can be ¥ r1twe ~ as
Y - e®@yo+hI,®17. (39)

In fact, by pluggir ; (5¢, in’o (39), one recovers (36). However, an equivalent
formulation of t} ¢ «  ~rete problem (36) can be derived by substituting (39) at
the right-hand .2 of (38), thus obtaining the equation

F{y) =~ -P/Q®JVH (e®yy+ hZ, @ Iv) = 0, (40)

whose ‘hlocn, <umension is s, independently of k. Once the discrete problem

(40) has bee  solved, the approximation (37) is given by

Y1 = Yo + ho.

In tacy, taking into account that Py(x) = 1, from (31), (35), and (38) one obtains

‘nat:

k
Y=Y bJVH(Y;).
=1

14




Consequently, when implementing the HBVM(k, s) method (30), “e co.. plexity
for solving the equivalent discrete problem (40), having (bl ck) dimension s, is
simplified w.r.t. solving the stage equation (36), which has “lock) dimension
k, due to the fact that, because of (32), k > 5. In ad iition » this, by taking

into account that, because of the properties of Legendr. nolyr omials,

o —&
0
proz, — X,im | O € R, (41)
E 7‘C;—1
5571 0
1
67, = R— 07 . , S — ]-7

one has that the simplified Newtc - itera ion for solving (40), representing the

reference method of solution, reads:

set v = 0
for r = 0,1,...:
solve rfs ®: - X ® JVQH(yo)] Ay =—-F(v") (42)

set A= AT 4 ANT

end

We observe t} at t e coefficient matrix of the linear system in (42) has dimension
s-2N, ie.. s v es larger than that of the continuous problem (17). Moreover,
we need o fa tor such matrix at each integration step. However, we can gain a

twofold simy."*fi- ation of the iteration (42), as explained below.

I ‘tstly, b considering matrix D defined at (26) and the expansion (15), one

Vas

—aD?*+ 3 f; uce ' dx 8 fab ues'dzx

VQH(?JO) =
B f: usc! dzx —aD?+ fab uss ' dz

6We refer to [13] for full details.

15




Table 1: Parameter defined at (45).
5 1 2 3 4 ) 2

ps | 0.5000 0.2887 0.1967 0.1475 0.1173 . 1971

By approximating u with its mean in space, given hy «_ /= ¢ (15)), then, by
virtue of (19)—(20), we can consider the approxim ite ".ess an matrix

V2H (yo) ~ =G, D :=—D? + By Iy, (43)

D

which is diagonal and constant.

Secondly, in place of the simplifiea New - iteration (42) with the simplified
Hessian (43), we consider a “splitti ~-Nev ton” blended iteration. This iteration,
previously devised (see, e.g., [16]) 1. v Liock Boundary Value Methods,” has
then been generalized in [17] an’ impiemented in the computational Fortran
codes BiM [18] and BiMD [19] for stiff ODE-IVPs and linearly implicit differential
algebraic equations (the wtter ¢ de is also available at the Test Set for IVP
Solvers [56], and is o' e of tu. vest codes currently available for numerically
solving such proble.. ). Th blended iteration has also been considered for
HBVMs [13, 8], p wing to we very efficient when applied to Hamiltonian PDEs,
as is shown in [9] for tu. semi-linear wave equation, and in [4] for the nonlinear
Schrédinger « quat on. We here sketch the main facts for the solution of problem
(17)—(18). In fac., esach PDE has its own structural properties, which need to be
exploite in .rder to optimize the nonlinear iteration. As a result, the iteration

(42) i~ .cplace] by the following one:

""Ne reiu, e.g., to [20] for details on block Boundary Value Methods.

16




sety? = 0
for » = 0,1,...:
set " = —F(y")
set i =p X, @I
set A" =1L, YN0 +1s. N (n" ni)] (44)
set ¥ =~ + Ay"

end

where X is the matrix defined at (41),

s T I )\, 45
pom i W (45

with 0(X;) denoting the spect: ™ of .7, (a few values of the parameter p, are

listed in Table 1), and (see (34) ana (13))

/ —1
In -B )
Si=(I—hpodt =N ., B:=hp,DD.  (46)

7\3 In

Remark 5. We o ~erve that matriz X is the only matriz which needs to be
factored to per” ~m the iteration (44). Moreover, its dimension equals that of
the continuc < prsblem (17), i.e., 2N. Conversely, even using the approximation

(43), the implifien Newton iteration (42) would require to factor the matriz
(I, @1 - hX,® JG] € R2Nsx2Ns,

that .~ s tices larger. Consequently, the use of the blended iteration (44) re-
wces e computational cost for the implementation of the methods, both in
1.ms «, memory requirement and floating-point operations per iteration. Also,
w o _ctensive numerical experimentation performed in [18, 19] (see also [56]),
_=stifies the effectiveness of the blended iteration itself, so that we shall not go

further into details concerning this aspect.
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Next result states that ¥, alike ¥ 71, has a block diagonal si. “~turc.

Theorem 3. With reference to matriz (46), one has

(IN-i-BQ)_l B(IN—FBQ\_‘
_B(Iy + B! (Iy + BY) !

M=

Consequently, matrix >:
e is constant and, therefore, needs to be cow ~uted ~ .y once;

e has a 2 x 2 block diagonal structure. < msequr atly, only two vectors of
length N are needed for storing it, resp. ~tively containing the diagonal

entries of (Ix + B%)™' and B(ln - B?)7L.

In conclusion, one obtains that, besi'es nc evaluation of F(v) in (40), the
linear algebra cost for performing I ~ ite.tion (44) is linear in the dimension
of the problem (17) to be solved, b th in terms of required operations and
memory requirements. Concerning "he evaluation of F'() one has a complexity
which is O(N log N) opera* .. ~ and O(NN) memory requirements [28], since the
evaluation of the integri ~ via th: composite trapezoidal rule at the abscissae
(28)—(29), can be dor : vir the £FT and its inverse. This, in turn, allows the

use of relatively large = .ues f V.

Remark 6. Fo' con. leteness, we mention that the use of a fized-point iteration

for solving th' au. ~rete problem (40), i.e.,
A"t = 2TO® JVH (e ® yo + hT, ® Iy") r=0,1,...,

would req.” e, tc converge, the use of a timestep At (see (34) and (43)) of the
orde of ||J7Y|7* = |DD||7, i.e., such that

_1({b—a 8
Atalol ™ (o) (47)

which 7 | therefore, very small, when N is large. The blended iteration (44), on

u o _lher hand, allows the use of much larger timesteps (actually, the iteration

= guaranteed to converge for any timestep, in the case where 8 = 0 in (1)

[16, 17]).
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5. Numerical examples

In this section we provide a few numerical examples, Jdme ( av confirming
what exposed in Sections 3 and 4. In all cases, we 2 pe.. dic boundary
conditions, according to (1)—(2). All numerical tests 1ave be. n performed by

using Matlab (R2016a) on a 2.2 GHz dual core i7 ) ..0p w.u 8GB of memory.

Ezample 1. This example is adapted from [23, Exa.. »le. 5.3]:

up(x, ) + €Uggr (2, t) + u(z, )u, (x,t) = ° (x,t) € [-3,5] x [0,24],

e = 0.0013020833. (48)

The initial condition at ¢t = 0 is derivea ‘rc a the known solution of the problem,

ie.,
2

([ [c 1
u(zx,t) = 3¢ {sech R 4g(z,, - ct)[3,5])] , c=3, (49)

v

where, in general,

£, if £ €la,bl,
) "= J a+rem(¢é —a,b—a), if £>b, (50)
N 7 —rem(b—¢&,b—a), if &<a,

with rem the remaina ~ in the integer division between the two arguments.
As a result, - ne v orifies that the solution (49) is periodic in time with period
T = 24. Ir Fig. e 1, we plot the solution of problem (48)—(50). Moreover, in
Figure 2 we » 10t the value of the residual (27) for the initial condition, Ey, and
the di-rence * :tween the corresponding values of the numerical Hamiltonian,
AH forinc =asing values of the parameter N in (24). As one may observe from
t' _ dguie, voth Ey and AH( decrease more than exponentially with N and, for
V =~ 25 , both of them become almost constant. Consequently, according to
Remark 2, in the sequel we consider the value N = 250 for the numerical tests
-oncerning this example (we recall that the value of m in (28) is chosen according

to (29), in order to exactly compute the required integrals in the space variable).
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In Table 2 we list the maximum errors in the computed s.'“ition, e,, for
decreasing timesteps also estimating the numerical rate of con »rgence, along
with the error in the numerical Hamiltonian, ey, for the HL™7 /A(k, s) methods,
s = 1,2,3, with k chosen according to (32). All the errors are computed at
T = 24: we see that e, decreases with order 2s, acc rding to Theorem 2,3
whereas ey is negligible (it is within the round- ff er .. level), as predicted.
In the table we also list the mean number of r>awred Fended iterations (44)
per step, from which we see that they quickly decrea. = with the timestep and,
for the finest timestep considered (At = 0.2125), "*_y are almost independent
of s. It is worth observing that even *»~~% - .e mean number of blended
iterations per step appears to be very high fo. “he coarsest timestep used (At =
0.4), it must be stressed that, for the or.idered value N = 250, according to
(47), a fixed-point iteration woula . ~mirc At ~ 1074, in order to converge.’
The plots of Figure 3 contain t"~ mork nrecision diagrams, namely accuracy (of
the solution, in the upper plot, anu ~f the Hamiltonian, in the lower plot) vs.
execution time [56], for ths e Mods listed in Table 2. For comparison, we have
also included the plots co.. *>rning the methods HBVM(12,8) and HBVM(15,10)
(the former used wit} tin ssteps At = 24/M, M = 60, 120, 240, 480, the latter
used with timesters — = 24/M, M = 60,120,240), and the Matlab code
CHEBFUN [57]. 1. » script for this latter code has been adapted from [58] by
using 500 grid- . ‘nts in space (equivalent to the spatial accuracy of the Fourier-
Galerkin dis. “oti ation considered for HBVMs) and timesteps At = (25M )71,
M=1,2 +8.16,5.,128,256,512.

From . dia rams in Figure 3, one deduces that the higher the order of the
HBV M method, the better its efficiency. Moreover, the highest-order HBVMs

8For 'arger values of s, the solution error becomes soon negligible, as the timestep is

‘ecreased but, due to round-off errors, the numerical assessment of the order is more difficult.
° .a example, we found experimentally that HBVM(5,3) can be implemented by using

A

a 1. i-point iteration with a timestep At = 4-10~% and an execution time of about 500
ec. On the other hand, the use of the blended iteration with the timesteps listed in Table 2,

results into execution times ranging from 4 to 42 sec.
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are competitive with CHEBFUN, when a high solution accur. v is . quired.
On the other hand, when energy conservation is an issue nen, HBVMs turns
out to be more efficient than CHEBFUN. Energy conserva.’~ a, in turn, is an
important property of HBVMs. In order to assess this point, 't us look at the
circle in the upper plot in Figure 3, from which we see “hat C AEBFUN, using
a timestep At = 1/3200 and HBVM(15,10), using a tir .. ap At = 0.2, provide
a comparably accurate numerical solution after one peri d (the solution error
is ~ 1.5 - 1071% for both methods), in approximately he same time (i.e., ~ 23
sec). Nevertheless, if we continue the integ. “tion "> 20 periods, measuring the
errors at the end of each period, we see +h~+ 77" 3FUN exhibits a drift in the
Hamiltonian error, as is shown in the upper , 'ot in Figure 4. This, in turn, is
responsible for an almost quadratic er. or growth in the numerical solution, as
confirmed by the lower plot in the s .. ~ fig. re. On the other hand, the Hamilto-
nian error for HBVM(15,10) re~=ins \-ithin the round-off error level, resulting
into a much smaller growth of the sc. *tion error. As matter of fact, in the lower
plot in Figure 4, an almost cow. “ant error is reported for HBVM(15,10). In gen-
eral, for energy-conserving, HBVD s a linear error growth of the solution error is
at most observed. Tb s fa ¢ is confirmed by the plots in Figures 5 and 6, where
we plot the Hamiltonie. anc solution errors w.r.t. time, respectively, over the
time-interval [0,70o.] when using the HBVM(k, s) methods, s = 1,2,3 and &
according to (°7, with timestep At = 0.05. In all cases, the Hamiltonian errors
depicted in I ~ur 5 are within the round-off error level (as is expected), whereas
the soluti n errors .n Figure 6 grow at most linearly (in the case s = 1, due to

the low 0. " ¢ of he method, the linear growth is until the error saturates).
Eza.ple 2. "his example is taken from [43, Ex.4.1]:

up(a t) + eugea(x,t) + ulz, t)u(x, t) = 0, (z,t) € ]0,1] x [0, 00),

e=(24)72 (51)
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The initial condition at ¢t = 0 is derived from the known solution . € the . "oblem,

known as the cnoidal-wave solution,
u(z,t) = acn® (4K (m)(z — vt — xo)) (52)

where cn(z) := cn(z|m) is the Jacobi elliptic function vith m/ dulus m, K (m)

is the complete elliptic integral of the first kind, ar a
m = 0.9, a = 192meK?(m), v==64(L — 1K (m),  x0=1/2.

According to Remark 2, for this problem, one ~ as that the value N = 50 for the
truncation parameter in (24) is sufficient to gua. “ntee a solution accurate enough
(as matter of fact one has that the para.-eter defined at (27) is Ey < 10717,
and the value of the numerical Hamil’ ..." ~ remains constant, when considering
larger values of N).

In [43, Fig.1], there is the plo. o. *he numerical and true solutions at
t = 0,200,500,1000 (for comp. *eucs., the reference solutions are shown in
Figure 7), when a timestep At = 103 is used: as is clear from the plots in
that Figure, the error ca’ be apy reciated even with the naked eye. In Table 3,
we list the maximum e rors " t'.e same times ¢t = 0, 200, 500, 1000, when using
HBVM(k, s) method (w’.h k siven by (32)), for increasing values of s, by using
a timestep as larg : as Ar - 0.1. From this table, it is clear that, despite the
large stepsize used, tue ~rror becomes very small as s increases, because of the
increasing or< er o the method used. Moreover, we also list the maximum error
in the numeric. Hamiltonian, ey, thus confirming that it is conserved up to

round-of .

Exa aple 3. This example is slightly adapted from [43, Ex. 4.2],10

Ty 1+ Ugge (2, 1) +u(z, t)ug (2, t) = 0, (x,t) € [-115,103] x [0, 00). (53)

10We have considered a larger space interval, w.r.t. that considered in [43, Ex. 4.2], in order
*) have a better approximation when using periodic boundary conditions. In fact, by using
t. = original interval [-40,40], the solution turns out to be discontinuous, as a periodic function.

This fact is much less notable, when considering the new interval.
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Figure 1: Solution (49) <. »rou.. (48) for (z,t) € [—3,5] x [0, 24]

The initial condition at ¢ =0 15 lerived from the two-soliton waves solution

u(x t) _ 1 k2 01 _Eg /2 + 2(k.2 _ k1)2 01+6> _|_a2 (k.%eel + k.2 92) 01+6>
’ (14 efr + P2 + q2ef1102) '
(54)
where
. k‘g — k‘1 1
k= 0.4 =06 2= =— =4 =15
1 ) ) a (kg + kl) 257 T1 ) ) )
and (sec ‘50
Hl(x,t) = (k1$ - k%t + :l?l)[_1157103] s
115,103] *

61
(92 92(9@, t) = (kgl‘ - k}gt + J}Q)[i
1. this -ase, according to Remark 2, the parameter N in (24) is conveniently

¢ oo nas N = 300 (in fact, with reference to (27), one has Fy < 1071% and
in [4

bl
roreover, the numerical Hamiltonian remains constant within round-off, when

using larger values of N). Inspired from the numerical results reported in [43,
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Figure 2: Error Ep in the initial conu “on \sco (27)) and differences in the initial numerical

Hamiltonian, AHy, for increasing values ot ./.

Ex.4.2], in Table 4 we 1..* the r iaximum errors in the numerical solution at
t = 0,40,80,120, ob’aine 1 by using HBVM(k, s) methods, s = 1,...,4 and
k according to (32), w" h t' nsestep At = 0.1, along with the corresponding
Hamiltonian errc .. ™ is worth mentioning that the numerical experiments show
that, for this = bhlem, larger values of s cannot improve further the obtained
accuracy (w. ‘~h *s of the order of the round-off error level for s = 4). The choice
of the ab' ve mentiuned reference times is due to the fact that, as is shown in
Figure &, ‘' : tw, waves, a taller one and a lower one (see the plot for ¢ = 0),
grad .ally a;oroach one another (see the plot for ¢ = 40), when moving towards
right, “mtil + aey collide (see the plot for ¢ = 80), then continuing moving away
rom ez “h other (see the final plot at ¢ = 120). From the results listed in Table 4,
¢. @ has chat, as expected, the numerical Hamiltonian turns out to be conserved
a ., moreover, the numerical solution soon reaches machine accuracy, as s is
_acreased from 1 to 4. This, in turn, means that the collision of the two waves

is approximated to full machine accuracy.
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Ezample 4. The last example is the famous Zabusky-Kruskal ex. mple 34] (see
also [23, Ex.5.5] or [43, Ex.4.3]):

up(x, ) + €Ugyy (2, t) + ulx, H)u,(x,t) = 0, (z,t) € | 1] x [0,00),(55)
e = (0.022)2 u(z,0) = cos(mx) z e [0,2].

A good description of the main features of the sol’ cion ~f such problem can be

found in [23], and here we sketch the main facts rep orted n that reference:

a) the solution starts with a cosine wave and late. on develops a train of 8
solitons which travel at different spec '< anc *- .eract with each other. In

more detail,
b) at t; :=tp = 7!, the solution * ~hout v breakdown;
¢) at ts := 3.6tp, the train of & litor * has been developed;

d) at t3 := 0.5tg = 0.5 3 "*». a' the odd-numbered solitons overlap at

x = 0.385 and all the even-nu.. “ered overlap at x = 1.385;

e) at t4 := tg = 30.4¢y , the rc “urrence time, all the solitons arrive in almost

the same phase t~ recc ~str uct the initial state.

Also in this case, acc. ~di* g to temark 2, the parameter N in (24) is conveniently
chosen as N = 3’0 (the porameter defined at (27) is Eg ~ 7 - 10716 and the
numerical Hamutonian 2mains constant within round-off for nearby values of
N). In Figu e 9 s the plot of the computed numerical solution at the times
ti,...,tq Cefinec above, with a maximum estimated error (infinity norm) of
~ 6-10 ‘3. rhe -rror estimate has been obtained by computing, at first, the

soluti~ . with ." e HBVM(3,2) method, with timesteps !!
At =h; :=tg(2"75)7, i=1,...,8 (56)

Chen, ¢ the finest time grid, we have computed the solution by using higher
o1~ .ethods, with the same value of N, until the difference in the com-

r 1ted solutions becomes negligible. In so doing, we computed the solutions

Uhy ~6-1072, hg & 5-10~4.
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with the HBVM(5,3), HBVM(6,4), and HBVM(8,5) methods. e so. ition of
HBVM(8,5) has then been used as reference solution, and Jhe difference with

L

the solution computed by the other methods, at the times “ .... t4, is listed
in Table 5. As one may see, the (actually, very small differ nce between the
solutions computed by HBVM(8,5) and HBVM(6,4) is . "prox"nately the same
as the difference between the solutions of HBVM 8,5) .. 1 HBVM(5,3). This
fact clearly indicates that we have reached the - ~ximum r ossible accuracy. The
fact that the computed reference solution by HBVM(. ,5) is correct, is enforced
by observing that the corresponding errors ¢ the ™™ vM(3,2) method decrease
with the prescribed order 4. Moreover, = ~=7-~ , exclude a possible underes-
timation of the parameter N in (24), we ha.~ also computed the solution by
means of the HBVM(8,5) method on .he .nest time grid using the parameter
N = 600, instead of 300. In the i s. row of Table 5 we list the differences in
the computed solutions at t1,.  *.. as well as the difference between the corre-
sponding numerical Hamiltonians, w - t. the reference ones. As one may see, all
the differences are compat ' uic -ith the round-off error level of the double pre-
cision IEEE. This, in twi. furth r confirms the accuracy and reliability of the
reference solutions plr ¢ted in Figure 9.2 Moreover, such plots are in agreement
with the more accu~ate _lots reported in Figures 6 and 7 in [23] (i.e., those with
800 cells). In pe 1. lar, the first three plots in Figure 9 confirm the features
described at t* _ noints a)-d) above, whereas the plot at ¢t = ¢4 confirms what
observed in 3, ux.5.5], where it was noticed that the solution at the recur-
rence tinr © tp does not coincide with the initial condition, thus contradicting
the featu. escr ped at e).

A last, ™ Figure 10 is the plot of the error in the numerical Hamiltonian for
the cw mpute { reference solution of Figure 9 for ¢ € [0,¢g], by using HBVM(8,5)
vith t1.~ finest timestep specified in (56). As is expected, this error is within

t. » ror .d-off error level.

12We remind that the reference solution has been obtained by using HBVM(8,5) on the
fir.est mesh in (56).
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6. Concuding remarks

In this paper we studied the numerical solution of thr Ko .ev. g—de Vries
equation with periodic boundary conditions. The problem he.. been cast into
Hamiltonian form, by means of a Fourier-Galerkin sace se1 i-discretization.
Energy-conserving Runge-Kutta methods, of arbitr~-*ly .. ' order, in the HB-
VMs class have then been used for the time inte_rat on, vhile conserving the
energy of the system. The efficient implementat.. » o1 »uch methods has been
also studied, showing that their computatioi. ' compl xity per step is linear in
the dimension 2N of the semi-discrete proble.. for memory requirements, and
O(Nlog N) for operations count. The . *ectiveness of the methods has been

evaluated on some test problems.
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Table 2: Problem (48) solved by HBVM(k, s) methods, s = 1,2,3, an.

by using N = 250.

. according to (32),

HBVM(k, s) HBVM(2,1) HBVM(3,2) HBVM(5,3)

At e, rate exH it eu rate ey it eu rate ex it
0.4 1.03e00 - 1.39e-17 516 | 4.29e-01 - 1?%—177 105 | 5.40e-02 - 1.39e-17 71
0.2 9.91e-01 0.0 2.08e-17 80 | 2.88e-02 3.9 1.5.°-17 49 | 9.17e-04 5.9 2.81le-17 42
0.1 5.96e-01 0.7 1.73e-17 42 | 3.16e-03 2  2R7e-17 31 | 2.98e-05 4.9 1.39e-17 30
0.05 1.74e-01 1.8 1.73e-17 27 | 2.56e-04 36  ".73e-17 23 | 1.0le-06 4.9 1.73e-17 25
0.025 4.42e-02 2.0 2.08e-17 20 | 1.61e-05 < 1.73e-17 19 | 3.00e-08 5.1 1.3%-17 22
0.0125 1.11e-02 2.0 2.08e-17 16 | 9.90e- 7 4. 1.73e-17 16 | 3.51e-10 6.4 1.73e-17 20

Table 3: Solution errors for problem (51) sc'ved by HBVM(k, s) methods, s = 3,...,6, and

k according to (32), by using N = 5u nd a cimestep At = 0.1, along with the maximum

Hamiltonian error, egy.

Table 4: Solution

¢

200

500

1000

€H

8.88¢ 16
8.8 e-1f
§.88e-10

| 8.85 16

< 12:-02
1 52e-03
4.38e-05
5.71e-06

2.34e-01
3.36e-03
5.46e-05
3.76e-06

4.54e-01
6.81e-03
7.98e-05
4.44e-06

3.05e-16
3.33e-16
2.78e-16
2.78e-16

rors for problem (53) solved by HBVM(k, s) methods, s = 1,...,4, and

k accordin , to /,2), by using N = 300 and a timestep At = 0.1, along with the maximum

Hamiltonia.

- ror, g.
e | tf 0 40 80 120 e
9.99e-16  8.66e-05 7.41e-05 1.92e-04 | 6.66e-16

2 9.99e-16  1.02e-09  6.49e-10 1.73e-09 | 7.77e-16
3 9.99e-16 1.41e-13 4.69e-14 1.39e-13 | 7.77e-16
4 9.99e-16  6.12e-15 4.66e-15 1.42e-14 | 7.77e-16
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Table 5: Estimated errors in the numerical solution, and ... che n’ merical Hamiltonian, of

problem (55) at t;, i = 1,...,4, by using a timestep At = ‘=/n = (7n)~! and the listed

parameter N. The reference solution has been com, ted on t 1e finest time grid (i.e., that

with n = 640) by using the HBVM(8,5) method wi.. N = __u.

t1 =tp to = 3.6t I w3 = 15.2tp ty =30.4tp
n el rate €9 rate \ es rate €4 rate e
HBVM(3,2) 5 | 1.35e-03 — | 2.56e-02 \ 7.81e-02 — | 3.60e-01 — | 2.05e-16
N = 300 10 | 1.01e-04 3.7 | 3.59e-L* 2.5 | 1.06e-02 2.9 | 1.96e-02 4.2 | 1.77e-16
20 | 6.59¢-06 3.9 | 207" 3.6 | 5.43e-04 4.3 | 9.97e-04 4.3 | 2.39-16
40 | 4.13e-07 4.0 | 1.66e-00 4.2 | 3.13e-05 4.1 | 5.01e-05 4.3 | 1.77e-16
80 | 2.57e-08 4.0 | 7...~07 4.4 | 1.46e-06 4.4 | 2.91e-06 4.1 | 2.32e-16
60 | 1.60e-09 4.0 472 -08 4.0 | 9.07e-08 4.0 | 1.78e-07 4.0 | 2.19e-16
320 | 1.00e-10 4.0 | 294e-09 4.0 | 5.67e-09 4.0 | 1.12e-08 4.0 | 2.32e-16
640 | 6.36e-17 4.0 | £.83e-10 4.0 | 3.55e-10 4.0 | 6.97e-10 4.0 | 2.95e-16
HBVM(5,3) | 640 | 6.12¢ 13 6.33e-13 5.55e-13 5.56e-13 2.88e-16
N = 300
HBVM(6,4) | 640 | 6..°~ 13 6.28e-13 5.42e-13 6.72e-13 6.66e-16
N =300 L
HBVM(8,5) | 640 | ¢ 3¢ 13 8.61e-13 6.81e-13 6.99e-13 2.47e-17
N =600
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Upper plot: Hamiltonian error over 20 periods when solving problem (48) with
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or the former method a linear drift is observed. Lower plot: corresponding solution errors for

the above methods; for CHEBFUN, an almost quadratic error growth is observed.
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Figure 5: Hamiltonian error versus time wh. 1 socwving problem (48) with timestep At = 0.05

and HBVM(k, s), k given by (32). Up, * plov, s = 1; middle plot, s = 2; lower plot, s = 3.
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Figure 6: Linear growth of the solution error versus time when solving problem (48) for
+ € [0,500] with timestep At = 0.05 and HBVM(k, s), k given by (32). Upper plot, s = 1;
1. ‘ddle plot, s = 2, lower plot, s = 3. In the case s = 1, the growth is linear until the error

saturates.
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Figure 7: Plot of the exact solution (52, ~f problem (51) versus z at ¢ = 0,200, 500, 1000.
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Figure 8: Solution (54) of problem (53) versus z at ¢t = 0,40, 80, 120.
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Figure 9: Reference solution of the . husky {ruskal problem (55) versus = at t = t;, i =
1,2,3,4 (see text), with an eximated maximum error smaller than 10~12, computed by using

HBVM(8,5) with the parametr s sp. ‘fied in the caption of Table 5.
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Figure 10: Error in the numerical Hamiltonian for the reference solution of the Zabusky—

Kruskal problem (55), from ¢t =0 to t = tg &~ 9.6766, computed by using HBVM(8,5).
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