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a b s t r a c t

The main results of the paper are an upper and a lower bound for the Frobenius norm
of the matrix sinΘ , of the sines of the canonical angles between unperturbed and
perturbed eigenspaces of a regular generalized Hermitian eigenvalue problem Ax = λBx
where A and B are Hermitian n×n matrices, under a feasible non-Hermitian perturbation.
As one application of the obtained bounds we present the corresponding upper and the
lower bounds for eigenspaces of a matrix pair (A, B) obtained by a linearization of regular
quadratic eigenvalue problem

(
λ2M + λD + K

)
u = 0, where M is positive definite and

D and K are semidefinite.
We also apply obtained upper and lower bounds to the important problem which

considers the influence of adding a damping on mechanical systems. The new results
show that for certain additional damping the upper bound can be too pessimistic, but the
lower bound can reflect a behaviour of considered eigenspaces properly. The obtained
results have been illustrated with several numerical examples.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers a generalized Hermitian eigenvalue problem

Ax = λBx ,

where A and B are n× n Hermitian matrices under a perturbation, Ã = A+ δA, B̃ = B+ δB, and δA and δB do not need to
be Hermitian, but structured and small enough to ensure that properties like regularity or semi-simple eigenvalues hold
for both unperturbed pair (A, B) as well as for perturbed pair (̃A, B̃).

One of the contributions of this paper is a novel upper bound (we allow non-Hermitian perturbation) for the Frobenius
norm of the sinΘ matrix, where Θ denotes the matrix of the canonical angles between unperturbed eigenspace X1 =

span(X1) and corresponding perturbed eigenspace X̃1 = span(̃X1), and the columns of X1 and X̃1 are eigenvectors of the
pairs (A, B) and (̃A, B̃), respectively.

But from our point of view, the most important contribution of the paper is the novel lower bound for the Frobenius
norm of the sinΘ matrix.

The problem of comparing unperturbed and perturbed eigenspaces X1 and X̃1 has been widely studied and there is
a vast amount of literature which contains different kinds of upper bounds on the sines of canonical angles between
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unperturbed and perturbed eigenspace. Here we will list just some of them which we find important and at the same
time we apologize to the authors of omitted ones.

The classical results about sinΘ can be found in [1,2] as well as in [3]. All these results belong to the so-called standard
or absolute perturbation theory. On the other hand, the so-called relative perturbation results on sinΘ can be found in
[4–8] or [9].

But up to our knowledge, all these papers contain upper bounds, and there are not many lower bounds at all. One
of the results considering the lower (as well as the upper) bounds on subspaces can be found in a recent paper of Cai
and Zhang in [10]. There authors present upper and the lower bounds for the spectral and Frobenius sinΘ distances
between singular spaces. The presented lower bounds are within a constant factor of the corresponding upper bounds,
which shows that obtained bounds are rate-optimal.

As we have mentioned, our bounds hold for regular pairs (A, B) and (̃A, B̃), that is for the pairs whose matrices can be
singular, but they cannot share the same null-subspace. The behaviour of eigenspace of the singular pairs (A, B) under
perturbation is, up to our knowledge, open problem. On the other hand the characterization of the singular pairs is very
important and challenging problem. To confirm this we would like to point on the recent paper [11] where authors treat
the problem of determining the nearest singular matrix pencil to a given regular matrix pencil A + λB (the distance to
singularity), and the references therein, especially [12–14].

The new bounds from this paper are motivated by the results from [15] where one can find a lower and an upper
bound for the Frobenius norm of the sines of canonical angles between unperturbed and perturbed eigenspaces of a
simultaneously diagonalizable quadratic eigenvalue problem.

The new upper bound for ∥ sinΘ(X1, X̃1)∥F has the same structure as most upper bounds for sines between angles of
eigenspaces spanned by the columns of X1 and X̃1, respectively. With some additional assumption on the matrix B (for
more details see Section 2) it has the following form

∥ sinΘ(X1, X̃1)∥F ≤
∥X̃†

1∥∥X2∥Err (̃X1, X1)
gapw(Λ̃1,Λ2)

,

where Err (̃X1, X1), roughly speaking, corresponding to residual like in the sinΘ theorem from [1], and gapw(Λ̃1,Λ2) is a
weighted gap function (for precise definition see (18)).

On the other hand the new lower bound has the following form

Err (̃X1, X1)

∥X̃1∥∥X
†
2∥d∞(Λ̃1,Λ2)

≤ ∥ sinΘ(X1, X̃1)∥F ,

where d∞(Λ̃1,Λ2) denotes a weighted complete linkage clustering L∞ distance (for precise definition see (17)).
In the second part of the paper, we will show how the new lower and upper bounds can be used to study the behaviour

of the eigenspaces of the regular matrix pair (A, B) obtained by linearization of a regular quadratic eigenvalue problem
(which represents the vibrating mechanical system)(

λ2M + λD + K
)
u = 0 ,

where M is positive definite and D and K are Hermitian semidefinite. Especially we will present result about influence of
the external or an additional damping on the mechanical system under consideration.

With a few simple examples we will illustrate a difference between the upper and lower bounds as well as a possible
usage of them for measuring the influence of damping.

The paper is organized as follows. In Section 2, we present the main results of the paper, that is upper and a lower
bound for ∥ sinΘ(X1, X̃1)∥F . In Section 3 we present an application of the bounds from the previous section on the
eigenspaces of a pair obtained by a linearization of regular quadratic eigenvalue problem

(
λ2M + λD + K

)
u = 0. The

important problem of the damping influence on mechanical systems is studied in Section 3.1 and the obtained results are
illustrated by a small numerical example.

2. Main result

In this section we will present our main result. Thus, let

Ax = λBx , (1)

be the regular generalized Hermitian eigenvalue problem where A and B are n × n Hermitian matrices.
For the purpose of simplifying presentation of our main ideas we will assume that all eigenvalues of the pair (A, B) are

semi-simple and that there exist non-singular matrices X =
[
x1, . . . , xn

]
and Y =

[
y1, . . . , yn

]
, whose columns are the

right and left eigenvectors, respectively associated with λi, i = 1, . . . , n.
Note, that both A and B can be singular, but due to the regularity assumption they cannot share the same null-subspace.
As it was mentioned in the introduction, the main result of this section has been motivated by the results from [15],

on upper and lower bounds for the Frobenius norm of the sine of angles between unperturbed and perturbed subspaces
of a simultaneously diagnosable Hermitian matrix triple M,D and K .
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Before we state our main results, we will need the following considerations.
Let the columns of the matrices X and Y be the right and the left eigenvectors of (1) respectively. We can write

BXΛ− AX = 0 , ΛY ∗B − Y ∗A = 0 , (2)

B̃X̃Λ̃− ÃX̃ = 0 , Λ̃Ỹ ∗̃B − Ỹ ∗̃A = 0 . (3)

Note, that the regularity assumption implies that for i = 1, . . . , n either y∗

i Axi ̸= 0 or y∗

i Bxi ̸= 0, that is y∗

i Axi and y∗

i Bxi
cannot be equal to zero in the same time.

Let us emphasize, that from (2) it follows that for i for which y∗

i Bxi ̸= 0, it holds

λi =
y∗

i Axi
y∗

i Bxi
, (4)

which includes zero eigenvalues, and the rest of them are infinite (those for which y∗

i Bxi = 0 and y∗

i Axi ̸= 0).
Given k, 1 ≤ k < n let us decompose X and Y in a following way

X =
[
X1, X2

]
, X1 =

[
x1, . . . , xk

]
, X2 =

[
xk+1, . . . , xn

]
, (5)

Y =
[
Y1, Y2

]
, Y1 =

[
y1, . . . , yk

]
, Y2 =

[
yk+1, . . . , yn

]
, (6)

Λ = diag(Λ1,Λ2), Λ1 = diag(λ1, . . . , λk), Λ2 = diag(λk+1, . . . , λn), (7)

and denote by X1 = span(X1) and X2 = span(X2), and similarly for their perturbed quantities.
The fact that we consider perturbation of the subspace spanned by the first k eigenvectors does not effect on generality

of our results. Indeed, one can apply the same consideration on any eigenspace using corresponding permutation of the
columns of the matrices X and Y (the right and the left eigenvectors) and associated eigenvalues.

In what follows, we present an expression for the norm of the sinΘ(X1, X̃1) matrix of the canonical angles between
unperturbed and perturbed eigenspaces X1 and X̃1, respectively, based on the similar consideration as in [15].

For that purpose let X = QR, be the QR decomposition of the matrix X , then

S .
= X−∗

= QR−∗ ,

and similarly hold for perturbed quantities.
Obviously the columns of X and S span the same subspaces, thus we denote[

X1, X2
]

= [Q1,Q2]

[
R11 R12
0 R22

]
,

[
S1, S2

]
= [Q1,Q2]

[
R−∗

11 0
−R−∗

22 R
∗

12R
−∗

11 R−∗

22

]
. (8)

Recall, that X1 denotes the subspace spanned by the columns of X1, and similarly for perturbed subspaces.
Note that S2 = Q2R−∗

22 , and X̃1 = Q̃1̃R11. Using the standard result [3, Exercise 6. pg.36] we can write:

σmin(R−1
22 )σmin (̃R11)∥Q ∗

2 Q̃1∥F ≤ ∥S∗

2 X̃1∥F ≤ σmax(R−1
22 )σmax (̃R11)∥Q ∗

2 Q̃1∥F ,

which, using the fact that ∥ sinΘ(X1, X̃1)∥F = ∥Q ∗

2 Q̃1∥F , implies

∥ sinΘ(X1, X̃1)∥F ≤
1

σmin(R−1
22 )σmin (̃R11)

∥S∗

2 X̃1∥F , (9)

∥ sinΘ(X1, X̃1)∥F ≥
1

σmax(R−1
22 )σmax (̃R11)

∥S∗

2 X̃1∥F . (10)

Now we can state our main result.

Theorem 2.1. Let (A, B) be a Hermitian regular pair. Let X, Y be non-singular matrices decomposed as in (5) and (6), whose
columns are the right and left eigenvectors of the regular eigenvalue problem (1), respectively. Let δA and δB be perturbations
such that Ã .

= A + δA and B̃ .
= B + δB. Further, let X1 = span(X1) and X̃1 = span(̃X1) denote eigensubspces spanned by the

columns of X1 and X̃1, respectively. For δA and δB small enough the following inequalities hold
Err (̃X1,X1)

σmax(R−1
22 )σmax (̃R11)

max 1≤j≤k
k+1≤i≤n

|(y∗

i Bxi )̃λj − (y∗

i Axi)|
≤ ∥ sinΘ(X1, X̃1)∥F ≤

Err (̃X1,X1)
σmin(R

−1
22 )σmin (̃R11)

min 1≤j≤k
k+1≤i≤n

|(y∗

i Bxi )̃λj − (y∗

i Axi)|
, (11)

where R̃11 and R−1
22 are defined as in (8) and

Err (̃X1, X1) =

√ n∑
i=k+1

k∑
j=1

⏐⏐y∗

i δB̃xj̃λj − y∗

i δÃxj
⏐⏐2 . (12)
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Proof. Note that (3) can be written as

BX̃Λ̃− AX̃ = −δBX̃Λ̃+ δAX̃ .

Now, if we multiply the above equality with Y ∗ from the left we can write

Y ∗BXX−1X̃Λ̃− Y ∗AXX−1X̃ = −Y ∗δBX̃Λ̃+ Y ∗δAX̃ . (13)

Using the fact that Y ∗AX and Y ∗BX are diagonal matrices whose diagonal elements are y∗

i Axi and y∗

i Bxi, respectively and
interpreting (13) entriewise, we get for all i = k + 1, . . . , n and j = 1, . . . , k

(y∗

i Bxi)(X
−1X̃)ij̃λj − (y∗

i Axi)(X
−1X̃)ij = −y∗

i δB̃xj̃λj + y∗

i δÃxj ,

or

(X−1X̃)ij =
−y∗

i δB̃xj̃λj + y∗

i δÃxj
(y∗

i Bxi )̃λj − (y∗

i Axi)
, i = k + 1, . . . , n, j = 1, . . . , k . (14)

Recall, if δA and δB are small enough and structured such that perturbed pair (̃A, B̃) is regular with all semi-simple
eigenvalues, then y∗

i Axi and y∗

i Bxi cannot be simultaneously equal to zero, for all i = 1, . . . , n and all entries from (14)
are well define.

Now, using (8) one can see that for i = k + 1, . . . , n and j = 1, . . . , k

(S∗

2 X̃1)i−k,j = (X−1X̃)ij .

Thus, we have the following equality

∥S∗

2 X̃1∥
2
F =

n∑
i=k+1

k∑
j=1

⏐⏐y∗

i δB̃xj̃λj − y∗

i δÃxj
⏐⏐2

|(y∗

i Bxi )̃λj − (y∗

i Axi)|
2 . (15)

Now (11) simply follows from (9) and (10) and taking max and min of denominator from (15). □

Note, that from (12) it follows that

Err (̃X1, X1) =
Y ∗

2 δBX̃1Λ̃1 − Y ∗

2 δAX̃1

F . (16)

In what follows we will present slightly weaker upper and lower bounds for ∥ sinΘ(X1, X̃1)∥F with additional
assumption that B is non-singular. But before that we introduce some additional notations.

If X2 and Y2 from (5) and (6) satisfy that y∗

i Bxi ̸= 0, for all i = k + 1, . . . , n, one can observe that the denominators on
the both sides of the bounds (11) look like certain gaps. To be more precise, using (4) we can write

d∞(Λ̃1,Λ2) = max
1≤j≤k

k+1≤i≤n

|(y∗

i Bxi)(̃λj − λi)| , (17)

gapw(Λ̃1,Λ2) = min
1≤j≤k

k+1≤i≤n

|(y∗

i Bxi)(̃λj − λi)| . (18)

The gapw(Λ̃1,Λ2) from (18) denotes a weighted absolute gap between eigenvalues (diagonal entries) of Λ̃1 and Λ2 while
d∞(Λ̃1,Λ2) from (17) denotes a weighted complete linkage clustering L∞ distance (see for example [16]).

Further, note that from (8) it follows

σmax (̃R11) = ∥X̃1∥, σmax(R−1
22 ) ≤ ∥X†

2∥ , (19)
1

σmin (̃R11)
= ∥X̃†

1∥,
1

σmin(R−1
22 )

= ∥R22∥ ≤ ∥X2∥ . (20)

Thus, the following corollary contains slightly weaker upper and lower bounds for ∥ sinΘ(X1, X̃1)∥F which involves ∥X̃1∥,
∥X†

2∥, ∥X̃†
1∥ and ∥X2∥ and gapw(Λ̃1,Λ2) and d∞(Λ̃1,Λ2).

Corollary 2.1. Let (A, B) be a Hermitian regular pair. Let X, Y and δA and δB be as in Theorem 2.1. Further, let X1 = span(X1)
and X̃1 = span(̃X1) denote eigensubspces spanned by the columns of X1 and X̃1, respectively. Then the following inequalities
hold

Err (̃X1, X1)

∥X̃1∥∥X
†
2∥d∞(Λ̃1,Λ2)

≤ ∥ sinΘ(X1, X̃1)∥F ≤
∥X̃†

1∥∥X2∥Err (̃X1, X1)
gapw(Λ̃1,Λ2)

, (21)

where Err (̃X1, X1) is defined as in (12).

Proof. The inequalities (21) simply follow from (11) upon using (19)–(20) and (17)–(18). □
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2.1. Illustrative example

Let us demonstrate some interesting properties of the lower and upper bounds (21).
It is well-known that the upper bound in (21) (and similar bounds which one can find in [3] or [17]) can be too

pessimistic, especially if the matrix is close to diagonal and the gaps are small. For illustration, let B = B̃ = I and let A be
diagonal

A =

⎡⎢⎢⎢⎢⎢⎣
λ 0 0 0 0 0
0 λ 0 0 0 0
0 0 µ1 0 0 0
0 0 0 µ2 0 0
0 0 0 0 µ3 0
0 0 0 0 0 µ4

⎤⎥⎥⎥⎥⎥⎦ , Ã =

⎡⎢⎢⎢⎢⎢⎣
λ 0 0 0 0 0
0 λ 0 0 0 0
0 0 µ1 0 0 0
ε 0 0 µ2 0 0
0 0 0 0 λ+ ψ 0
0 0 0 0 0 µ4

⎤⎥⎥⎥⎥⎥⎦ ,

where Ã is its perturbation. We are interested in a change of eigenspace which corresponds with eigenvalue λ, that is
Λ1 = diag(λ, λ) and Λ2 = diag(µ1, µ2, µ3, µ4), while for perturbed spectrum one has Λ̃2 = diag(µ1, µ2, λ+ψ,µ4). The
considered subspaces are spanned by the columns of matrices

X1 =

⎡⎢⎢⎢⎢⎢⎣
1 0
0 1
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦ , X̃1 =

⎡⎢⎢⎢⎢⎢⎣
O(1) 0
0 1
0 0

O(ε) 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦ ,

and Y2 contains last four columns of identity matrix. Thus,

∥ sinΘ(X1, X̃1)∥F = O(ε) .

Note that if λ ≈ µ3 and if |ψ | ≪ 1, from (18) it follows that gapw(Λ̃1,Λ2) = |ψ |. This implies that the upper bound
from (21) can be too pessimistic even for small ε.

On the other hand, from (18) it follows that without losing any generality if we assume that µ3 > λ is such that
d∞(Λ̃1,Λ2) = |λ− µ3|, which in case |λ− µ3| ≥ 1 implies a plausible lower bound.

To make example more clear, let use ε = 0.001, ψ = 10−6, and

λ = 2, µ1 = 3, µ2 = 4, µ3 = 2.001, µ4 = 10,
λ̃ = 2, µ̃1 = 3, µ̃2 = 4, µ̃3 = 2.000001, µ̃4 = 10 .

Then we have

∥ sinΘ(X1, X̃1)∥F = 5 · 10−4
=

1
2
∥Y ∗

2 δAX̃1∥F ,

where Err (̃X1, X1) = ∥Y ∗

2 δAX̃1∥F . The lower and upper bound from (21) are

1.25 · 10−4
≤ ∥ sinΘ(X1, X̃1)∥F ≤ 103 .

2.2. Zero and infinite eigenvalues

Although, Theorem 2.1 holds even if y∗

i Bxi = 0, for i = k+1, . . . , n, it cannot be applied on general regular pairs (A, B),
and (̃A, B̃), since

λ̃i =
ỹ∗

i Ã̃xi
ỹ∗

i B̃̃xi
,

holds only if ỹ∗

i B̃̃xi ̸= 0.
However, instead of considering regular generalized Hermitian eigenvalue problem (1), we can consider corresponding

eigenvalue problem in the cross-product form

βAx = αBx , (22)

which allows to replace eigenvalues λi (including zero or infinite eigenvalues) with corresponding pairs (αi, βi) ̸= (0, 0),
for i = 1, . . . , n.

This approach allows to treat zero as well as infinite eigenvalues simultaneously.
Let (A, B), and (̃A, B̃) be regular pairs. Using notation as in section [3, VI.1.2] we denote

αi = y∗

i Axi , βi = y∗

i Bxi , α̃i = ỹ∗

i Ã̃xi , β̃i = ỹ∗

i B̃̃xi , i = 1, . . . , n . (23)

Now we can generalized the result from Theorem 2.1 on the Hermitian regular pair with zero or infinite eigenvalues. The
following corollary holds.
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Corollary 2.2. Let (A, B) be a Hermitian regular pair. Let X, Y and δA and δB be as in Theorem 2.1. Further, let X1 = span(X1)
and X̃1 = span(̃X1) denote eigenspaces spanned by the columns of X1 and X̃1, respectively. Then the following inequalities hold

Ercp (̃X1, X1)

∥X̃1∥∥X
†
2∥max 1≤j≤k

k+1≤i≤n
|̃αjβi − αiβ̃j|

≤ ∥ sinΘ(X1, X̃1)∥F ≤
∥X̃†

1∥∥X2∥Ercp (̃X1, X1)
min 1≤j≤k

k+1≤i≤n
|̃αjβi − αiβ̃j|

, (24)

where

Ercp (̃X1, X1) =

√ n∑
i=k+1

k∑
j=1

⏐⏐(y∗

i δB̃xj
)
α̃j −

(
y∗

i δÃxj
)
β̃j

⏐⏐2 .
Proof. The proof of both inequalities from (24) follows using the similar consideration as in the proof of Theorem 2.1 and
Corollary 2.1.

Indeed, from (14) and (23) we have

(X−1X̃)ij =
−y∗

i δB̃xjα̃j + y∗

i δÃxjβ̃j

βiα̃j − αiβ̃j
, i = k + 1, . . . , n, j = 1, . . . , k .

This implies

∥S∗

2 X̃1∥
2
F =

n∑
i=k+1

k∑
j=1

⏐⏐y∗

i δB̃xjα̃j − y∗

i δÃxjβ̃j
⏐⏐2

|βiα̃j − αiβ̃j|
2 .

Now (24) simply follows from (9)–(10) and (19)–(20) and taking max and min of denominator from the above equality.
□

We would like to emphasize two interesting properties regarding the upper and the lower bounds (24).
The first is that both bounds from (24) hold for all pairs (αi, βi) ̸= (0, 0), i = 1, . . . , n, which include zero as well as

infinite eigenvalues of the regular Hermitian pair (A, B) and its corresponding perturbed matrix pair.
The second property refers to the upper bound from (24). Note that in the denominator we have the minimum over

all 1 ≤ j ≤ k and k + 1 ≤ i ≤ n of

|̃αjβi − αiβ̃j| .

The above expression is equal to the numerator of the chordal distance χ
(
(αi, βi), (̃αj, β̃j)

)
(see [3, Definition 1.20 VI.1.4])

between pairs (αi, βi) and (̃αj, β̃j), which is defined as

χ
(
(αi, βi), (̃αj, β̃j)

)
=

|̃αjβi − αiβ̃j|√
|αi|

2
+ |βi|

2
√

|̃αi|
2
+ |̃βi|

2
.

Further note, if αi ≪ 1 and βi = O(1) or βi ≪ 1 and αi = O(1) and if similarly holds for perturbed α̃i and β̃i, then

χ
(
(αi, βi), (̃αj, β̃j)

)
≈ |̃αjβi − αiβ̃j| .

On the other hand if αi ≫ 1 or βi ≫ 1 and similarly α̃i ≫ 1 or β̃i ≫ 1, then

χ
(
(αi, βi), (̃αj, β̃j)

)
≤ |̃αjβi − αiβ̃j| ,

which makes the quantity from denominator in (24) (for large α or β) more suitable then possible usage of chordal
distance, like

min
1≤j≤k

k+1≤i≤n

χ
(
(αi, βi), (̃αj, β̃j)

)
.

Remark 2.1. As the general drawback of the gap functions

d∞(Λ̃1,Λ2) = max
1≤j≤k

k+1≤i≤n

|(y∗

i Bxi)(̃λj − λi)| ,

gapw(Λ̃1,Λ2) = min
1≤j≤k

k+1≤i≤n

|(y∗

i Bxi)(̃λj − λi)| .

or

dcp = max
1≤j≤k

k+1≤i≤n

|̃αjβi − αiβ̃j| , gcp = min
1≤j≤k

k+1≤i≤n

|̃αjβi − αiβ̃j|

can be considered as the fact that unperturbed and perturbed quantities appear simultaneously.
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One way to avoid this drawback is to estimate d∞(Λ̃1,Λ2) and gapw(Λ̃1,Λ2) or dcp and gcp using appropriate
eigenvalue perturbation bounds. For example the perturbation bound for eigenvalues of the regular Hermitian pair under
non-Hermitian perturbation among other references one can find in [18, Section 4.].

3. Application to mechanical systems

The lower and upper bound (11) are given in the most general form, where both A and B can be singular. But as has
been shown in [19,20] if A and B are obtained from a linearization of a regular quadratic eigenvalue problem, then the
zero subspaces can be efficiently deflated. In this section we will consider the following QEP (obtained from the vibrating
mechanical system)(

λ2M + λD + K
)
u = 0 , (25)

whereM is positive definite, D and K = GG∗ are semidefinite, with G having full column rank. The corresponding perturbed
QEP is (̃

λ2(M + δM) + λ̃(D + δD) + (K + δK )
)
ũ = 0 . (26)

After deflation, the linearization of (25) is given by (see [19])(
λ

[
−M

I

]
−

[
D G
G∗ 0

])
x = 0,

where all matrices are of appropriate dimensions depending on the dimension of deflated zero subspace. Here the
eigenvector x is defined as

x =

[
λu
G∗u

]
.

In that sense, the corresponding perturbed eigenvalue problem can be written as(̃
λ

[
−(M + δM)

I

]
−

[
D + δD G + δG

(G + δG)∗ 0

])
x̃ = 0.

Let

A =

[
D G
G∗ 0

]
, B =

[
−M

I

]
, δA =

[
δD δG
δG∗ 0

]
, δB =

[
−δM

0

]
, (27)

be the matrices from the linearization. Further, let n be the dimension of the matrix A (and B), that is let n be the sum of the
dimension of M and the rank of G (more details can be found in [19]). Further, let X =

[
x1, . . . , xn

]
and Y =

[
y1, . . . , yn

]
,

be non-singular matrices whose ith column is the right and left eigenvector, respectively, associated with the eigenvalue
λi.

Then, we have the following corollary.

Corollary 3.1. Let (A, B) and (A + δA, B + δB) be Hermitian regular pairs as in (27). Let X, Y be non-singular matrices
decomposed as in (5) and (6), whose columns are the right and the left eigenvectors of the QEP (25), respectively. Further,
let X1 = span(X1) and X̃1 = span(̃X1) denote the eigenspaces spanned by the columns of X1 and X̃1, respectively. Then the
following bounds hold

Err (̃X1, X1)

∥X̃1∥∥X
†
2∥d∞(Λ̃1,Λ2)

≤ ∥ sinΘ(X1, X̃1)∥F ≤
∥X̃†

1∥∥X2∥Err (̃X1, X1)
gapw(Λ̃1,Λ2)

, (28)

where X =
[
X1, X2

]
,

Err (̃X1, X1) =√ n∑
i=k+1

k∑
j=1

⏐⏐−λ̃2j (yi)∗1δMũj + λ̃j((yi)∗1δD̃uj + (yi)∗2δG∗ũj) + (yi)∗1δG̃G∗ũj
⏐⏐2 ,

d∞(Λ̃1,Λ2) = max
1≤j≤k

k+1≤i≤n

|λi(yi)∗1Mui − (yi)∗2G
∗ui||(̃λj − λi)| , (29)

gapw(Λ̃1,Λ2) = min
1≤j≤k

k+1≤i≤n

|λi(yi)∗1Mui − (yi)∗2G
∗ui||(̃λj − λi)| , (30)

and

yi =

[
(yi)1
(yi)2

]
, i = 1, . . . , n .
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Proof. Note that from (11) it follows that for the proof of (28) we need to plug in δA and δB from (27) into Err (̃X1, X1)
from (11)

Err (̃X1, X1) =

√ n∑
i=k+1

k∑
j=1

⏐⏐y∗

i δB̃xj̃λj + y∗

i δÃxj
⏐⏐2 , (31)

and calculate the corresponding d∞(Λ̃1,Λ2) and gapw(Λ̃1,Λ2) from (11).
For that purpose, recall (27) and the structure of eigenvectors

xi =

[
λiui
G∗ui

]
, yi =

[
(yi)1
(yi)2

]
.

We have

y∗

i Bxi = −λi(yi)∗1Mui + (yi)∗2G
∗ui.

Note that for the considered problem y∗

i Bxi ̸= 0 for all i (since we have deflated infinite eigenvalues as was explained
in [19]), which implies

λi =
y∗

i Axi
y∗

i Bxi
.

Thus, both denominators in (11) can be written as

max
1≤j≤k

k+1≤i≤n

|(y∗

i Bxi )̃λj − (y∗

i Axi)| = max
1≤j≤k

k+1≤i≤n

|λi(yi)∗1Mui − (yi)∗2G
∗ui||(̃λj − λi)| , (32)

min
1≤j≤k

k+1≤i≤n

|(y∗

i Bxi )̃λj − (y∗

i Axi)| = min
1≤j≤k

k+1≤i≤n

|λi(yi)∗1Mui − (yi)∗2G
∗ui||(̃λj − λi)| . (33)

Further, since δA and δB from (27) are defined as

δA =

[
δD δG
δG∗ 0

]
, δB =

[
−δM

0

]
,

by a simple multiplication with the corresponding eigenvectors yi and x̃j we get

y∗

i δB̃xj = −λ̃j(yi)∗1δMũj

y∗

i δÃxj = λ̃j
(
(yi)∗1δD̃uj + (yi)∗2δG

∗ũj
)
+ (yi)∗1δG̃G

∗ũj .

Now, the lower and upper bound (28) simply follows by plugging the above equalities and (32) and (33) into (31) and
using (29) and (30). □

3.1. Damping influence on the mechanical system

One of the important problems in studding a mechanical system is damping influence. This means that we are
interested in the properties of the mechanical system given the matrix triple M,D and K only under the changing of
the damping matrix D. Here we will assume that all three matrices M,D and K are real symmetric and M is positive
definite. In that case, we have

δM = 0 δK = 0, that is δG = 0 .

If we introduce two matrices whose columns are eigenvectors ui of the quadratic eigenvalue problems (25) and (26) as

Ũ(1,k) =
[̃
u1, . . . , ũk

]
and U(k+1,n) =

[
uk+1, . . . , un

]
, (34)

respectively, then we have the following corollary.

Corollary 3.2. Let (A, B), X1 = span(X1) and X̃1 = span(̃X1) be as in Corollary 3.1 and X =
[
X1, X2

]
. If we consider the

perturbation only of the damping matrix D, that is δM = 0, δG = 0 and δD ̸= 0, then the following bounds hold

ErrD (̃X1, X1)

∥X̃1∥∥X
†
2∥rd∞(Λ̃1,Λ2)

≤ ∥ sinΘ(X1, X̃1)∥F ≤
∥X̃†

1∥∥X2∥ErrD (̃X1, X1)
rgw(Λ̃1,Λ2)

, (35)

where

ErrD (̃X1, X1) =

√ n∑
i=k+1

k∑
j=1

⏐⏐u∗

i δD̃uj
⏐⏐2 = ∥U∗

(k+1,n)δDŨ(1,k)∥F ,
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and Ũ(1,k) and U(k+1,n) are defined as in (34) and

rd∞(Λ̃1,Λ2) = max
1≤j≤k

k+1≤i≤n

|λ2i u
∗

i Mui − u∗

i GG
∗ui||(̃λj − λi)|

|λĩλj|
, (36)

rgw(Λ̃1,Λ2) = min
1≤j≤k

k+1≤i≤n

|λ2i u
∗

i Mui − u∗

i GG
∗ui||(̃λj − λi)|

|λĩλj|
. (37)

Proof. For the proof we will need to calculate the sum from (15). Using the facts that δM = δK = 0, that is δG = 0
and that all unperturbed eigenvalues and eigenvectors come in conjugate pairs (due to assumption that all three matrices
M,D and K are real symmetric) we have

xi =

[
λiui
G∗ui

]
, yi

.
=

[
(yi)1
(yi)2

]
=

[
λiui
G∗ui

]
.

All these imply

δA =

[
δD 0
0 0

]
, δB =

[
0

0

]
,

and ⏐⏐y∗

i δB̃xj̃λj − y∗

i δÃxj
⏐⏐

|(y∗

i Bxi )̃λj − (y∗

i Axi)|
=

⏐⏐(yi)∗1δD(̃xj)1⏐⏐
|(y∗

i Bxi )̃λj − (y∗

i Axi)|
=

⏐⏐(yi)∗1δD(̃xj)1⏐⏐
|(y∗

i Bxi)(̃λj − λi)|
,

where the last equality follows from the same consideration as one above (32).
Furthermore, since

y∗

i Bxi = −λ2i u
∗

i Mui + u∗

i GG
∗ui,

it holds that⏐⏐y∗

i δB̃xj̃λj − y∗

i δÃxj
⏐⏐

|(y∗

i Bxi )̃λj − (y∗

i Axi)|
=

⏐⏐̃λjλiu∗

i δD̃uj
⏐⏐

|(λ2i u
∗

i Mui − u∗

i GG∗ui)(̃λj − λi)|
.

Now, (35) follows by inserting the above equality into (15) and proceeding as in Theorem 2.1. □

3.1.1. Illustrative example II
Similarly as in the previous illustrative example we will demonstrate some interesting properties of the lower and

upper bound (35) on a mechanical system defined by three matrices M , C0 and K under the influence of the external
damping Cv .

Thus, let M , C0, K and Cv be 5 × 5 real symmetric matrices defined as

M =

⎡⎢⎢⎢⎣
1.0275 −0.0223 0.0374 0.0341 0.0696

−0.0223 4.0380 −0.0226 0.0323 0.0700
0.0374 −0.0226 8.9661 0.0367 −0.0434
0.0341 0.0323 0.0367 16.0137 −0.0750
0.0696 0.0700 −0.0434 −0.0750 25.0787

⎤⎥⎥⎥⎦ ,

K =

⎡⎢⎢⎢⎣
1.0299 −0.0208 0.0935 0.0341 0.7464

−0.0208 4.0399 −0.1542 0.0333 0.5840
0.0935 −0.1542 35.8618 −0.1277 −0.3171
0.0341 0.0333 −0.1277 16.0308 0.0143
0.7464 0.5840 −0.3171 0.0143 225.7028

⎤⎥⎥⎥⎦ ,

Cv =

⎡⎢⎢⎢⎣
1.0271 −0.0224 0.0184 −0.0038 −0.0147

−0.0224 4.0376 0.0210 0.0033 0.0059
0.0184 0.0210 0.0004 −0.0001 −0.0002

−0.0038 0.0033 −0.0001 0 0.0001
−0.0147 0.0059 −0.0002 0.0001 0.0002

⎤⎥⎥⎥⎦ .

The damping C0 is the classical Rayleigh damping defined as C0 = 0.0001 · M + 0.0002 · K (for more details see [21]
or [22]). For this case the spectrum of the QEP

(
λ2M + λC0 + K

)
u = 0 is

λ1 = −1.4598 · 10−4
− i , λ2 = −1.4598 · 10−4

+ i , λ3 = −1.4851 · 10−4
− i ,

λ4 = −1.4851 · 10−4
+ i , λ5 = −1.4987 · 10−4

− 1.0005i ,
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Table 1
Results of error bound (35) for X1 = span ([x1, x2]) and δD = vCv .
(35) v = 0.01 v = 0.1 v = 1 v = 2

lower bound 9.1836 · 10−4 0.00918 0.0911 0.143
∥ sinΘ(X1, X̃1)∥F 7.3217 · 10−3 0.0327 0.3311 0.950
upper bound 59.925 599.53 6091 74811

Table 2
Results of error bound (35) for Z1 = span ([x8, x10]) and δD = vCv .
(35) v = 0.01 v = 0.1 v = 1 v = 2

lower bound 3.2 · 10−8 3.2 · 10−7 2.76 · 10−6 4.27 · 10−6

∥ sinΘ(Z1, Z̃1)∥F 1.96 · 10−7 1.95 · 10−6 1.65 · 10−5 2.44 · 10−5

upper bound 1.02 · 10−6 1.02 · 10−5 8.8 · 10−5 1.37 · 10−4

λ6 = −1.4987 · 10−4
+ 1.0005i , λ7 = −2.5098 · 10−4

− 2i , λ8 = −2.5098 · 10−4
+ 2i ,

λ9 = −3.5093 · 10−4
− 3i , λ10 = −3.5093 · 10−4

+ 3i .

The matrices, M and K are chosen such that the pair (M, K ) has the spectrum {1, 1, 4, 1.001, 9}. Let assume that one
is interested in adding the external damping, which in our notation is given as a perturbation, δD .

= vCv where v ≥ 0 is
a real parameter.

In the first part of this illustrative example we consider the external damping (the perturbation) with the strongest
influence on the first two eigenvalues {1, 1}. The best choice for such Cv will be to use a projector on the subspace spanned
by the first two columns of the matrix S = U−∗, where U is a nonsingular eigenvector matrix of the pair (M, K ).

That is, let S =
[
s1, s2, . . . , s5

]
= U−∗, where U is a nonsingular eigenvector matrix of the pair (M, K ). Then, external

damping Cv is defined as

Cv = s1s∗1 + s2s∗2 .

Thus, for the illustration of the influence of external damping matrix on perturbed QEP(
λ2M + λ(C0 + vCv) + K

)
u = 0 ,

we will vary the parameter v such that v ∈ {0.01, 0.1, 1, 2}.
The first table shows results obtained from (35) for the angles between

X1 = span
([
x1, x2

])
, and X̃1 = span

([̃
x1, x̃2

])
,

where

xi =

[
λiui
G∗ui

]
, x̃i =

[
λ̃ĩui

G̃∗ũi

]
, i = 1, 2.

The matrix G is defined by K = GG∗.
For different values of parameter v we have the results in Table 1.
In the second part of this example we consider results obtained from bound (35) for the angles between

Z1 = span
([
x8, x10

])
, and Z̃1 = span

([̃
x8, x̃10

])
,

and for the same external damping Cv . The obtain results are shown in Table 2.
Note, as one can see from Table 1, the external damping Cv has the strongest influence on the eigenspace spanned by

the first two eigenvectors x1 and x2. Table 1 illustrates two important properties of the bounds in (35). First, it shows that
sometimes the upper bound can be too pessimistic, but the lower bound reflects a behaviour of considered eigenspaces
and, second the both bounds depend almost linearly on parameter v of the external damping (δD = vCv) as long as the
spectra, Λ̃1 and Λ2, remain separated enough.

On the other hand Table 2 illustrates that the external damping used in this example has almost no influence on some
parts of the spectrum, especially it leaves the eigenspace spanned by the eigenvectors x8 and x10 almost unchanged. This
is caused by the property of the external damping Cv , whose null-space is ‘‘close’’ to the subspace spanned by the last
two eigenvectors u4 and u5 of the pair (M, K ), that is ∥Cvui∥2 = O(10−5), for i = 4, 5.

4. Conclusion

The main results of the paper are upper and lower bounds for the Frobenius norm of the sinΘ matrix of the canonical
angles between unperturbed and perturbed eigenspaces of a regular generalized Hermitian eigenvalue problem Ax = λBx,
where A and B are n × n Hermitian matrices, under a feasible non-Hermitian perturbation. We present an application of
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obtained bounds on the eigenspaces of a pair (A, B) obtained by a linearization of regular quadratic eigenvalue problem(
λ2M + λD + K

)
u = 0.

In Section 3.1 we apply our upper and lower bounds to the important problem of measuring the influence of damping
on mechanical systems. The obtained results show that sometimes the upper bound can be too pessimistic, but the lower
bound reflects a behaviour of considered eigenspaces properly as well as that both bounds depend linearly on a damping
parameter as long as considered spectra remain separated enough.
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