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Abstract 

Using the theory of s-orthogonality and reinterpreting it in terms of the standard orthogonal polynomials on the real line, 
we develop a method for constructing Gauss-Turfin-type quadrature formulae. The determination of nodes and weights 
is very stable. For finding all weights, our method uses an upper triangular system of linear equations for the weights 
associated with each node. Numerical examples are included. 
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I. Introduction 

Let  ~m be the set o f  all a lgebraic  po lynomia l s  o f  degree  at mos t  m. In 1950, Turfin [21] s tudied 

numer ica l  quadra tures  o f  the fo rm 

1 k - 1  n 

f f ( t ) d t = ~ _ , ~ _ ,  vf(i)(z~ (1.1) Ai. ) + R, ,k( f ) ,  
1 i = 0  v = l  

where  

Ai,~= lv, i ( t)dt  ( v = l  . . . . .  n; i=O, 1 . . . . .  k - l )  
1 
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and lv, t(t) are the fundamental polynomials of  Hermite interpolation. The coefficients Ai, v are Cotes 
numbers of  higher order. Evidently, the formula (1.1) is exact if f E ~kn-1 and the points - 1  ~ 1  
< • • • < z, ~< 1 are arbitrary. 

For k =  1 the formula (1.1), i.e., 

f ( t )  dt = ~ Ao, vf(Zv) + R,, l ( f ) ,  
1 v=l 

can be exact for all polynomials of  degree at most 2 n -  1 if the nodes ~ are the zeros of  the 
Legendre polynomial P,, and it is the well-known Gauss-Legendre quadrature rule. 

Because of  Gauss's result it is natural to ask whether knots "c~ can be chosen so that the quadrature 
formula (1.1) will be exact for algebraic polynomials of  degree not exceeding (k + 1 )n - 1. Tur~in 
[21] showed that the answer is negative for k = 2, and for k = 3 it is positive. He proved that the 
knots ~ should be chosen as the zeros of  the monic polynomial rc*(t) = t" + . .-  which minimizes 
the integral 

f l  I [ E . ( t ) ]  4 dt, 

where z~.(t) = t" + an_it "-1 + " • + alt + ao. 
More generally, the answer is negative for even, and positive for odd k, and then Zv are the zeros 

of  the polynomial minimizing 

_l [Irn(t)] k+l dt. 

When k = 1, then n* is the monic Legendre polynomial/3.  
Because of  the above, we put k = 2s + 1. It is also interesting to consider, instead of  (1.1), more 

general Gauss-Turdm-type quadrature formulae 

fa f ( t  d2(t) = ~ Ai,~f{°(zv) + R.,2~(f), (1.2) 
i=0 v=l 

where d2(t) is a nonnegative measure on the real line R, with compact or infinite support, for which 
all moments 

= fu tkd2(t) '  k = 0 , 1 , . . . ,  #k 

exist and are finite, and #0 >0.  It is known that formula (1.2) is exact for all polynomials of  degree 
at most 2(s + 1)n - 1, i.e., 

R,,2,(f) = 0 for f E ~2(,+a~,-1. 

The knots z~ ( v =  1 , . . . ,n )  in (1.2) are the zeros of the monic polynomial rc,*(t), which minimizes 
the integral 

F(ao, a l , . . . ,  a ,_l)  = f [zt,(t)] 2.+2 d2(t), 
JR 
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where n , ( t )  = t ~ + a n _ l  t n - 1  -~- ' ' .  -q- air q- ao. This minimization leads to the conditions 

~[ TZn(t)] 2s+lt k d2(t) = 0 (k = 0, 1 , . . . ,  n - 1 ). (1.3) 

Usually, instead of  rc,~(t) we write P~,,(t). 
The case d 2 ( t ) =  w ( t ) d t  on [a,b] has been investigated by the Italian mathematicians Ossicini 

[15], Ghizzetti and Ossicini [7] and Guerra [9, 10]. It is known that there exists a unique P~,,(t)= 
1-Iv"= 1( t -  z~), whose zeros z~ are real, distinct and located in the interior of  the interval [a,b]. These 
polynomials are known as s -or thogonal  (or s-self associated) po l ynomia l s  in the interval [a, b] with 
respect to the weight function w (for more details see [4, 15-17]). For s = 0  we have the standard 
case of  orthogonal polynomials, and (1.2) then becomes the well-known Gauss-Christoffel formula. 

An iterative process for computing the coefficients of  s-orthogonal polynomials in a special case, 
when the interval [a, b] is symmetric with respect to the origin and the weight function w is an 
even function, was proposed by Vincenti [24]. He applied his process to the Legendre case. When 
n and s increase, the process becomes numerically unstable. 

At the Third Conference on Numerical Methods and Approximation Theory (Ni~, 18-21 August, 
1987) (see [13]) we presented a stable method for numerically constructing s-orthogonal polynomials 
and their zeros. It uses an iterative method with quadratic convergence based on a discretized Stieltjes 
procedure and the Newton-Kantorovi6 method. Since the proceedings of this conference may not be 
widely available, we recall this method in Section 2. In Section 3, we develop a numerical procedure 
for calculating the coefficients Ai,~ in (1.2). Some alternative methods were proposed by Stroud and 
Stancu [20] (see also [19]) and Milovanovi6 and Spalevi6 [14]. Remarks on the Chebyshev measure 
are made in Section 4. Finally, a few numerical examples are presented in Section 5. 

2. Construction of s-orthogonal polynomials 

The basic idea for our method to numerically construct s-orthogonal polynomials with respect to 
the measure d2(t) on the real line ~ is a reinterpretation of the "or thogona l i t y  condi t ions"  (1.3). 
For given n and s, we put d/2(t)= d#S'n(t)= (TZn(t)) 2s d2(t). The conditions can then be written as 

JR ~z~'"( t ) tVd#( t )=O (v=O,  1 , . . . , k -  1), 

where {n~'"} is a sequence of monic orthogonal polynomials with respect to the new measure d/~(t). 
Of course, Ps,,( • ) = rc,~'"( • ). As we can see, the polynomials n~,n (k = 0, 1, . . . )  are implicitly defined, 
because the measure d/~(t) depends on rc~'"(t). A general class of  such polynomials was introduced 
and studied by Engels (cf. [2, pp. 214-226]).  

We will write simply 7zk(. ) instead of  7z],'"( • ). These polynomials satisfy a three-term recurrence 
relation 

~zv+l(t) = (t -- av)rtv(t) - flfl~v-l(t),  

rc_l(t) = O, no( t )=  1, 

v=O,  1 , . . . ,  
(2.1) 
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Table 1 

n d/~'~(t) Orthogonal polynomials 

0 (rc~'°(t)) 2~d).(t) I ~ ' °  [ 

S, 1 1 (rc~' 1 (t))2* d).(t) n o 

2 (~'2(t))2s d2(t) rc~ '2 

3 (n3'a(t)) 2s d2(t) ~g,3 

where, because of  orthogonality, 

= n )  = - -  
(tn~, n~) _ fR t~z2(t) d/~(t) 

(n,, 7r~) fR n~(t) d/~(t) ' 
(2.2) 

(zc~, 7r~) fa n2(t) d/2(t) 
2 (n~-l, n~-l) f an~_ l ( t )d# ( t ) '  

and, by convention, t 0 - -  fR d/fit). 
The coefficients ~ and fl~ are the fundamental quantities in the constructive theory of  orthogonal 

polynomials. They provide a compact way of  representing orthogonal polynomials, requiring only 
a linear array of parameters. The coefficients of  orthogonal polynomials, or their zeros, in contrast, 
need two-dimensional arrays. 

Knowing the coefficients ~v and fly (v = 0, 1 , . . . ,  n - 1) gives us access to the first n + 1 orthogonal 
polynomials n0, re1,..., n~. Of  course, for a given n, we are interested only in the last of  them, i.e., 
rcn-  n~ '~. Thus, for n = 0, 1 , . . . ,  the diagonal (boxed) elements in Table 1 are our s-orthogonal 
polynomials n ns'n. 

A stable procedure for finding the coefficients ct~ and fl~ is the discretized Stieltjes procedure, 
especially for infinite intervals of orthogonality (see [3-6]). Unfortunately, in our case this proce- 
dure cannot be applied directly, because the measure d#(t)  involves an unknown polynomial ~,~'~. 
Consequently, we consider the system of  nonlinear equations 

fo - to - fn lr~(t) d2(t) = O, 

f2~+l = j f  (C~v - t)rr2~(t)n~(t)d2(t)-=O (v=O,  1 . . . . .  n - 1), (2.3) 

f~  2 2 2s f2~-- (flJrv_l(t) - 1), n~(t))rc~ ( t ) d 2 ( t ) = O  ( v = l  . . . .  , n -  

which follows from (2.2). 
Let x be a (2n)-dimensional column vector with components s0, t0 . . . . .  ~ -1 ,  fl~-i and f ( x )  a 

(2n)-dimensional vector with components f0, f l  . . . .  ,f2~-1, given by (2.3), in which So, n l  . . . .  , n n are 
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thought of  as being expressed in terms of the 0~'s and 3 's  via (2.1). If  W = W ( x )  is the corresponding 
Jacobian o f f ( x ) ,  then we can apply Newton-Kantorovi~'s method 

x ~k+ll = x tk] - W - l ( x I k ] ) f ( x  [kl) (k = 0, 1, . . .)  (2.4) 

for determining the coefficients of  the recurrence relation (2.1). If  a sufficiently good approximation 
x [°1 is chosen, the convergence of  the method (2.4) is quadratic. 

Notice that the elements of the Jacobian can be easily computed in the following manner. 
First, we have to determine the partial derivatives a~,i = 0n,/O~ and b~,~ = O2zv/O/3~. Differentiating 

the recurrence relation (2.1) with respect to ~i and//~, we obtain 

a v + l , i  = (t - Cev)a~,i - 3 v a v - l , i ,  by+l ,  i = ( t  - -  ~ v ) b v ,  i - ~ v b v _ l , i ,  

where 

av, i = 0 ,  b~,i=O (v<~i), 

ai+l,i=--~zi(t), bi+la=-Tzi_~(t) .  

These relations are the same as those for roy, but with other (delayed) initial values. The elements 
of  the Jacobian are 

Qfzv+l _ 2 ~s- l( t ) [(c~ -- t )p , , i ( t )  + g~,irCv(t)rCn(t)] d2(t), 
~ce~ 

~ f 2 v +  1 t 
- 2 [~ rc~-l(t)(C~v - t)q~,i(t) d2(t), 

d N  

(2.5) 
0f2v 2 ~  2s-1 rc. ( t ) ( /3~p~_, , i ( t ) -  pv , , ( t ) )d2( t ) ,  

af2  fu  re. (t)[(fl~q~_~,~(t) - qv, i(t)) + $6~,irt~_l(t)rG(t)]di~(t), ~-~ - 2 2s-1 1 2 

where 

pv, i(t) = rc~(t)(a~,irCn(t) +San, irtv(t)), q~,i(t) = rc~(t)(bv, irc.(t) + sb.,irc~(t)), 

and 6~,~ is the Kronecker delta. 
All of the above integrals in (2.3) and (2.5) can be computed exactly, except for rounding errors, 

by using a Gauss-Christoffel quadrature formula with respect to the measure d£(t), 

N 

f u o ( t ) d 2 ( t ) =  RN(9), (2.6) + 
v = |  

taking N = (s + l )n  knots. This formula is exact for all polynomials of  degree at most 2N - I = 

2(s + i ) .  n -  1 = 2 ( n -  I)  + 2ns + I. 
Thus, for all calculations we use only the fundamental three-term recurrence relation (2.1) for 

the orthogonal polynomials ~k( ' ;  d2) and the Gauss~Christoffel quadrature (2.6). As intial values 
~!o) = 0~O](s,n) and fl!0} =fl~O~(s,n ) we take the values obtained for n -  1, i.e., ~0] = ~ , ( s , n -  1), 
fl~ol =f l~(s ,n  - 1), v < ~ n -  2. For ~°_] 1 and fl~°_ll we use corresponding extrapolated values. 
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In the case n = 1 we solve the equation 

q~(~o) = ~b(~o(S, 1 )) = fa (t - ~ o )  2s+l dA(t) = O, 

and then determine 

flo = flo(S, 1) = f~ (t - 0e0) 2~ d2(t). 

The zeros Zv=Zv(s,n) ( v =  1 , . . . ,n )  of 7r nS,., i.e., the nodes of the Gauss-Turfin-type quadrature 
formula (1.2), we obtain very easily as eigenvalues of a (symmetric tridiagonal) Jacobi matrix Jn 
using the QR algorithm, namely, 

v/-~2 ~2 J .=  

0 

X/'fln-- 1 ~Xn--1 0 

where O~v=O~v(s,n), fl~=fl~(s,n) ( v : 0 ,  1 , . . . , n -  1). 

3. Calculation of coefficients 

Let z~ = z~(s, n), v = 1,. . . ,  n, be the zeros of the s-orthogonal (monic) polynomial 7rn(t ) (~ 7Zs'n(t)). 
In order to find the coefficients Ai,~ in the Gauss-Turfin-type quadrature formula 

28  n 

fR f ( t )  d2(t) -- ~ ~ Ai, vf(i)(Zv) + R ( f ) ,  (3.1) 
i=O v=l  

we define 

(~Zn(t) ~28+1 ,gi)2s+l 
f2~(t) = \ t  - - - ~ /  : I - [ ( t  - ( v =  1 . . . . .  n). (3.2) 

Then the coefficients Ai, v c a n  be expressed in the form (see [19]) 

1 [ 1J~TCn(X)28+l-Trn(t)28+ld,~(x) ] 
Air--  i!(2s i)! D28-i 

' - t 2 ~ ( t )  x - t . t = ~ '  

where D is the differentiation operator• In particular, for i = 2s, we have 

1 /. 
A28,v = (2s)!(Tr,(zv))28+ l 

X - -  "/S v 

d2(x), 
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B~ ~) 
A2s,~ = (2s)!(Tr,(r~))2 s ( v =  1 , . . . ,n ) ,  

where B~ s) are the Christoffel numbers of  the following Gaussian quadrature (with respect to the 
measure d#(t)  = rcz~(t) d2(t)): 

n 

fRg( t )d#( t )=  Y~B~')O(z~) + R,(9), Rn(~i~2n-1) ~ -  O .  (3.3) 
v = l  

Since B~ ') >0 ,  we conclude that A2,,~ >0.  The expressions for the other coefficients (i <2s )  become 
very complicated. For numerical calculation we could use a triangular system of linear equations 
obtained from the formula (3.1) by replacing f with the Newton polynomials: 1, t - r l , . . . ,  (t-Vl)2~+l, 
(t - " ~ l ) 2 S + l ( t  - T 2 )  . . . .  ,(t  - -  " C 1 ) 2 s + l ( t  - -  " g 2 )  2 s + l  " " " (t - " ~ n )  2s  ( c f .  [4, Section 2.2.4]). 

In this paper we take instead the polynomials 

fk:( t )  -~ (t - t~)kf2~(t) = (t - iv) k I I  (t - "lsi)  2 s + l ,  (3.4) 

where O<.k<.2s, 1 <. v<.n. 
Since the quadrature (3.1) is exact for all polynomials of degree at most 2(s + 1 )n - 1 and 

deg fk, v = (n - 1 )(2s + 1 ) + k ~< (2s + 1 )n - 1, 

we see that (3.1) is exact for the polynomials (3.4), i.e., 

R(fk ,~)=0 (0~<k~2s,  l<.v<~n). 

Thus, we have 

2s n 

y ~  A~,:f;:(zj) -- J[R fk:( t )  d2(t), 
Z (i) __ 

i=o j = l  

i . e . ,  

2s  

(0 Ai,~f;,v (zv) = #k, v, (3.5) 
i=0  

because for every jT~v we have f~i)(zj)=O when O<~i<~2s. Here, we have put 

#k,v = 9/~ fk, v( t )d2(t)= f R ( t -  t~)k I I  ( t -  zi)2S+ld)c(t). 
i4v 

For each v, we have in (3.5) a system of  2s + 1 linear equations in the same number of unknowns, 
Ai, v, i = 0 , 1  . . . .  ,2s. 

Using Leibniz's formula of  differentiation, one easily proves the following auxiliary result. 
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Lemma 3.1. For the polynomials fk, v 9iven by (3.4), we have 

fk(or_ { O, i < k, 
'vk*V) = i(k)~-~$i-k)('Cv), i>~k, 

where i @) =i(i - 1) . - .  (i - k + 1) [with 0 (°) = 1] and fL is defined in (3.2). 

Lemma 3.1 shows that each system of linear equations (3.5) is upper triangular. Thus, once all 
zeros of the s-orthogonal polynomial re,, i.e., the nodes of the quadrature formula (3.1), are known, 
the determination of its weights A~,v is reduced to solving the n linear systems of (2s + 1 ) equations 

[  v v l[A°v 1 [ ov 1 fd, v(Z ) 
fit, v(Tv) f(2s)("Cv) AI,v "l.,v . 

¢'(2s)1"- "~ " A2s v -J I-Z2s v .1 
J 2s, v t~v)  

f ( k -  I+ j ) /z .  v "~, Put ak, k+j----Jk-l,v ~ ~ so that the matrix of the system has elements al,j (1 ~< l ,j  ~< 2s + 1), with 
at,j = 0 for j < l. Then, by Lemma 3.1, 

al,j=(j-1)~t-1)O~J-t)(Zv) ( j ~ l ;  l<.l , j<.2s+ l). (3.6) 

Lemma 3.2. Let 271,... ,'~n be the zeros of the s-orthogonal polynomial rCn. For the elements al,j, 
defined by (3.6), the following relations hold: 

ak, k=(k--1)!al,1 ( l < k ~ < 2 s + l ) ,  

J 

ak, k+j = - (2s  + 1)(k + j  - 1) (k-l) ~ Ulal,j 
1=1 

where 
# 2s+ 1 ai, l = (2v(Z~) = [n,(z~)] , 

u t = ~ ( ~ i - z v )  -l ( l =  1, . . . ,2s) .  
i#v 

( l ~ k ~ 2 s - j +  1 ) ,  

j =  1 , . . . ,2s  

(3.7) 

O'v(t ) = (2s + 1)v(t)f2v(t) 

d J-1  t d J-1  
Y2~J)(t) : dt----7~_l(Y2~(t)) = (2s + 1 )d-~_l(v(t)~2~(t)) 

j--1 

= ( 2 s +  1)~'-~ ( j - l  l )  o~j-l-l)(t)v(l)(t)" 
l=0 

and 

Proof. The first relation is an immediate consequence of the definition of ak, k and Lemma 3.1. 
To prove the second, define v( t )= ~i4v (t - zi) -l. Since f2v(t)= 1-Ii4v (t - zi) 2s+1 we have that 
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Then, (3.6) becomes  

J ( ~ - -  l)v(l-1)(T,v)~'~J-l)('gv). ak 'k+J=(k+J- -  1)(k-1)(2s + 1 ) Z  1 
1=1 

Since 

/)(l--1)(27v) = ( - 1  j - l ( l  - 1)! ~-'~('r~ - T,i) - l =  - - ( l  --  1)!ut 
i4v 

and 

at,j ( j  - l)! 
12~J-O(Zv) = ( j  -- 1) (t-l) -- ( j  - 1)! at,j, 

we get 

J 
ak, k+j = - -  (2s + 1 )(k + j - 1 ) ( k - l )  Z Ulal,j. 

/=1 

Using the normalization 

ak, j (1 <.k, j< .2s  + 1), 
^ 

ak, j -  ( j  _ 1)!a1,1 

and putt ing 

bk = ( k - 1 ) A k _ l , ~  ( l ~ k ~ < 2 s + l ) ,  

[] 

_ ( 2s+1 

213 

(3.8) 

(3.9) 

(3.11) 

mula (3.1) are given by 

b2s+l  = (2s)]Azs, v = fiZs, v, 
2s+l 

bk = (k - 1)!Ak_l,~ = fik-l,~ - Z fik, jbj 
j=k+ l  

where fik,~ are given by (3.9), and 

2 s +  1 ~-~ 
a~,k = 1, gtk, k+j -- - Uftt, j 

J t=l 

the ut being defined by (3.7). 

( k =  1 , . . . , 2 s ;  j =  1 , . . . , 2 s -  k + 1), 

(3.10) ( k = 2 s , . . . , 1 ) ,  

we have the fol lowing result: 

Theo rem 3.3. For f ixed  v (1 ~< v ~<n), the coefficients Ai,~ in the Gauss-Turgm-type quadrature for- 
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Proof. The relations (3.11) follow directly from Lemma 3.2 and the normalization (3.8). 

The coefficients bk (1 ~< k ~< 2s + 1 ) are obtained from the corresponding upper triangular system 
of equations Ab = c, where 

- / =  r, c =  [fi0v, . . . .  t. [] 

The normalized moments /~k,~ can be computed exactly, except for rounding errors, by using the 
same Gauss-Christoffel formula as in the construction of s-orthogonal polynomials, i.e., (2.6) with 
N ---- (s + 1 )n knots. 

4.  S o m e  r e m a r k s  o n  the  C h e b y s h e v  m e a s u r e  

In this section we discuss the particulary interesting case of the Chebyshev measure d2 ( t )=  
(1 - t2 )  -1/2 dt. In 1930, Bernstein [1] showed that the monic Chebyshev polynomial T,(t) -- T,(t)/2 ~-~ 
minimizes all integrals of the form 

f/1 I~n(t)lk+l S ~  dt ( k~0 ) .  

Thus, the Chebyshev-Tur~in formula 

f f  f(t______~) dt -- ~ Ai ~f(O(tv) + Rn(f), 
a x / 1  - t 2 

i=0 v=l 

(4.1) 

with z~= cos((2v - 1)n/2n) ( v =  1, . . . ,n) ,  is exact for all polynomials of degree at most 2(s + 
1 ) n -  1. Turin stated the problem of explicit determination of Ai,~ and its behavior as n ~ +oo (see 
[22, Problem XXVI]). Some characterizations and solution for s -- 2 were obtained by Micchelli and 
Rivlin [12], Riess [18], and Varma [23]. One simple answer to Tur~in's question was given by Kis 
[11]. His result can be stated in the following form: If 9 is an even trigonometric polynomial oJ 
degree at most 2(s + 1)n - 1, then 

/0 ± 9(O)dO-n(s[)~2 j=0 4Jn2J v=l ~ 2n J '  

where S~_j. ( j  = 0, 1 , . . .  , s )  denote the elementary symmetric polynomials with respect to the num- 
bers 12, 2 2 . . . . .  S 2, i.e., 

Ss--1, S s _ l = 1 2 q - 2 2 + ' " + s 2 , . . . ,  S0---12"22""s  2. 

Consequently, 

f_ l f ( t )  
I v ~ - - t  2 

_ _  d t -  - -  
n(s!)2 4Jn2j 

j = 0  

~-~ [DZJf(cos 0)]0=(2v-1/2,)~. 
v = l  
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Using the expansion 
2k 

Dik f ( c o s O ) =  ~_dk,  i( t) f( i)( t) ,  t =  cos0,  k > 0 ,  
i = 1  

where the functions dk, j =-d~a(t) are given recursively by 

d k + l ,  1 = ( 1  - - / 2 ) d ; i  1 - talk, l, 

4 + 1 , 2 = ( 1  - t2)d~,~2 - td;, 2 + 2 ( 1  - t i ) d ~ , l  - t d k ,  l, 

4+1,, = (1 - tZ)dtkli -- tdtk, i + 2 ( 1  - -  ti)dtk, i_l -- tdk, i - i  + ( 1  - -  t i )dk ,  i_2, (i = 3 , . . .  ,2k),  

dk+l,ik+l = 2 ( 1  -- tZ)d~,ik - tdk, ik + (1 -- ti)dk, zk_t, 

dk+l,2k+2 = (1 -- ti)dk, ik, 

with dl,1 = -  t and dl,z = 1 - t  z, we obtain (4.1). For example, when s = 3 ,  we have 
~Tv 

A0,~ = - A1 ~ - - - - ( 7 8 4 n  4 + 56n 2 - 1), 
n '  ' 2304n 7 

z 
A z ,  v - -  2304nV-[(784n4 - 392n 2 + 31)(1 - ~2) + 168n 2 _ 15], 

rc'c~ [(336n 2 _ 89)(1 - "r~) + 15], 
A3,~ -- 2304n7 

7~ 
A4,~-  2304nV-[(56n2 - 65)(1 - ~ ) 2  + 45(1 - T2)], 

_ rcr~ 4 1 2)2 240(1 r2)], A6,~= 2304n7(1 ~)3 .  As,~ 23-0-~n7[ 67 ( - rv - - rc _ 

To conclude, we mention the corresponding formula (3.3) for the Chebyshev weight, 

~ . .  T,~ (t)  7z 
g t t ) ~  dt = ~ v=a g(~v) + Rn(g), (4.2) 

where ~ =cos(2v-  l)(x/2n) (v= l , . . . ,n).  Note that all weights are equal, i.e., the formula (4.2) 
is one o f  Chebyshev type. 

5. Numerical examples 

Using the procedures outlined in Sections 2 and 3 for constructing s-orthogonal polynomials and 
calculating the coefficients in Gauss-Tur/m-type quadrature formulae, we prepared corresponding 
software with the following types o f  polynomials nn('; d i )  (identified by  the integer ipo ly ) :  

c ipoly - integer identifying the kind of polynomials: 

c 

c 0 = nonclassical polynomials with given coefficients 

c in the three-term recurrence relation 

c 1 = Legendre polynomials on [-1,1] 

c 2 = Legendre polynomials on [0,I] 
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c 3-- 

C 4 = 

c 5 : 

c 6 = 

c 7 = 

C 8 = 

C 9 = 

C 1 0  = 

C 

C 

Chebyshev polynomials of the first kind 

Chebyshev polynomials of the second kind 

Jacobi polynomials with parameters al=.5, be=-.5 

Jacobi polynomials with parameters al,be 

generalized Laguerre polynomials with parameter al 

Hermite polynomials 

generalized Gegenbauer polynomials with parameters al,be 

polynomials for the logistic weight 

w(t)=e^{-t}/(l+e~{-t})~2 on the real line 

c al,be -parameters for 3acobi, generalized Laguerre 

c and generalized Gegenbauer polynomials 

c For ipoly=9, the weight function is given by 

c w(x)=Ixl^mu(1-x ̂ 2)^al, where be=(mu-1)/2. 

All computations were done on the MICROVAX 3400 computer using VAX FORTRAN Ver. 5.3 
in D- and Q-arithmetic, with machine precision ~2.76 x 10 -17 and ~1.93 x 10 -34, respectively. For 
example, taking d2(t) = e -t dt on (0, +oc) ,  for s = 2 and n = 5 we obtain the results in D-arithmetic 
shown in Table 2. 

Finally, we give an example where it is preferable to use a formula of  Tur~in type rather than the 
standard Gaussian formula, 

fR f ( t ) d 2 ( t ) =  ~-~A~f( tv)+ Rn( f )  (5.1) 
V = I  

for which Rn(~Zn-1)=0. The example is 

I: I = e t v ~  - t 2 dt = 1.7754996892121809468785765372 . . . .  
1 

Here we have f ( t ) = e  t and d 2 ( t ) = x / 1 -  t2dt on [ -1 ,  1] (the Chebyshev measure of  the second 
kind). Notice that f ( i ) ( t )=  f ( t )  for every i ~>0. 

The Gaussian formula (5.1) and the corresponding Gauss-Turgn formula (3.1) give 
n 

I ,,~ In~ = Z Ave t~' (5.2) 
v = l  

and 
n 

I ~'~I Tn,s = ~ v vtT(s)a *'_ , ( 5 . 3 )  
v = l  

respectively, where C~ s) = x-'2s A Z - ~ i = 0  i ,  v .  

Table 3 shows the relative errors I(IT~,, - I)/ITs I for n = 1 (1)5 and s = 0(1 )5. (Numbers in paren- 
theses indicate decimal exponents and m.p. stands for machine precision.) 

For s = 0 the quadrature formula (5.3) reduces to (5.2), i .e . , /To--I~.  Notice that Tur~in's formula 
(5.3) with n nodes has the same degree of  exactness as the Gaussian formula with (s + 1)n nodes, 
which explains its superior behavior in Table 3. 
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Table 2 
Example. Laguerre case (s = 2, n = 5) 

k alpha (k) beta (k) 

0 0.206241261660323E÷01 
1 0.817357215072019E÷01 
2 0.143542025111386E÷02 
3 0.206411614818251E+02 
4 0.268361238086797E÷02 

zero(1 ) = 0.511080817827157E+00 

A(0, 1 ) = 0.831408096794173E÷00 
A(1,1) = 0.878844153076445E-01 
A(2,1) = 0.777008304959738E-01 
A(3,1) = 0.776770118733145E-02 
A(4,1) = 0.124333607217694E-02 

zero(3) = 0.100115534444780E+02 

A(0,3) = 0.113746188754331E-02 
A(1 ,3 )=-0 .2048925633205792-02  
A(2,3)=0.191860247042219E-02 
A(3,3) = -0.903002129075339E-03 
A(4,3)=0.265091858385108E-03 

zero(5)=0.374416573313175E+02 

A(0,5) = 0.546801190168267E-13 
A(1,5) = -0.192133308928889E-12 
A(2,5)=0.271424024484902E-12 
A(3,5) = -0.181974618995712E-12 
A(4,5) = 0.492724906167396E-13 

0.111900724691563E+17 
0.627220780166491E+01 
0.314187808183856E+02 
0.761775799352482E+02 
0.141467716850165E+03 

zero(2)=0.365040485156886E+01 

A(0,2)=0.167454288564437E+00 
A(1,2) = - 0.133418640886195E+00 
A(2,2) = 0.101695158354974E+00 
A(3,2) = -0.233384486558624E-01 
A(4,2) = 0.920099700677729E-02 

zero(4) = 0.204527761237753E+02 

A(0,4) = 0.152753792492066E-06 
A(1,4)=-0 .410956732811768E-06 
A(2,4)=0.484507006038965E-06 
A(3,4) = -0.288211914479617E-06 
A(4,4) = 0.791425834311650E-07 

Table 3 
Relative errors in quadrature sums f r  n , s  

n s = 0  s = l  s = 2  s = 3  s = 4  s = 5  

1 1.15 ( -  1 ) 4.71 (--3) 9.72(--5) 1.21 ( - 6 )  1.01 (--8) 5 .98( -  11 ) 
2 2 .38( -3 )  2.05(--7) 3.06(--12) 1.36(-17) 2.40(--23) 1.88(--29) 
3 1 .97(-5)  1.15(-12) 4 .02(-21)  9 .26(-31)  m.p. m.p. 
4 8 .76( -8)  1.71 ( - 18) 4.68( - 31  ) m.p. m.p. m.p. 
5 2 .43 ( -  10) 9 .40(-25)  m.p. m.p. m.p. m.p. 
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