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a b s t r a c t

In this work we derive the structural properties of the Collocation coefficient matrix
associated with the Dirichlet–Neumann map for Laplace’s equation on a square domain.
The analysis is independent of the choice of basis functions and includes the case involving
the same type of boundary conditions on all sides, as well as the case where different
boundary conditions are used on each side of the square domain. Taking advantage of
said properties, we present efficient implementations of direct factorization and iterative
methods, including classical SOR-type and Krylov subspace (Bi-CGSTAB and GMRES)
methods appropriately preconditioned, for both Sine and Chebyshev basis functions.
Numerical experimentation, to verify our results, is also included.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, Fokas [1,4] introduced a new unified approach for analyzing linear and integrable nonlinear PDEs. A central
issue to this approach is a generalized Dirichlet to Neumann map, characterized through the solution of the so-called
global relation, namely, an equation, valid for all values of an arbitrary complex parameter k, coupling specified known
and unknown values of the solution and its derivatives on the boundary. In particular, for the case of the complex form
of Laplace’s equation

qzz̄ ≡
∂2q
∂z∂ z̄

= 0⇔
∂

∂ z̄

(
e−ikz

∂q
∂z

)
= 0, k ∈ C is arbitrary,

(z, z̄) = (x+ iy, x− iy), qz =
1
2

(
qx − iqy

)
, qz̄ =

1
2

(
qx + iqy

)
, i2 = −1,
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in a convex bounded polygon D with vertices z1, z2, . . . , zn(modulo n) indexed counterclockwise, the associated Global
Relation takes the form (see also [2,3])

n∑
j=1

%j(k) = 0, %j(k)
.
=

∫
Sj
e−ikzqzdz, k ∈ C, (1.1)

where k ∈ C is arbitrary and Sj denotes the side from zj to zj+1 (not including the end points). At this point we remark that,
as Fokas has shown in [4], there also holds

qz =
1
2π

n∑
j=1

∫
`j

eikz%j(k)dk, `j
.
=
{
k ∈ C : arg(k) = − arg(zj − zj+1)

}
,

hence

q = 2Re
∫ z

z0
qzdz + const.

It is therefore apparent that the spectral functions %j(k) in (1.1) play a crucial role in the solution of Laplace’s equation. To
determine them, for z ∈ Sj, 1 ≤ j ≤ n, we first let

• q(j)τ denote the tangential component of qz along the side Sj,
• q(j)n denote the outward normal component of qz along the side Sj,
• g(j) denote the derivative of the solution in the direction making an angle βj, 0 ≤ βj ≤ π , with the side Sj, namely:

cos
(
βj
)
q(j)τ + sin

(
βj
)
q(j)n = g

(j), (1.2)

• f (j) denote the derivative of the solution in the direction normal to the above direction, namely:

− sin
(
βj
)
q(j)τ + cos

(
βj
)
q(j)n = f

(j). (1.3)

Then, by using the identity

∂q
∂z
=
1
2
e−iαj

(
q(j)τ + iq

(j)
n

)
, z ∈ Sj, αj = arg

(
zj+1 − zj

)
, (1.4)

and substituting into the Global Relation (1.1) we obtain (cf. [2,3]) the Generalized Dirichlet–Neumannmap, that is the relation
between the sets

{
f (j)(s)

}
and

{
g(j)(s)

}n
j=1, which is characterized by the single equation

n∑
j=1

∣∣hj∣∣ ei(βj−kmj) ∫ π

−π

e−ikhjs
(
f (j) − ig(j)

)
ds = 0, k ∈ C (1.5)

where, k ∈ C is arbitrary and for j = 1, 2, . . . , n, and zn+1 = z1,

hj :=
1
2π

(
zj+1 − zj

)
, mj :=

1
2

(
zj+1 + zj

)
, s :=

z −mj
hj

. (1.6)

For the numerical solution of the Generalized Dirichlet–Neumann map in (1.5), a Collocation-type method has been
developed (see [2,3]): Suppose that the set

{
g(j) (s)

}n
j=1 is given through the boundary conditions, and that

{
f (j) (s)

}n
j=1 is

approximated by
{
f (j)N (s)

}n
j=1
where

f (j)N (s) = f (j)
∗
(s)+

N∑
r=1

U jrϕr(s), (1.7)

with N being an even integer, 2π f (j)∗ (s) := (s+ π) f (j) (π) − (s− π) f (j) (−π) (the values of f (j)(π) and f (j)(−π) can be
computed by the continuity requirements at the vertices of the polygon), and the set of real-valued linearly independent
functions {ϕr (s)}Nr=1 being the basis functions. If we evaluate Eq. (1.5) on the following n-rays of the complex k-plane:
kp = − l

hp
, l ∈ R+, p = 1, . . . , n, then the real coefficients U jr satisfy the system of linear algebraic equations

n∑
j=1

∣∣hj∣∣∣∣hp∣∣ei(βj−βp)e−i lhp (mp−mj)
N∑
r=1

U jr

∫ π

−π

eil
hj
hp
s
ϕr(s)ds = Gp (l) (1.8)
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Fig. 2.1. Square domain with vertices zj , sides Sj and interior D.

where Gp(l) denotes the known function

Gp (l) = i
n∑
j=1

∣∣hj∣∣∣∣hp∣∣ei(βj−βp)e−i lhp (mp−mj)
∫ π

−π

eil
hj
hp
s (g(j) (s)+ if (j)

∗
(s)
)
ds, (1.9)

and l is chosen as follows: l = 1
2 ,
3
2 , . . . ,

N−1
2 and l = 1, 2, . . . ,

N
2 for the real and imaginary parts of Eq. (1.8), respectively,

defining a set of Collocation points.

2. Collocation matrix structure for square domains

Consider, now, the square with vertices zj and sides Sj, j = 1, 2, 3, 4 (modulo 4), indexed counterclockwise, and interior
D, depicted in Fig. 2.1. Without any loss of generality, we may assume that the square is centered at the origin, scaled and
oriented so that one vertex (say z1) is located at 1, hence

zj = i j−1, j = 1, 2, 3, 4 (2.1)

and the angle αj of the side Sj from the real axis (measured counterclockwise) is given by

αj = arg(zj+1 − zj) = (2j+ 1)
π

4
, j = 1, 2, 3, 4. (2.2)

Case I: Same boundary conditions on all sides
Assuming that the real-valued function q (z, z̄) satisfies Laplace’s equation in the interiorD of the square, described above,

subject to the same type of Poincaré boundary conditions on all sides, that is

cos (β) q(j)s + sin (β) q
(j)
n = g

(j), z ∈ Sj, 1 ≤ j ≤ 4, (2.3)

and observing that the local coordinates of (1.6) take the forms

mj =
1
2

(
zj + zj+1

)
= |mj|ei(aj−

π
2 ) =

1
√
2
ei(2j−1)

π
4 =

1
√
2
i(2j−1)/2, (2.4)

and

hj =
1
2π

(
zj+1 − zj

)
= |hj|eiaj =

1

π
√
2
ei(2j+1)

π
4 =

1

π
√
2
i(2j+1)/2, (2.5)

we can easily obtain, from (1.5), that:

Lemma 2.1. Let the real-valued function q (z, z̄) satisfy Laplace’s equation in the interior D of the square described above in this
section. Let g(j) denote the derivative of the solution in the direction making an angle β , 0 ≤ β ≤ π , with the side Sj (see (2.3)),
and let f (j) denote the derivative of the solution in the direction normal to the above direction. The generalized Dirichlet–Neumann
map is characterized by the equation

4∑
j=1

e−kMj
∫ π

−π

e−kHjs
(
f (j)(s)− ig(j)(s)

)
ds = 0, k ∈ C, (2.6)
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where

Mj = imj =
1
√
2
i(2j+1)/2 and Hj = ihj =

1

π
√
2
i(2j+3)/2. (2.7)

Proof. Upon simplification of the factors |hj| and eiβj , as |hj| = 1
2π andβj = β , from (1.5), the proof follows immediately. �

Hence, upon evaluation of (2.6) on the following four rays of the complex k-plane

kp = −
l
hp
, l ∈ R+, p = 1, 2, 3, 4, (2.8)

we obtain that:

Proposition 2.1. Consider the generalized Dirichlet–Neumannmap in Lemma 2.1. Suppose that the set
{
g(j)
}4
j=1 is given through

(2.3) and that the set
{
f (j)
}4
j=1 is approximated by

{
f (j)N
}4
j=1
defined in (1.7). Then, the real coefficients U jr satisfy the 4N × 4N

linear system of equations

4∑
j=1

elπ i
j−p

N∑
r=1

U jrFr
(
li j−p

)
= Gp (l) , p = 1, 2, 3, 4, (2.9)

where Gp (l) denotes the known function

Gp (l) = i
4∑
j=1

elπ i
j−p
∫ π

−π

elsi
j−p+1

(g(j)(s)+ if (j)
∗
(s))ds, (2.10)

Fr (l) denotes the integral

Fr (l) =
∫ π

−π

eilsϕr(s)ds, r = 1, 2, . . . ,N, (2.11)

and l is chosen as follows: For the real part of Eq. (2.9) l = 1
2 ,
3
2 , . . . ,

N−1
2 , whereas for the imaginary part of Eq. (2.9)

l = 1, 2, . . . ,N/2.

Proof. Observe that

Mj
hp
= π i j−p and

Hj
hp
= i j−p+1. (2.12)

Thus, evaluation of (2.6) at (2.8) yields the set of the four equations

4∑
j=1

elπ i
j−p
∫ π

−π

elsi
j−p+1 (

f (j)(s)− ig(j)(s)
)
ds = 0, l ∈ R+, p = 1, 2, 3, 4, (2.13)

hence, the proof follows immediately upon substitution of (1.7) into (2.13). �

If we now let Ap,j ∈ RN,N(p, j = 1, 2, 3, 4), denote the N × N matrix with elements ap,jq,r defined by

ap,jq,r =


Re
(
elπ i

j−p
∫ π

−π

elsi
j−p+1

ϕr(s)ds
)
, l =

1
2
,
3
2
, . . . ,

N − 1
2

Im
(
elπ i

j−p
∫ π

−π

elsi
j−p+1

ϕr(s)ds
)
, l = 1, 2, . . . ,N/2,

(2.14)

for q = 2l and r = 1, 2, . . . ,N , then the Collocation linear system, described in Proposition 2.1, may be written as

ACU = G, AC ∈ R4N,4N ,U,G ∈ R4N , (2.15)

where

AC =

A1,1 A1,2 A1,3 A1,4
A2,1 A2,2 A2,3 A2,4
A3,1 A3,2 A3,3 A3,4
A4,1 A4,2 A4,3 A4,4

 , U =

U1
U2
U3
U4

 , G =

G1
G2
G3
G4

 (2.16)
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and Uj ∈ RN,1 and Gp ∈ RN,1 denote the real vectors

Uj =
{
U jr
}N
r=1 =

(
U j1 U j2 . . . U jN

)T
, (2.17)

and

Gp =
{
Gpq
}N
q=1
=
(
Gp1 Gp2 . . . GpN

)T
, (2.18)

with

Gpq =

Re
(
Gp(l)

)
, l =

1
2
,
3
2
, . . . ,

N − 1
2

,

Im
(
Gp(l)

)
, l = 1, 2, . . . ,N/2,

q = 2l. (2.19)

Following the notation above we prove:

Lemma 2.2. The N × N real submatrices Ap,j =
{
ap,jq,r
}
, with ap,jq,r being as defined in (2.14), satisfy

Ap,j = E

{A0, p = j
A1, |p− j| = 2
O, |p− j| = 1, 3,

(2.20)

where the elements of the matrix A0 =
{
aq,r
}N
q,r=1 are defined through the Finite Cosine/Sine Fourier Transform of the linear

independent real-valued basis functions φr(s), namely

aq,r =


∫ π

−π

cos
( q
2
s
)
φr(s)ds, q = odd∫ π

−π

sin
( q
2
s
)
φr(s)ds, q = even,

(2.21)

the matrix A1 is defined by

A1 = DA0, D = diag(d1, . . . , dN), dq = (−1)q−1e−qπ , q = 1, . . . ,N, (2.22)

the matrix O denotes the null matrix and the diagonal matrix E is defined by

E = diag(e1, . . . , eN), eq = e
q
2π , q = 1, . . . ,N. (2.23)

Proof. Recall the definition of the elements ap,jq,r from (2.14) and notice that, for j = p, there holds

ap,pq,r = e
lπ


Re
(∫ π

−π

eilsϕr(s)ds
)
, l =

1
2
,
3
2
, . . . ,

N − 1
2

Im
(∫ π

−π

eilsϕr(s)ds
)
, l = 1, 2, . . . ,N/2

q = 2l.

Evidently, therefore,

ap,pq,r = e
q
2πaq,r (2.24)

where aq,r are as defined in (2.21), hence

Ap,p = EA0, p = 1, 2, 3, 4. (2.25)

Similarly, as i j−p = −1 for |j− p| = 2, there holds

ap,jq,r = e
−lπ


Re
(∫ π

−π

e−ilsϕr(s)ds
)
=

∫ π

−π

cos(ls)φr(s)ds, l =
1
2
,
3
2
, . . . ,

N − 1
2

Im
(∫ π

−π

e−ilsϕr(s)ds
)
= −

∫ π

−π

sin(ls)φr(s)ds, l = 1, 2, . . . ,N/2,

with q = 2l. Hence, for |j− p| = 2,

ap,jq,r = (−1)
q−1e−

q
2πaq,r = e

q
2π
(
(−1)q−1e−qπaq,r

)
, (2.26)
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and therefore

Ap,j = EDA0 = EA1, |p− j| = 2. (2.27)

Finally, for |j− p| = odd, we have

ap,jq,r =
(∫ π

−π

e±lsϕr(s)ds
){
Re
(
e±ilπ

)
= cos(lπ) = 0, l =

1
2
,
3
2
, . . . ,

N − 1
2

Im
(
e±ilπ

)
= ± sin(lπ) = 0, l = 1, 2, . . . ,N/2,

and, therefore,

Ap,j = O, |p− j| = odd, (2.28)

which completes the proof. �

Therefore, it becomes apparent that:

Proposition 2.2. The Collocation linear system in (2.15) is equivalent to the system

AU = (I4 ⊗ E−1)G, (2.29)

where⊗ denotes the Kronecker (tensor) matrix product, A is defined by

A =

A0 O A1 O
O A0 O A1
A1 O A0 O
O A1 O A0

 =
 I O D O
O I O D
D O I O
O D O I

 (I4 ⊗ A0), (2.30)

I4 denotes the 4× 4 identity matrix, and the matrices A0, A1,D and E are as defined in Lemma 2.2.

Remark 2.1. Notice that, as the basis functions ϕr(s) are appropriately chosen real-valued linearly independent functions,
A0 is nonsingular. The matrix B, defined by

B =

 I O D O
O I O D
D O I O
O D O I

 , (2.31)

is also nonsingular as it is apparently symmetric, strictly diagonally dominant and positive definite. Therefore, bothmatrices
A in (2.30) and AC in (2.16) are nonsingular too.

Remark 2.2. Observe that the matrix A in (2.30) is evidently Block Circulant. Naturally therefore, as AC = (I4 ⊗ E)A, the
Collocation matrix AC in (2.16) is Block Circulant too. It was shown in [5] that although the Collocation coefficient matrix
does not possess the special sparse structure of (2.30), it remains Block Circulant for the case of general Regular Polygons
with the same type of boundary conditions on all sides, allowing the deployment of FFT for the efficient solution of the
corresponding Collocation linear system.

Case II: Different boundary conditions on each side
Let us now assume that the real-valued function q (z, z̄) satisfies Laplace’s equation in the interior D of the square,

described at the beginning of this section, subject to different type of oblique Neumann boundary conditions on each side,
that is (see also Eq. (1.2))

cos
(
βj
)
q(j)s + sin

(
βj
)
q(j)n = g

(j), z ∈ Sj, 1 ≤ j ≤ 4. (2.32)

Then, the associated generalized Dirichlet–Neumann map is characterized by the equation
4∑
j=1

eiβje−kMj
∫ π

−π

e−kHjs
(
f (j)(s)− ig(j)(s)

)
ds = 0, k ∈ C, (2.33)

whereMj and Hj are as defined in Lemma 2.1, while Proposition 2.1 is being replaced by:

Proposition 2.3. Consider the generalized Dirichlet–Neumann map in (2.33). Suppose that the set
{
g(j)
}4
j=1 is given through

(2.32) and that the set
{
f (j)
}4
j=1 is approximated by

{
f (j)N
}4
j=1
defined in (1.7). Then, the real coefficients U jr satisfy the 4N × 4N

linear system of equations

4∑
j=1

eiβjelπ i
j−p

N∑
r=1

U jrFr
(
li j−p

)
= Gp (l) , p = 1, 2, 3, 4, (2.34)



A.G. Sifalakis et al. / Journal of Computational and Applied Mathematics 227 (2009) 171–184 177

where Gp (l) denotes the known function

Gp (l) = i
4∑
j=1

eiβjelπ i
j−p
∫ π

−π

elsi
j−p+1

(g(j)(s)+ if (j)
∗
(s))ds, (2.35)

Fr (l) is as in (2.11) and l is chosen as in Proposition 2.1.

The Collocation linear system, described in Proposition 2.3, obviously is in the block partitioned form of (2.16) with the
difference that the elements αp,jq,r of the submatrices Ap,j, used to define the Collocation matrix AC in (2.16), are now defined
by

αp,jq,r =


Re
(
eiβjelπ i

j−p
∫ π

−π

elsi
j−p+1

ϕr(s)ds
)
, l =

1
2
,
3
2
, . . . ,

N − 1
2

Im
(
eiβjelπ i

j−p
∫ π

−π

elsi
j−p+1

ϕr(s)ds
)
, l = 1, 2, . . . ,N/2,

(2.36)

and, of course, the vector G now refers to (2.35) instead of (2.10). It takes only a few simple algebraic manipulations to verify
that

αp,jq,r = a
p,j
q,r cos(βj)+ â

p,j
q,r sin(βj), (2.37)

where ap,jq,r is as defined in (2.14) and â
p,j
q,r is defined by

âp,jq,r =


−Im

(
elπ i

j−p
∫ π

−π

elsi
j−p+1

ϕr(s)ds
)
, l =

1
2
,
3
2
, . . . ,

N − 1
2

Re
(
elπ i

j−p
∫ π

−π

elsi
j−p+1

ϕr(s)ds
)
, l = 1, 2, . . . ,N/2,

(2.38)

with q = 2l as always. Therefore,using also Proposition 2.2, the Collocation coefficient matrix AC now takes the form

AC = (I4 ⊗ E) A (Dc ⊗ IN)+ Â (Ds ⊗ IN) , (2.39)

where the matrices A and E are as defined in (2.30) and (2.23), respectively, the diagonal matrices Dc and Ds are defined by

Dc = diag (cos(β1), cos(β2), cos(β3), cos(β4)) (2.40)

and

Ds = diag (sin(β1), sin(β2), sin(β3), sin(β4)) , (2.41)

and the matrix Â ∈ R4N,4N is in the block partitioned form

Â =


Â1,1 Â1,2 Â1,3 Â1,4
Â2,1 Â2,2 Â2,3 Â2,4
Â3,1 Â3,2 Â3,3 Â3,4
Â4,1 Â4,2 Â4,3 Â4,4

 , (2.42)

with the elements âp,jq,r of the submatrices Âp,j ∈ RN,N(p, j = 1, 2, 3, 4, ) being defined in (2.38). With this notation we now
prove that:

Lemma 2.3. The N × N real submatrices Âp,j =
{
âp,jq,r
}
, with âp,jq,r being as defined in (2.38) satisfy

Âp,j =


EÂ0, p = j
−EDÂ0, |p− j| = 2
D̂Â1, p− j = −1, 3
D̂Â2, p− j = 1,−3,

(2.43)

where the elements of the matrix Â0 =
{
â(0)q,r

}N
q,r=1

are defined through the Finite Cosine/Sine Fourier Transform of the linear

independent real-valued basis functions φr(s), namely

â(0)q,r =


−

∫ π

−π

sin
( q
2
s
)
φr(s)ds, q = odd∫ π

−π

cos
( q
2
s
)
φr(s)ds, q = even,

(2.44)
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the elements of the matrix Â1 =
{
â(1)q,r

}N
q,r=1

are defined by

â(1)q,r =
∫ π

−π

e
q
2 sφr(s)ds, (2.45)

the elements of the matrix Â2 =
{
â(2)q,r

}N
q,r=1

are defined by

â(2)q,r = (−1)
q
∫ π

−π

e−
q
2 sφr(s)ds, (2.46)

the matrices D and E are as defined in Lemma 2.2 and the diagonal matrix D̂ is defined by

D̂ = diag
(
sin
(π
2

)
, cos

(
2
π

2

)
, . . . , sin

(
(N − 1)

π

2

)
, cos

(
N
π

2

))
. (2.47)

Proof. As in Lemma 2.2, recall the definition of the elements âp,jq,r from (2.38) and notice that, for j = p, there holds

âp,pq,r = e
lπ


−Im

(∫ π

−π

eilsϕr(s)ds
)
, l =

1
2
,
3
2
, . . . ,

N − 1
2

Re
(∫ π

−π

eilsϕr(s)ds
)
, l = 1, 2, . . . ,N/2,

q = 2l.

Evidently, therefore,

âp,pq,r = e
q
2π â(0)q,r (2.48)

where â(0)q,r are as defined in (2.44), hence

Âp,p = EÂ0, p = 1, 2, 3, 4. (2.49)

Similarly, as i j−p = −1 for |j− p| = 2, there holds

âp,jq,r = e
−lπ


−Im

(∫ π

−π

e−ilsϕr(s)ds
)
=

∫ π

−π

sin(ls)φr(s)ds, l =
1
2
,
3
2
, . . . ,

N − 1
2

Re
(∫ π

−π

e−ilsϕr(s)ds
)
=

∫ π

−π

cos(ls)φr(s)ds, l = 1, 2, . . . ,N/2,

with q = 2l. Hence, for |j− p| = 2,

âp,jq,r = (−1)
qe−

q
2π â(0)q,r = −e

q
2π
(
(−1)q−1e−qπa(0)q,r

)
, (2.50)

and therefore

Âp,j = −EDÂ0, |p− j| = 2. (2.51)

Now, as i j−p = −i for j− p = −1 or j− p = 3, we have

âp,jq,r =
(∫ π

−π

elsϕr(s)ds
)−Im

(
e−ilπ

)
= sin(lπ), l =

1
2
,
3
2
, . . . ,

N − 1
2

Re
(
e−ilπ

)
= cos(lπ), l = 1, 2, . . . ,N/2,

and, therefore,

Âp,j = D̂Â1, p− j = −1, 3. (2.52)

Finally, as i j−p = i for j− p = 1 or j− p = −3, we have

âp,jq,r =
(∫ π

−π

e−lsϕr(s)ds
){
−Im

(
eilπ
)
= − sin(lπ), l =

1
2
,
3
2
, . . . ,

N − 1
2

Re
(
eilπ
)
= cos(lπ), l = 1, 2, . . . ,N/2,

and, therefore,

Âp,j = D̂Â2, p− j = 1,−3, (2.53)

which completes the proof. �
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Evidently, therefore, the matrix Â in (2.42) can be expressed as

Â = (I4 ⊗ E)Ã1 + (I4 ⊗ D̂)Ã2, (2.54)

where Ã1 and Ã2 denote the block circulant matrices

Ã1 =


Â0 O −DÂ0 O
O Â0 O −DÂ0
−DÂ0 O Â0 O
O −DÂ0 O Â0

 and Ã2 =


O Â2 O Â1
Â1 O Â2 O
O Â1 O Â2
Â2 O Â1 O

 . (2.55)

If we now let the matrix B̂ be defined by

B̂ =

 I O −D O
O I O −D
−D O I O
O −D O I

 , (2.56)

then, upon combination of the results above, we obtain:

Proposition 2.4. The Collocation coefficientmatrix AC , associatedwith the linear system described in Proposition 2.3, is expressed
as

AC = (I4 ⊗ E)
(
B(I4 ⊗ A0) (Dc ⊗ IN)+ B̂(I4 ⊗ Â0) (Ds ⊗ IN)

)
+ (I4 ⊗ D̂)Ã2 (Ds ⊗ IN) , (2.57)

where the diagonal matrix E and the matrix A0 are defined in Lemma 2.2, the matrices B and B̂ are as defined in (2.31) and (2.56)
respectively, the diagonal matrices Dc and Ds are as defined in (2.40) and (2.41) respectively, thematrix Â0 is defined in Lemma 2.3
and the matrix Ã2 is as defined in (2.55).

Proof. Recall (2.55) and observe that Ã1 = B̂(I4 ⊗ Â0). This, combined with relations (2.30), (2.39) and (2.54) yields (2.57)
and the proof follows. �

3. Analysis and implementation of numerical methods

Based on the structure, as well as the properties, of the Collocation coefficient matrix, in this section we analyze and
implement direct and iterativemethods for determining the solution of the generalized Dirichlet–Neumannmap associated
to Laplace’s equation on square domains. For the numerical experiments included, we considered the solution of the model
Laplace’s equation, with exact solution (cf. [2,3])

q(x, y) = sinh(3x) sin(3y). (3.1)

The relative error E∞, used to demonstrate the convergence behavior of the direct and iterativemethods considered, is given
by

E∞ =
‖f − fN‖∞
‖f ‖∞

, (3.2)

where

‖f ‖∞ = max
1≤j≤n

{
max
−π≤s≤π

|f (j)(s)|
}

(3.3)

and

‖f − fN‖∞ = max
1≤j≤n

{
max
−π≤s≤π

|f (j)(s)− f (j)N (s)|
}
, (3.4)

with f (j)N as in (1.7), and the max over s is taken over a dense discretization of the interval [−π, π]. For the direct solution of
the linear systems we have used the standard LAPACK routines, while for the computation of the right-hand-side vector we
have used a routine (dqawo) from QUADPACK implementing the modified Clenshaw–Curtis technique. As it pertains to the
iterative methods, the maximum number of iterations, allowed for all methods to perform, is set to 200 and the zero iterate
U (0) is set to be equal to the right-hand-side vector. All experiments were conducted on amulti-user SUNV240 system using
the Fortran-90 compiler.
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Case I: Same boundary conditions on all sides
It is the special sparse structure, revealed in the previous section, of the Collocation system, in (2.29), that allows us to

efficiently and rapidly solve it.
Direct solution
Taking advantage of the block structure of the matrix A in (2.30), and observing that the inverse of the matrix B in (2.31)

is readily available by

B−1 = B̂(I4 ⊗ C), (3.5)

where B̂ is as defined in (2.56) and C is the diagonal matrix

C = diag(c1, . . . , cN), cq =
1

1− d2q
=

1
1− e−2qπ

, q = 1, . . . ,N, (3.6)

with dq denoting the diagonal elements of the matrix D in (2.22), it is evident that the Collocation system (2.29) can be
written as

(I4 ⊗ A0)U = B̂(I4 ⊗ C)(I4 ⊗ E−1)G, (3.7)

or, equivalently, as{
A0Up = CE−1

(
Gp − DGp+2

)
, p = 1, 2

A0Up = CE−1
(
Gp − DGp−2

)
, p = 3, 4,

(3.8)

since the matrices C,D and E are diagonal and commute. The matrix A0, defined in Lemma 2.2, depends on the choice of
basis functions ϕr(s), as its elements are defined through their Discrete Cosine/Sine Fourier Transforms (see (2.21)). In [3]
we considered the following two choices of basis functions:

(1) Sine Basis Functions

ϕr(s) = sin
(
r
(
π + s
2

))
, r = 1, . . . ,N. (3.9)

(2) Chebyshev Basis Functions

ϕr(s) =


Tr+1

( s
π

)
− T0

( s
π

)
, r odd,

Tr+1
( s
π

)
− T1

( s
π

)
, r even,

r = 1, . . . ,N, (3.10)

where Tn(x) = cos
(
n cos−1(x)

)
.

For the case of Sine basis functions the matrix A0 is point diagonal, hence the solution of (3.8) is readily available with
computational cost of O(N). In general, though, including the case of Chebyshev basis functions, it is well known that the
computational cost for solving the system (3.8) is O(N3), as one has to solve four independent N × N linear systems with
the same coefficient matrix A0 ∈ RN,N .
Iterative solution
For an iterative analysis, independent from the choice of basis functions, one may take advantage of the 2-cyclic (cf. [9])

nature of the matrix A in (2.30). Observing that its associatedweakly cyclic of index 2 (cf. [9]) block Jacobi iteration matrix T0
can be expressed as

T0 = (I4 ⊗ A−10 )(I − B)(I4 ⊗ A0), (3.11)

hence is similar to the matrix

I − B = −

O O D O
O O O D
D O O O
O D O O

 (3.12)

where B is as defined in (2.31) and D is the diagonal matrix of (2.22), its spectrum σ(T0) satisfies

σ(T0) = {±e−qπ ,±e−qπ }Nq=1, (3.13)

and, obviously, its spectral radius %(T0) is given by

%(T0) = e−π u 0.0432, (3.14)
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revealing a fast rate of convergence. Moreover, using well known results from the literature (e.g. cf. [9]), the spectral radii
of the iteration matrices T1 and Tωopt , associated to the Gauss–Seidel and the optimal SOR iterative methods, respectively,
satisfy

%(T1) = %2(T0) = e−2π u 0.0019, (3.15)

and

%(Tωopt ) = ωopt − 1 =
2

1+
√
1− e−2π

− 1 u 0.0005, (3.16)

revealing rapid convergence rates. However,wehave to point out that, in viewof (3.8), the computational cost of the iterative
methods is of the same order as that of direct factorization, since for all direct and iterative methods considered the main
computational cost comes from the factorization of the matrix A0. To be more specific, for the solution of the Collocation
system in (2.29) or, equivalently, in (3.7) with the change of variables

V = A0U, (3.17)

the above iterative methods may be implemented through the following expressions:

• Jacobi {
V(m+1)p = −DV(m)p+2 + E

−1Gp, p = 1, 2

V(m+1)p = −DV(m)p−2 + E
−1Gp, p = 3, 4

(3.18)

• Gauss–Seidel{
V(m+1)p = −DV(m)p+2 + E

−1Gp, p = 1, 2

V(m+1)p = −DV(m+1)p−2 + E
−1Gp, p = 3, 4

(3.19)

• SOR {
V(m+1)p = (1− ω)V(m)p − ωDV

(m)
p+2 + ωE

−1Gp, p = 1, 2
V(m+1)p = (1− ω)V(m)p − ωDV

(m+1)
p−2 + ωE

−1Gp, p = 3, 4.
(3.20)

Consequently, by also making use of the fast convergence properties of the iterative methods considered, it is apparent
that the computational cost, for the iterative solution, isO(N) for the case of Sine basis functions, while, in general, including
the case of Chebyshev basis functions, is O(N3) in view of course of (3.17). The idea of an iterative treatment of (3.17) has
to be abandoned, at least for the basis functions considered, as for the case of Sine basis functions A0 is point diagonal while
for the case of Chebyshev basis functions A0 is of low order.
For completeness and uniformity (with the case of different boundary conditions) only purposes, we also consider two of

the main representatives from the family of Krylov subspace iterative methods, namely the Bi-CGSTAB [6] and the GMRES
[7] methods, for the solution of the preconditioned system

AM−1Û = (I4 ⊗ E−1)G, (3.21)

where, of course, Û = MU. Observing that both spectra σ(T0) and σ(T1) = σ 2(T0) of the block Jacobi and block Gauss–Seidel
iterationmatrices, respectively, are real and clustered around zero, it is evident that if we choose the preconditioningmatrix
M to be the splitting matrix of the Jacobi or the Gauss–Seidel iterative methods, namely

M ≡ M0 = I4 ⊗ A0 or M ≡ M1 = F(I4 ⊗ A0) (3.22)

where

F =

 I O O O
O I O O
D O I O
O D O I

 , (3.23)

then the spectrum of the preconditioned matrix AM−1 would satisfy

σ
(
AM−10

)
= 1− σ(T0) or σ

(
AM−11

)
= 1− σ(T1), (3.24)

since T0 = I −M−10 A, T1 = I −M
−1
1 A and the matricesM

−1A and AM−1 are obviously similar. Therefore, the eigenvalues of
the preconditioned matrices AM−10 and AM

−1
1 are all real, located in the half complex plane with the origin being outside or

towards the boundary of the convex hull containing them, and clustered around unity. Hence, following [8], the Bi-CGSTAB
is expected to have effective convergence properties.
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Table 1
Performance of numerical methods (same BC — Chebyshev basis functions)

Method Preconditioner N = 8 N = 16
Error Iter. Time Error Iter. Time

LU-factorization – 2.09e−05 – 1.50e−04 5.78e−13 – 2.33e−04
Jacobi – 2.09e−05 13 2.52e−04 5.78e−13 13 4.74e−04
Gauss–Seidel – 2.09e−05 7 1.64e−04 5.78e−13 7 2.89e−04
SOR – 2.09e−05 7 2.05e−04 5.78e−13 7 3.52e−04

Bi-CGSTAB Jacobi 2.09e−05 2 7.27e−04 5.78e−13 2 8.43e−04
Gauss–Seidel 2.09e−05 2 7.22e−04 5.78e−13 2 8.37e−04

GMRES(10) Jacobi 2.09e−05 4 9.21e−04 5.78e−13 4 1.08e−03
Gauss–Seidel 2.09e−05 3 8.71e−04 5.78e−13 3 1.02e−03

Fig. 1. Eigenvalues of the block Jacobi and GS iteration matrices T0 and T1 for Sine basis functions (N = 64).

To numerically demonstrate the above resultswe include Table 1 referring to the performance of allmentioned numerical
methods when they apply to the model problem, described at the beginning of this section, for the case of Chebyshev basis
functions.
Case II: Different boundary conditions on each side
The numerical treatment, for the case of different boundary conditions on each side of the square domain, largely depends

on the boundary conditions used per se. Hence, the numerical results included for this case, are indicative and refer to the
mixed boundary conditions (see (2.32)) obtained by making use of the following angles:

β1 = π, β2 =
π

4
, β3 =

π

6
, β4 =

π

3
.

Recall, now, the associated, to the above boundary conditions, Collocation linear system from (2.15), namely

ACU = G, AC ∈ R4N,4N ,U,G ∈ R4N ,
where the Collocation matrix AC is defined in Proposition 2.4 through relation (2.57), and observe that relation (2.39)
combined with relation (2.54), contributes to the efficient construction of AC , as it is written as a matrix combination of
circulant matrices, one of which is the matrix A, defined in (2.30), associated to the case of same boundary conditions on all
sides of the square.
For Sine basis functions, iterative methods are an effective alternative to direct factorization. This is because, as the

Collocation method, combined with the Sine basis functions of (3.9), is quadratically convergent, it is necessary to use a
sufficiently large number of basis functions (large N) to achieve a sufficiently small error norm.
To illustrate the convergence behavior of the classical block Jacobi and Gauss–Seidel (GS) methods, with iteration

matrices T0 = M−10 N0 and T1 = M
−1
1 N1 respectively, where

M0 =
4⊕
p=1

M(p)
0 withM(p)

0 = E
(
A0 cos(βp)+ Â0 sin(βp)

)
(3.25)

andM1 defined analogously, we included Fig. 1 depicting their eigenvalue distribution for a typical case (N = 64). Pertaining
to the Krylov Bi-CGSTAB and GMRESmethods, it is apparent that the use of the un-preconditioned versions is not suggested
due to the AC ’s eigenvalue distribution depicted in Fig. 2.
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Fig. 2. Eigenvalues of the Matrices AC and A−1AC for Sine basis functions (N = 64).

Table 2
Performance of numerical methods (different BC — Sine basis functions)

Method Preconditioner N = 32 N = 128 N = 512
Error Iter. Time Error Iter. Time Error Iter. Time

LU-factorization – 2.05e−03 – 2.29e−02 1.31e−04 – 1.51 7.69e−06 – 192.00
Jacobi – 2.05e−03 35 2.53e−02 1.31e−04 43 0.76 7.67e−06 53 35.20
GS – 2.05e−03 16 1.36e−02 1.31e−04 20 0.39 7.69e−06 24 19.30

Bi-CGSTAB
Jacobi 2.05e−03 8 1.48e−02 1.31e−04 9 0.51 7.70e−06 9 17.60
GS 2.05e−03 4 1.08e−02 1.31e−04 5 0.40 7.69e−06 5 15.30
A 2.05e−03 29 8.98e−03 1.31e−04 25 0.09 7.62e−06 32 15.00

GMRES(10)
Jacobi 2.05e−03 12 1.36e−02 1.31e−04 14 0.47 7.68e−06 16 17.20
GS 2.05e−03 7 1.06e−02 1.31e−04 7 0.31 7.70e−06 7 12.70
A 2.05e−03 37 8.44e−03 1.31e−04 35 0.07 7.67e−06 37 9.18

Table 3
Performance of numerical methods (different BC — Chebyshev basis functions)

Method Preconditioner N = 8 N = 12 N = 16
Error Iter. Time Error Iter. Time Error Iter. Time

LU-factorization – 4.38e−05 – 5.67e−04 1.45e−08 – 1.37e−03 1.15e−12 – 2.76e−03
Jacobi – 4.38e−05 66 5.65e−03 1.45e−08 74 9.96e−03 1.16e−12 95 1.93e−02
GS – 4.38e−05 30 3.16e−03 1.45e−08 34 5.23e−03 1.16e−12 36 8.28e−03

Bi-CGSTAB Jacobi 4.38e−05 11 2.51e−03 1.45e−08 12 4.12e−03 1.16e−12 13 6.41e−03
GS 4.38e−05 7 2.27e−03 1.45e−08 7 3.36e−03 1.15e−12 7 4.93e−03

GMRES(10) Jacobi 4.38e−05 23 3.02e−03 1.45e−08 26 3.89e−03 1.16e−12 28 8.56e−03
GS 4.38e−05 12 2.39e−03 1.45e−08 13 4.00e−03 1.16e−12 13 5.24e−03

With respect to their preconditioned analogs, together with the block Jacobi and block GS preconditioning, we have also
considered the case of using the block circulant matrix A of (2.30) as a preconditioner. Although the eigenvalue distribution
of the preconditioned matrix A−1AC (depicted in Fig. 2) is not that encouraging, the fact that A−1 inverse is readily available
combined with the large size of the matrices needed to be directly factored out, yields a very efficient preconditioning. In
fact, the A-preconditioned GMRES method is significantly less time consuming, hence it is the method of preference. The
performance results for all numerical methods considered for the case of Sine basis functions have been included in Table 2.
For the case of Chebyshev basis functions the Collocation method appears to converge exponentially (cf. [3]). Therefore,

one may achieve a small error norm with a few basis functions. This fact leads to small size matrices and, therefore, direct
factorization is more effective, than iterative methods, for their solution. Nevertheless, for comparison and demonstration
purposes, together with the direct factorization method, we also consider the block Jacobi and GS methods, as well as their
preconditioning analogs combined with the Bi-CGSTAB and GMRES methods. The eigenvalue distribution of the associated
matrices T0, T1 and AC are depicted in Figs. 3 and 4, while the performance results of all numerical methods considered are
included in Table 3.
Concluding this paper we would like to remark that there is still a number of very interesting issues, associated with

the problem and the methods at hand, that need to be further analyzed. In [5] we have extended our analysis to the case of
regular polygon domains with arbitrary number of vertices. However, the analysis of general polygon domains remains an
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Fig. 3. Eigenvalues of the block Jacobi and GS iteration matrices T0 and T1 for Chebyshev basis functions (N = 16).

Fig. 4. Eigenvalues of the Collocation Matrix AC of (2.57) for Chebyshev basis functions (N = 16).

open problem and it is premature, for the time being, to risk general conclusions. Applications involving general polygon
domains with low number of vertices form a particularly interesting and, possibly, analytically feasible problem to solve.
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