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1. Introduction

Recently, Fokas [1,4] introduced a new unified approach for analyzing linear and integrable nonlinear PDEs. A central
issue to this approach is a generalized Dirichlet to Neumann map, characterized through the solution of the so-called
global relation, namely, an equation, valid for all values of an arbitrary complex parameter k, coupling specified known
and unknown values of the solution and its derivatives on the boundary. In particular, for the case of the complex form
of Laplace’s equation
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in a convex bounded polygon D with vertices z1, z5, . . ., z,(modulo n) indexed counterclockwise, the associated Global
Relation takes the form (see also [2,3])

Zgj(k) =0, ok = / e "g,dz, kec, (1.1)
=

Si

where k € C is arbitrary and S; denotes the side from z; to zj;; (not including the end points). At this point we remark that,
as Fokas has shown in [4], there also holds

1 <& : .
6= > Z/z e®oi(kydk, ¢ ={ke C:arg(k) = —arg(z — z41)}
=1 Y4

hence

r4
q= 2Re/ q,dz + const.

Z9
It is therefore apparent that the spectral functions g;(k) in (1.1) play a crucial role in the solution of Laplace’s equation. To
determine them, forz € §;, 1 < j < n, we first let
° q@ denote the tangential component of g, along the side S;,

° q,(,i) denote the outward normal component of g, along the side S;,
e g denote the derivative of the solution in the direction making an angle Bj, 0 < B;j < m, with the side S;, namely:

cos (B;) a? +sin () 4 =g, (12)
e 0 denote the derivative of the solution in the direction normal to the above direction, namely:
—sin (8;) ¢? + cos () g = V. (13)

Then, by using the identity

0q 1 . . L
5 =3¢ “i(q¥ +iq?), zes; o = arg (z4:1 — 7)) (1.4)
and substituting into the Global Relation (1.1) we obtain (cf. [2,3]) the Generalized Dirichlet-Neumann map, that is the relation

between the sets {f?(s)} and {g? (s) }J'.l:], which is characterized by the single equation

n T
Z |y | el (Fi—km;) / e s (£ —ig)ds =0, kecC (1.5)
=1 -
where, k € Cis arbitrary and forj =1, 2, ..., n,and z,41 = z1,
1 1 zZ—m;
h] = E (Zj+] — Z]) y mj = 5 (Zj+1 +Zj) s S = T] (16)
]

For the numerical solution of the Generalized Dirichlet-Neumann map in (1.5), a Collocation-type method has been
developed (see [2,3]): Suppose that the set {g? (s)}._, is given through the boundary conditions, and that {f% (s) };21 is

n
Jj=

approximated by { ,y) (s)} where
1

Jj=
V(6 =0 () + Y Ul (s), (1.7)
r=1

with N being an even integer, 27f? (s) := (s + 7)f? () — (s — 7) f9 (=) (the values of f9 (rr) and f9 (—7) can be
computed by the continuity requirements at the vertices of the polygon), and the set of real-valued linearly independent
functions {¢;, (s)}’r\’=1 being the basis functions. If we evaluate Eq. (1.5) on the following n-rays of the complex k-plane:

k, = —é, le R",p=1,...,n,then the real coefficients Uf satisfy the system of linear algebraic equations

b

||

Xn: 7ei(5j—ﬂp)e—ié(mp—mj) ZN: ul /
|h | r=1

j=1 1" -

. hy
', (s)ds = G, (1) (18)
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Fig. 2.1. Square domain with vertices z;, sides S; and interior D.

where G, (I) denotes the known function

" kil il (m—m) [T ulis .
G, () = iZ }h]|el(ﬁjﬂp)e D (mp—mj) ellhps (g(l) (s) + if*(’) (S)) ds, (1.9)
=1 1M -
and lis chosen as follows: [ = 1,3, ... Y=L and1=1,2,..., J for the real and imaginary parts of Eq. (1.8), respectively,
defining a set of Collocation points.

2. Collocation matrix structure for square domains

Consider, now, the square with vertices z; and sides S;, j = 1, 2, 3, 4 (modulo 4), indexed counterclockwise, and interior
D, depicted in Fig. 2.1. Without any loss of generality, we may assume that the square is centered at the origin, scaled and
oriented so that one vertex (say z7) is located at 1, hence

z=i"" j=1,2,3.4 (2.1)
and the angle q; of the side S; from the real axis (measured counterclockwise) is given by
. T .
o = arg(zj+1 —z) = (2 + 1)2, i=1,2,3,4. (2.2)

Case I: Same boundary conditions on all sides
Assuming that the real-valued function q (z, z) satisfies Laplace’s equation in the interior D of the square, described above,
subject to the same type of Poincaré boundary conditions on all sides, that is

cos (B)q) +sin(B)q) =g¥, zeS1<j<4, (2:3)
and observing that the local coordinates of (1.6) take the forms
1 _ -5 _ 1 ge-nz _ 1 eine
mj = E(j—l—zH]) = |m|e'%™2) = \—ﬁe 1= \—51 , (24)
and
hj = ! (61 — ) = Ihjle" = Le“f“)l = ;i(zf“)/z, (2.5)
2 b g ﬂﬁ

we can easily obtain, from (1.5), that:

Lemma 2.1. Let the real-valued function q (z, Z) satisfy Laplace’s equation in the interior D of the square described above in this
section. Let g9 denote the derivative of the solution in the direction making an angle B, 0 < B < m, with the side Sj (see (2.3)),

and let f denote the derivative of the solution in the direction normal to the above direction. The generalized Dirichlet-Neumann
map is characterized by the equation

Ze—ij / ! e s (F0(s) —igP(s))ds =0, kec, (2.6)

j=1
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where
M; =im; = ii@'*”/z and H; = ih; = Liaﬂ”/z. (2.7)
J J \/i J ] 7'[«/5
Proof. Upon simplification of the factors |h;| and el as |h| = % and B; = B, from (1.5), the proof follows immediately. [
Hence, upon evaluation of (2.6) on the following four rays of the complex k-plane

I
I{p:—F, l€R+,p217233543 (2'8)
p

we obtain that:
Proposition 2.1. Consider the generalized Dirichlet-Neumann map in Lemma 2.1. Suppose that the set { g } is given through

(2.3) and that the set {f (’)} is approximated by { } defined in (1.7). Then, the real coefficients Ui satisfy the 4N x 4N
j=1

linear system of equations

4 N
D eI CUR (0?) =G, (), p=1,2,34, (2.9)

j=1 r=1

where G, (1) denotes the known function

4 j—
G =iy e / 5P g0 (s) + i (5))ds, (2.10)
=
F: () denotes the integral
T .
F ()= / eby.(s)ds, r=1,2,...,N, (2.11)
-7
and [ is chosen as follows: For the real part of Eq. (29) | = 1,3,..., Y1 whereas for the imaginary part of Eq. (2.9)

1=1,2,...,N/2.
Proof. Observe that
M; . H; .
h—f =7z’ and h—’ =i/, (2.12)
P 14

Thus, evaluation of (2.6) at (2.8) yields the set of the four equations
4 - _
>oen / S (0 (s) — g () ds =0, e R*.p=1,2,3,4 (2.13)
j=1 -
hence, the proof follows immediately upon substitution of (1.7) into (2.13). O

If we now letAp; € RNN(p,j=1,2,3,4), denote the N x N matrix with elements a’q’ﬂ defined by

e T 1 3 N-—-1
Re (elml p/ Qi ¢ (s)ds) l=-, 2 2=
pJj _ -7 2 2 2

dgr = i [T et (2.14)
Im(e’“ / e <pr(s)ds>, 1=1,2,...,N/2,
-7

forg=2landr =1, 2, ..., N, then the Collocation linear system, described in Proposition 2.1, may be written as

AU=G, AceR™N Uy GeRrW, (2.15)
where

A1 Az Az Alg U, G,
Ac = A1 Az Az Axg , U= U, G— G; (2.16)

As1 Asy As3 Asy
Ag1 Asp Asz Agyg Uy Gy
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and U; € R"! and G, € RM-! denote the real vectors

uy={ul = u .. u), (2.17)
and
G={a)_ =@ & ... Q). (2.18)
with
13  N-1
o — |Re(GD), =205 =5 g=2L (2.19)
Im (Gp()), 1=1,2,...,N/2,

Following the notation above we prove:

Lemma 2.2. The N x N real submatrices A, j = {agj]} ] with agj]} being as defined in (2.14), satisfy

Ay, p=]j
Ap’j =E {Aq, |p —]| =2 (220)
O’ |p _Jl = 15 35

where the elements of the matrix Ay = {aq.r}glr=1 are defined through the Finite Cosine/Sine Fourier Transform of the linear

independent real-valued basis functions ¢, (s), namely

i q
/ cos (55) ¢r(s)ds, ¢q=odd
agr =1 % (2.21)

/_ sin (gs) ¢r(s)ds, q = even,

the matrix A is defined by
Ay =DAy, D=diag(ds,...,dy), dg=(=1)""e " q=1,...,N, (2.22)

the matrix O denotes the null matrix and the diagonal matrix E is defined by

E = diag(e;, ..., en), eq=eg , g=1,...,N. (2.23)

Proof. Recall the definition of the elements agj]} from (2.14) and notice that, for j = p, there holds

Re /neilswr(s)ds, l=7,§,...,1\]7_1
I -1 2 2 2

al=e i q=2L
Im (/ e"swr(s)ds>, [=1,2,...,N/2
=7
Evidently, therefore,
ayl = e%”aq,, (2.24)
where qg , are as defined in (2.21), hence
App =FEAy, p=1,2,3,4. (2.25)
Similarly, as i/ = —1 for |j — p| = 2, there holds
T s T 13 N-—-1
4 Re e P (s)ds ) = cos(Is)¢,(s)ds, = 313 T
aPsJ — e*’” -7 —7
q.r T . s
Im ( / e"’s(pr(s)ds> =— / sin(Is)¢r(s)ds, [=1,2,...,N/2,
- -7

with g = 21. Hence, for |j — p| = 2,

@l = (1)1 le d7a,, = i (- )T e g, (2.26)
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and therefore

Ayj=EDAy=EA;, |p—jl=2. (2.27)
Finally, for |j — p| = odd, we have
) 13 N—-1
) T +ilr) _ — _ -
azzjr=</ eilsgor(s)ds> Re (e - ) = cos(lr) =0, 1_2,2,..., 5
- Im (e*'") = £sin(lr) =0, 1=1,2,...,N/2,
and, therefore,
Apj =0, Ip —j| = odd, (2.28)

which completes the proof. O

Therefore, it becomes apparent that:

Proposition 2.2. The Collocation linear system in (2.15) is equivalent to the system

AU = (I, ® ET1HG, (2.29)
where ® denotes the Kronecker (tensor) matrix product, A is defined by
Ay O A O I O D O
o A o A)] [0 1 oD
A=la 0 a4 o|=|p o 1 of®A): (2.30)
0O AT 0 A O D O 1

I4 denotes the 4 x 4 identity matrix, and the matrices Ao, A1, D and E are as defined in Lemma 2.2.

Remark 2.1. Notice that, as the basis functions ¢, (s) are appropriately chosen real-valued linearly independent functions,
Ap is nonsingular. The matrix B, defined by

I O D O

O I O D

D o I O}’ (231)
I

is also nonsingular as it is apparently symmetric, strictly diagonally dominant and positive definite. Therefore, both matrices

Ain (2.30) and Ac in (2.16) are nonsingular too.

Remark 2.2. Observe that the matrix A in (2.30) is evidently Block Circulant. Naturally therefore, as Ac = (I; ® E)A, the
Collocation matrix Ac in (2.16) is Block Circulant too. It was shown in [5] that although the Collocation coefficient matrix
does not possess the special sparse structure of (2.30), it remains Block Circulant for the case of general Regular Polygons
with the same type of boundary conditions on all sides, allowing the deployment of FFT for the efficient solution of the
corresponding Collocation linear system.

Case II: Different boundary conditions on each side
Let us now assume that the real-valued function q (z, z) satisfies Laplace’s equation in the interior D of the square,
described at the beginning of this section, subject to different type of oblique Neumann boundary conditions on each side,
that is (see also Eq. (1.2))
cos (B) q¥ +sin () q? =g¥, zes 1<j<4 (2.32)
Then, the associated generalized Dirichlet-Neumann map is characterized by the equation
Zelﬂjekoj / e~ kHjs (f(/) (s) —ig? (S)) ds=0, kec, (2.33)
j=1 -
where M; and H; are as defined in Lemma 2.1, while Proposition 2.1 is being replaced by:

Proposition 2.3. Consider the generalized Dirichlet-Neumann map in (2.33). Suppose that the set {g(’) };,1:1 is given through
. (14 ,

(2.32) and that the set {f(’) };] is approximated by [f,\?) }j=1 defined in (1.7). Then, the real coefficients U} satisfy the 4N x 4N

linear system of equations

4 o N ) )
> ™I UIF (W) =G, (), p=1,2,3.4, (2.34)
j=1 r=1



A.G. Sifalakis et al. / Journal of Computational and Applied Mathematics 227 (2009) 171-184 177

where G, (I) denotes the known function

G () =iy ehem™” / e (g0 (5) + if 9 (5))ds, (2.35)
j=1 -
F. () is asin (2.11) and l is chosen as in Proposition 2.1.

The Collocation linear system, described in Proposition 2.3, obviously is in the block partitioned form of (2.16) with the
difference that the elements of’} of the submatrices A, j, used to define the Collocation matrix Ac in (2.16), are now defined

by
) i T 1 3 N-—1
Re <elﬂjeln11 p / EISIJ p+1 (/)r(S)dS> , [ = -, —
aP-j _ - 2 2 2
ar — ig piip [T siip+1
Im ( efiel™i / e or(s)ds), I=1,2,...,N/2,
-7

and, of course, the vector G now refers to (2.35) instead of (2.10). It takes only a few simple algebraic manipulations to verify
that

(2.36)

abl = b cos(B)) + @7 sin(B)), (2.37)

where a?” is as defined in (2.14) and & is defined by

- Tooie 13 N -1
—Im elrnf 14 / elsﬂ p+1 ¢r(s)ds , | = e
— 2 2 2

i— T i
Re <elj'[ij p / elslj P+1(pr(s)ds> ’ | = ], 27 . N/z’

—JT

agjfr — (2.38)

with g = 2[ as always. Therefore,using also Proposition 2.2, the Collocation coefficient matrix Ac now takes the form

Ac= U ®E)AD: ®Iy) +AD; ®Iy) . (2.39)
where the matrices A and E are as defined in (2.30) and (2.23), respectively, the diagonal matrices D, and D; are defined by

D, = diag (cos(B1), cos(Bz2), cos(B3), cos(B4)) (2.40)
and

Ds = diag (sin(B1), sin(By), sin(B3), sin(B4)) , (241)

R4N ,4N

and the matrix A € is in the block partitioned form

At Az Az Ang
A1 Ara Ayz Ay
Az Asp Azz Asg
Ag1 Agn Az Aga

>
Il

, (2.42)

with the elements &E;J} of the submatrices Ap,j e RVN(p,j =1, 2, 3, 4,) being defined in (2.38). With this notation we now
prove that:

Lemma 2.3. The N x N real submatrices AI,J = {ag;f; } with a‘;,’;l; being as defined in (2.38) satisfy

EAO? R p :.]
Ay = | EDAo, P =il =2 (2.43)
’ DA, p—j=-13
DAy, p—i=1,-3
N N
where the elements of the matrix Ay = [&é?ﬁ} are defined through the Finite Cosine/Sine Fourier Transform of the linear
q,r=1

independent real-valued basis functions ¢, (s), namely

T
—/ sin (gs) ¢,(s)ds, q=odd
a(oz _ S (2.44)

q,
/ cos (gs) ¢r(s)ds, q = even,
x 2
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sy |V
} are defined by

the elements of the matrix ;\1 = [aq,r

q,r=1
4 q
al!) = / e2°¢,(s)ds, (2.45)
-7
o ~@ N

the elements of the matrix A, = [aq,r } are defined by

q,r=1

ﬁ%z«ﬂﬁfﬂf%@wm, (246)

T

the matrices D and E are as defined in Lemma 2.2 and the diagonal matrix Dis defined by

D= diag (sin (%) , COS (2%) , ..., Sin ((N — l)%) , COS (N%)) . (2.47)

Proof. Asin Lemma 2.2, recall the definition of the elements ﬁsji from (2.38) and notice that, for j = p, there holds

_ " s _13 N-1
Im e (s)ds), I=—-,-,...,
[5:4 - 2 2 2

Gy = " =2
Re (/ e"sgor(s)ds), 1=1,2,...,N/2,
-1

Evidently, therefore,

" [

aGr =ermay) (2.48)
where &ff) are as defined in (2.44), hence

App=FEAy, p=1,2,34. (2.49)

Similarly, as i/ = —1 for |j — p| = 2, there holds

L ” 1 3 N—-1
—1 By (s)ds ) = in(l ds, I=-,=,...,—
N m(/_ne ©r(s) S) /_n sin(Is)¢r (s)ds 23 >

aq:r =e T . T
Re </ e_”sq)r(s)ds> = / cos(Is)¢, (s)ds, [1=1,2,...,N/2,
-7 —7
with g = 21. Hence, for |j — p| = 2,
@ = (~1)%e 174" = —e7 (1) e "), (2.50)

and therefore

Ayj=—EDA;,, |p—jl=2. (251)
Now, as i/ = —iforj—p = —1orj— p = 3, we have
: 13 N -1
T _ —ilm) _ i - _
= ([ o) [ =i 123
- Re (e’””) = cos(Im), 1=1,2,...,N/2,
and, therefore,
Apj=DA, p—j=-13. (2.52)

Finally, as i/ = iforj— p = 1orj — p = —3, we have

) 3
. T _ i\ _ _ e
@i = (/ el‘<pr(s)ds> Im (e ) = —sin(lr), = Sy T
- Re (") = cos(lr), 1=1,2,...,N/2,

and, therefore,
A,j=DA,, p—j=1,-3, (2.53)

which completes the proof. O
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Evidently, therefore, the matrix A in (2.42) can be expressed as

A= (4 ®E)A; + (I, ® D)A,, (2.54)

where A; and ;\2 denote the block circulant matrices

Ao 0O -DA, O 0 A, 0 A

=] 0 M O DAL g A= O A Of (2.55)
~DA, O Ao 0 0 A 0 A
0 -DA, O Ao A, 0 A, O

If we now let the matrix B be defined by

I O -D O

0 I 0O -D
-D O I o |’
0O -D O I

B— (2.56)

then, upon combination of the results above, we obtain:

Proposition 2.4. The Collocation coefficient matrix Ac, associated with the linear system described in Proposition 2.3, is expressed
as

Ac = (14 @ B) (B ® A0) (Dc @ In) + Blls @ Ao) (D, @ 1)) + (14 ® DAy Dy @ Iy) (2:57)

where the diagonal matrix E and the matrix Aq are defined in Lemma 2.2, the matrices B and Bareas defined in (2.31) and (2.56)
respectively, the~diagonal matrices D. and Ds are as defined in (2.40) and (2.41) respectively, the matrix A is defined in Lemma 2.3
and the matrix A, is as defined in (2.55).

Proof. Recall (2.55) and observe that A= l§’(14 ® 12\0). This, combined with relations (2.30), (2.39) and (2.54) yields (2.57)
and the proof follows. O

3. Analysis and implementation of numerical methods

Based on the structure, as well as the properties, of the Collocation coefficient matrix, in this section we analyze and
implement direct and iterative methods for determining the solution of the generalized Dirichlet-Neumann map associated
to Laplace’s equation on square domains. For the numerical experiments included, we considered the solution of the model
Laplace’s equation, with exact solution (cf. [2,3])

q(x,y) = sinh(3x) sin(3y). (3.1)

The relative error E,, used to demonstrate the convergence behavior of the direct and iterative methods considered, is given
by

1 652
If ll oo
where
Iflleo = maXK max lf“)(s)l} (3.3)
1<j<n | —w<s<m
and
If = filoo = max {max ) —fN“"(sn} , (34)

withf,&’) asin (1.7), and the max over s is taken over a dense discretization of the interval [—s, 7 ]. For the direct solution of
the linear systems we have used the standard LAPACK routines, while for the computation of the right-hand-side vector we
have used a routine (dgawo) from QUADPACK implementing the modified Clenshaw-Curtis technique. As it pertains to the
iterative methods, the maximum number of iterations, allowed for all methods to perform, is set to 200 and the zero iterate
U®© is set to be equal to the right-hand-side vector. All experiments were conducted on a multi-user SUN V240 system using
the Fortran-90 compiler.
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Case I: Same boundary conditions on all sides

It is the special sparse structure, revealed in the previous section, of the Collocation system, in (2.29), that allows us to
efficiently and rapidly solve it.
Direct solution

Taking advantage of the block structure of the matrix A in (2.30), and observing that the inverse of the matrix B in (2.31)
is readily available by

B '=B(,®0), (3.5)
where B is as defined in (2.56) and C is the diagonal matrix

1 1
=1_d5=1_e,2qﬂ, g=1...,N, (3.6)

C = diag(cy, ..., Cn), Cq

with d; denoting the diagonal elements of the matrix D in (2.22), it is evident that the Collocation system (2.29) can be
written as

(s ® AU = B, ® O)(Is ® E1)G, (3.7)

or, equivalently, as

AoU, = CE"' (G, — DG,.,), =1,2
{ o0Yp (17 P+2) p (38)

AU, = CE™' (G, — DG,—5), p=3,4,

since the matrices C, D and E are diagonal and commute. The matrix Ag, defined in Lemma 2.2, depends on the choice of
basis functions ¢, (s), as its elements are defined through their Discrete Cosine/Sine Fourier Transforms (see (2.21)). In [3]
we considered the following two choices of basis functions:

(1) Sine Basis Functions

<pr(s):sin<r<n;$)), r=1,...,N. (3.9)

(2) Chebyshev Basis Functions

o(s) Tri1 (;) —To (ZT) , rodd,
Triq (;) —T; (;) , Treven,

where T, (x) = cos (ncos™' (x)).

r=1,...,N, (3.10)

For the case of Sine basis functions the matrix Ag is point diagonal, hence the solution of (3.8) is readily available with
computational cost of @(N). In general, though, including the case of Chebyshev basis functions, it is well known that the
computational cost for solving the system (3.8) is ©@(N?), as one has to solve four independent N x N linear systems with
the same coefficient matrix Aqg € R¥N.
Iterative solution

For an iterative analysis, independent from the choice of basis functions, one may take advantage of the 2-cyclic (cf. [9])
nature of the matrix A in (2.30). Observing that its associated weakly cyclic of index 2 (cf. [9]) block Jacobi iteration matrix Ty
can be expressed as

To = (. ® Ay")(I — B)(Is ® Ap), (3.11)
hence is similar to the matrix
O O D O
O 0O O D
| —B=— D O 0 o (3.12)
O D O O

where B is as defined in (2.31) and D is the diagonal matrix of (2.22), its spectrum o (Ty) satisfies

o (To) = {£e ¥, £e ¥}, (3.13)

and, obviously, its spectral radius o(Tp) is given by

o(Tg) = e ™ = 0.0432, (3.14)



A.G. Sifalakis et al. / Journal of Computational and Applied Mathematics 227 (2009) 171-184 181

revealing a fast rate of convergence. Moreover, using well known results from the literature (e.g. cf. [9]), the spectral radii
of the iteration matrices T; and T,,,,, associated to the Gauss-Seidel and the optimal SOR iterative methods, respectively,
satisfy

opt ?

o(Ty) = 0%(Ty) = e~ = 0.0019, (3.15)

and

0(Togp) = Wopt — 1 — 120.0005, (3.16)

2
14 /1—e2®
revealing rapid convergence rates. However, we have to point out that, in view of (3.8), the computational cost of the iterative
methods is of the same order as that of direct factorization, since for all direct and iterative methods considered the main
computational cost comes from the factorization of the matrix Aq. To be more specific, for the solution of the Collocation
system in (2.29) or, equivalently, in (3.7) with the change of variables

V =AU, (3.17)
the above iterative methods may be implemented through the following expressions:
e Jacobi
(m) -1
VimtY = —pvi +E7'G,, p=1,2 (3.18)
v+ — —DV("') +E_1G —3.4 .
p - p—2 p> P=2,
o Gauss-Seidel
+1) _ (m) -1 _
vl(7m >_—Dvp+2+E G, p=12 (3.19)
v+ — _Dv(m+1) _'_Eflc —3.4 .
P - p—2 p, P =23,
e SOR
VY = (1— 0)V” — oDV}, + 0E7'G,,  p=1,2
VI = (1 — ) V™ — wDV"IY + wET'G =3,4 (3:20)
p - p p—2 p, D =23,4.

Consequently, by also making use of the fast convergence properties of the iterative methods considered, it is apparent
that the computational cost, for the iterative solution, is @ (N) for the case of Sine basis functions, while, in general, including
the case of Chebyshev basis functions, is @ (N?) in view of course of (3.17). The idea of an iterative treatment of (3.17) has
to be abandoned, at least for the basis functions considered, as for the case of Sine basis functions Ay is point diagonal while
for the case of Chebyshev basis functions Ay is of low order.

For completeness and uniformity (with the case of different boundary conditions) only purposes, we also consider two of
the main representatives from the family of Krylov subspace iterative methods, namely the Bi-CGSTAB [6] and the GMRES
[7] methods, for the solution of the preconditioned system

AM~'0 = (I, ® EY)G, (3.21)

where, of course, U= MU. Observing that both spectra o (To) and o (T;) = o?(Ty) of the block Jacobi and block Gauss-Seidel
iteration matrices, respectively, are real and clustered around zero, it is evident that if we choose the preconditioning matrix
M to be the splitting matrix of the Jacobi or the Gauss-Seidel iterative methods, namely

M=My=1I4 ®A0 or M =M, :F(I4 ®A0) (322)
where
I 0 O O
o1 0 O
F=1p o 1 ol (3.23)
O D O I

then the spectrum of the preconditioned matrix AM~! would satisfy
o (AMy")=1—0(Tp) or o (AM;')=1—0(Ty), (324)

since Ty = I — M 'A, Ty = I — M; 'A and the matrices M~'A and AM~" are obviously similar. Therefore, the eigenvalues of
the preconditioned matrices AM,, Tand AM{ ! are all real, located in the half complex plane with the origin being outside or
towards the boundary of the convex hull containing them, and clustered around unity. Hence, following [8], the Bi-CGSTAB
is expected to have effective convergence properties.
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Table 1
Performance of numerical methods (same BC — Chebyshev basis functions)
Method Preconditioner N=38 N =16
Error Iter. Time Error Iter. Time
LU-factorization - 2.09e—05 - 1.50e—04 5.78e—13 - 2.33e—04
Jacobi - 2.09e—05 13 2.52e—04 5.78e—13 13 4.74e—04
Gauss-Seidel - 2.09e—05 7 1.64e—04 5.78e—13 7 2.89e—04
SOR - 2.09e—05 7 2.05e—04 5.78e—13 7 3.52e—04
% Jacobi 2.09e—05 2 7.27e—04 5.78e—13 2 8.43e—04
EGEE Gauss-Seidel 2.09e—05 2 7.22e—04 5.78e—13 2 8.37e—04
Jacobi 2.09e—05 4 9.21e—04 5.78e—13 4 1.08e—03
CLALE 0] Gauss-Seidel 2.09e—05 3 8.71e—04 5.78e—13 3 1.02e—03
Eigenvalues of T, (sine basis) Eigenvalues of T, (sine basis)
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Fig. 1. Eigenvalues of the block Jacobi and GS iteration matrices Ty and T; for Sine basis functions (N = 64).

To numerically demonstrate the above results we include Table 1 referring to the performance of all mentioned numerical
methods when they apply to the model problem, described at the beginning of this section, for the case of Chebyshev basis
functions.

Case II: Different boundary conditions on each side
The numerical treatment, for the case of different boundary conditions on each side of the square domain, largely depends
on the boundary conditions used per se. Hence, the numerical results included for this case, are indicative and refer to the
mixed boundary conditions (see (2.32)) obtained by making use of the following angles:
b4 b4 b4
131_77"7 /32_4! ﬂ3—67 ﬁ4—3
Recall, now, the associated, to the above boundary conditions, Collocation linear system from (2.15), namely

AU=G, Ac e R™N U GeR¥W,

where the Collocation matrix Ac is defined in Proposition 2.4 through relation (2.57), and observe that relation (2.39)
combined with relation (2.54), contributes to the efficient construction of Ac, as it is written as a matrix combination of
circulant matrices, one of which is the matrix A, defined in (2.30), associated to the case of same boundary conditions on all
sides of the square.

For Sine basis functions, iterative methods are an effective alternative to direct factorization. This is because, as the
Collocation method, combined with the Sine basis functions of (3.9), is quadratically convergent, it is necessary to use a
sufficiently large number of basis functions (large N) to achieve a sufficiently small error norm.

To illustrate the convergence behavior of the classical block Jacobi and Gauss-Seidel (GS) methods, with iteration
matrices T = M Nogand T; = My N, respectively, where

4
Mo=PMP with MY = E (Ao cos(By) + Ao sin(,Bp)) (3.25)
p=1
and M, defined analogously, we included Fig. 1 depicting their eigenvalue distribution for a typical case (N = 64). Pertaining
to the Krylov Bi-CGSTAB and GMRES methods, it is apparent that the use of the un-preconditioned versions is not suggested
due to the A¢’s eigenvalue distribution depicted in Fig. 2.
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Eigenvalues of the Collocation Matrix A, (sine basis) Eigenvalues of A-'A, (sine basis)
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Fig. 2. Eigenvalues of the Matrices Ac and A~'A¢ for Sine basis functions (N = 64).
Table 2
Performance of numerical methods (different BC — Sine basis functions)
Method Preconditioner N =32 N =128 N =512
Error Iter. Time Error Iter. Time Error Iter. Time
LU-factorization - 2.05e—03 - 2.29e—02 1.31e—04 - 151 7.69e—06 - 192.00
Jacobi - 2.05e—03 35 2.53e—02 1.31e—04 43 0.76 7.67e—06 53 35.20
GS - 2.05e—03 16 1.36e—02 1.31e—04 20 0.39 7.69e—06 24 19.30
Jacobi 2.05e—03 8 1.48e—02 1.31e—04 9 0.51 7.70e—06 9 17.60
Bi-CGSTAB GS 2.05e—03 4 1.08e—02 1.31e—04 5 0.40 7.69e—06 5 15.30
A 2.05e—03 29 8.98e—03 1.31e—04 25 0.09 7.62e—06 32 15.00
Jacobi 2.05e—03 12 1.36e—02 1.31e—04 14 0.47 7.68e—06 16 17.20
GMRES(10) GS 2.05e—03 7 1.06e—02 1.31e—04 7 0.31 7.70e—06 7 12.70
A 2.05e—03 37 8.44e—03 1.31e—04 35 0.07 7.67e—06 37 9.18
Table 3
Performance of numerical methods (different BC — Chebyshev basis functions)
Method Preconditioner N=28 N=12 N =16
Error Iter. Time Error Iter. Time Error Iter. Time
LU-factorization - 4.38e—05 - 5.67e—04 1.45e—08 - 1.37e—03 1.15e—12 - 2.76e—03
Jacobi - 4.38e—05 66 5.65e—03 1.45e—08 74 9.96e—03 1.16e—12 95 1.93e—02
GS - 4.38e—05 30 3.16e—03 1.45e—08 34 5.23e—03 1.16e—12 36 8.28e—03
Bi-CGSTAB Jacobi 4.38e—05 11 2.51e—03 1.45e—08 12 4.12e—03 1.16e—12 13 6.41e—03
GS 4.38e—05 7 2.27e—03 1.45e—08 7 3.36e—03 1.15e—12 7 4.93e—03
GMRES(10) Jacobi 4.38e—05 23 3.02e—03 1.45e—08 26 3.89e—03 1.16e—12 28 8.56e—03
GS 4.38e—05 12 2.39e—03 1.45e—08 13 4.00e—03 1.16e—12 13 5.24e—03

With respect to their preconditioned analogs, together with the block Jacobi and block GS preconditioning, we have also
considered the case of using the block circulant matrix A of (2.30) as a preconditioner. Although the eigenvalue distribution
of the preconditioned matrix A~'A¢ (depicted in Fig. 2) is not that encouraging, the fact that A=! inverse is readily available
combined with the large size of the matrices needed to be directly factored out, yields a very efficient preconditioning. In
fact, the A-preconditioned GMRES method is significantly less time consuming, hence it is the method of preference. The
performance results for all numerical methods considered for the case of Sine basis functions have been included in Table 2.

For the case of Chebyshev basis functions the Collocation method appears to converge exponentially (cf. [3]). Therefore,
one may achieve a small error norm with a few basis functions. This fact leads to small size matrices and, therefore, direct
factorization is more effective, than iterative methods, for their solution. Nevertheless, for comparison and demonstration
purposes, together with the direct factorization method, we also consider the block Jacobi and GS methods, as well as their
preconditioning analogs combined with the Bi-CGSTAB and GMRES methods. The eigenvalue distribution of the associated
matrices Ty, T; and Ac are depicted in Figs. 3 and 4, while the performance results of all numerical methods considered are
included in Table 3.

Concluding this paper we would like to remark that there is still a number of very interesting issues, associated with
the problem and the methods at hand, that need to be further analyzed. In [5] we have extended our analysis to the case of
regular polygon domains with arbitrary number of vertices. However, the analysis of general polygon domains remains an



184

A.G. Sifalakis et al. / Journal of Computational and Applied Mathematics 227 (2009) 171-184

Eigenvalues of T, (chebychev basis)

Eigenvalues of T, (chebychev basis)

06 = 0.6
P
0.4+ 0.4
X
o 027 & w 02
x >
< x <
S : 2
E g3} x E o2
X
0.4+ -0.4
X
06" - -0.6
-06 -04 -02 0 02 04 06 -06 -04 -02 0 02 04 06
Real Axis Real Axis

Fig. 3. Eigenvalues of the block Jacobi and GS iteration matrices Ty and T; for Chebyshev basis functions (N = 16).

Eigenvalues of the Collocation Matrix A, (cheb basis)
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Fig. 4. Eigenvalues of the Collocation Matrix Ac of (2.57) for Chebyshev basis functions (N = 16).

open problem and it is premature, for the time being, to risk general conclusions. Applications involving general polygon
domains with low number of vertices form a particularly interesting and, possibly, analytically feasible problem to solve.
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