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1. Introduction

Consider the numerical solution of the linear system

Ax = b, (1.1)

where A ∈ Rn×n is a known nonsingularmatrix, b ∈ Rn is known and x ∈ Rn is unknown. O’leary andWhite have introduced
the parallel multisplitting iterativemethod for obtaining the solution to (1.1) in [1], where several basic convergence results
maybe found.Neumann andPlemmons [2] developed somemore refined convergence results for one of the cases considered
in [1]. It has already been observed in [1] that the introduction of a relaxed parameter may considerably improve the
multisplitting methods, but convergence results were not given for these modifications of multisplitting methods by the
authors. So, Frommer and Mayer studied two relaxed variants of multisplitting methods and established the convergence
of these methods under certain restrictions on a relaxed parameter and on the underlying multisplittings in [3]. The
multisplitting method was also further studied by many authors [4–7].
In this paper, we will establish two multisplitting methods with K + 1 relaxed parameters for solving large nonsingular

systems of Eq. (1.1), in which the coefficient matrix A is anM-matrix or an H-matrix, and we will study the convergence of
thesemethods under certain restrictions on the relaxed parameters and on the underlyingmultisplittings. In thismannerwe
obtain convergence results including and extending the convergence results which have been considered in the literature
before.
This paper is organized as follows. In Section 2, we present some notation, definitions and preliminary results which we

refer to later and establish twomultisplittingmethods with K +1 relaxed parameters. In Section 3, we present convergence
results of the K + 1 parameter multisplitting methods onM-matrices and H-matrices. Some numerical examples are given
in Section 4. Finally, conclusions are drawn in Section 5.
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2. Notation and preliminaries

For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x are nonnegative (positive). For two vectors x, y ∈ Rn,
x ≥ y (x > y) means that x − y ≥ 0 (x − y > 0). For a vector x ∈ Rn, |x| denotes the vector whose components are the
absolute values of the corresponding components of x. These definitions carry immediately over to matrices.
A matrix A = (aij) ∈ Rn×n is called an M-matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0. The comparison matrix 〈A〉 = (αij) of a

matrix A = (aij) is defined by

αij =

{
|aij|, i = j,
−|aij|, i 6= j. i, j = 1, . . . , n.

A matrix A is called an H-matrix if 〈A〉 is an M-matrix. A splitting A = M − N of A is said to be regular if M−1 ≥ 0 and
N ≥ 0; weak regular if M−1 ≥ 0 and M−1N ≥ 0; H-splitting if the matrix 〈M〉 − |N| is monotone; H-compatible splitting
if 〈A〉 = 〈M〉 − |N|; convergent if ρ(M−1N) < 1, where ρ(·) denotes the spectral radius of a square matrix ·. It was shown
in [8] that if A is an H-matrix and A = M−N is an H-compatible splitting, thenM is also an H-matrix. By diag(A)we denote
the n× n diagonal matrix coinciding in its diagonal with n× nmatrix A.

Definition 2.1 ([1]). Let A be a nonsingular real n × n matrix, and suppose that for some K ∈ N we are given matrices
Mk,Nk, Ek ∈ Rn×n, k = 1, . . . , K , satisfying (i) A = Mk − Nk, (ii) Mk is nonsingular, (iii) Ek is a diagonal matrix with
nonnegative entries and

∑k=K
k=1 Ek = I , where I is n× n identity matrix. Then a set {Mk,Nk, Ek}

k=K
k=1 is called a multisplitting

of A. The corresponding multisplitting method to solve Ax = b is defined by the iteration

x(i+1) =
k=K∑
k=1

EkM−1k Nkx
(i)
+

k=K∑
k=1

EkM−1k b, i = 0, 1, 2, . . . . (2.1)

Putting

T =
k=K∑
k=1

EkM−1k Nk, G =
k=K∑
k=1

EkM−1k ,

T is called the iteration matrix.

In the following, we will give the relaxed nonstationary multisplitting method associated with this multisplitting and a
positive relaxed parameter ω for solving a linear system Ax = b.

Algorithm 2.1 ([10]). Relaxed nonstationary multisplitting method

Given an initial vector x(0)
For i = 1, 2, . . ., until convergence
For k = 1 to K
y(k,0) = x(i−1)
For j = 1 to s(k, i)
Mky(k,j) = Nky(k,j−1) + b

x(i) = ω
∑k=K
k=1 Eky

(k,s(k,i))
+ (1−ω)x(i−1).

Remark 2.1. Notice that Algorithm 2.1withω = 1 is called the nonstationarymultisplittingmethod.Mas et al. [10] showed
the convergence of Algorithm 2.1 under the condition when A is an H-matrix. When {Mk,Nk, Ek}k=Kk=1 is a multisplitting of A
andMk = Bk − Ck is a splitting ofMk for each k, the relaxed nonstationary two-stage multisplitting method with a positive
relaxed parameter ω for solving a linear system Ax = b is as follows.

Algorithm 2.2 ([11]). Relaxed nonstationary two-stage multisplitting method

Given an initial vector x(0)
For i = 1, 2, . . ., until convergence
For k = 1 to K
y(k,0) = x(i−1)
For j = 1 to s(k, i)
y(k,j) = ωB−1k (Cky

(k,j−1)
+Nkx(i−1)+ b)+ (1−ω)y(k,j−1)

x(i) =
∑k=K
k=1 Eky

(k,s(k,i)).

Remark 2.2. In Algorithm 2.2, the splittings A = Mk − Nk are called outer splittings and the splittings Mk = Bk − Ck are
called inner splittings. Bru et al. [11] showed the convergence of Algorithm 2.2 when A is a monotone matrix (i.e., A−1 ≥ 0)
or A is an H-matrix. If ω = 1 in Algorithm 2.2, then Algorithm 2.2 reduces to the nonstationary two-stage multisplitting
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method. Observe that the loop k of Algorithms 2.1 and 2.2 can be executed completely in parallel by different processors.
Also notice that the number of inner iterations s(k, i) in Algorithms 2.1 and 2.2 depends on the iteration i and the splitting
A = Mk − Nk. If s(k, i) = 1 for all k and i in Algorithm 2.1, Algorithm 2.1 is called the relaxed multisplitting method.

From Algorithms 2.1 and 2.2, the different splittings have the same parameterω. In this case, the parameterω is difficult
to choose. For solving this problem, we establish the multisplitting methods with K + 1 relaxed parameters as follows.

Algorithm 2.3. Nonstationary multisplitting method with K + 1 relaxed parameters

Given an initial vector x(0)
For i = 1, 2, . . ., until convergence
For k = 1 to K
y(k,0) = x(i−1)
For j = 1 to s(k, i)
y(k,j) = ωkM−1k Nky

(k,j−1)
+(1−ωk)y(k,j−1)+ωkM−1k b

x(i) = ω
∑k=K
k=1 Eky

(k,s(k,i))
+ (1− ω)x(i−1).

Remark 2.3. Notice that Algorithm 2.3, when ωk = 1, k = 1, . . . , K , reduces to Algorithm 2.1.

Algorithm 2.4. Nonstationary two-stage multisplitting method with K + 1 relaxed parameters

Given an initial vector x(0)
For i = 1, 2, . . ., until convergence
For k = 1 to K
y(k,0) = x(i−1)
For j = 1 to s(k, i)
y(k,j) = ωkB−1k (Cky

(k,j−1)
+Nkx(i−1)+ b)+ (1−ωk)y(k,j−1)

x(i) = ω
∑k=K
k=1 Eky

(k,s(k,i))
+ (1− ω)x(i−1).

Remark 2.4. Notice that Algorithm 2.4, when ω1 = · · · = ωK and ω = 1, reduces to Algorithm 2.2.
Now we give some well-known results which will be used later.

Lemma 2.1 ([3]). Let A = D− B be an H-matrix with D = diag(A). Then
(1) A and D are nonsingular and ρ(|D|−1B) < 1;
(2) |A−1| ≤ 〈A〉−1.

Lemma 2.2 ([9]). Let A, B ∈ Rn×n such that |A| ≤ B. Then ρ(A) ≤ ρ(B).

Lemma 2.3 ([12]). Let A be a nonnegative matrix. Then
(1) If αx ≤ Ax for some nonnegative vector x, x 6= 0, then α ≤ ρ (A);
(2) If Ax ≤ βx for some positive vector x, then ρ (A) ≤ β . Moreover, if A is irreducible and if 0 6= αx ≤ Ax ≤ βx, α 6= Ax and
Ax 6= βx for some nonnegative vector x, then

α < ρ (A) < β

and x is a positive vector.

Lemma 2.4 ([8]). Let A = M − N be a splitting of A.
(i) If the splitting is an H-splitting, then A and M are H-matrices and ρ(M−1N) ≤ ρ(〈M〉−1|N|) < 1.
(ii) If the splitting is an H-compatible splitting and A is an H-matrix, then it is an H-splitting and hence, a convergent splitting.

Lemma 2.5 ([12]). Let A ≥ 0 be an irreducible n× n matrix. Then
(1) A has a positive real eigenvalue equal to its spectral radius;
(2) to ρ (A) there corresponds an eigenvector x > 0;
(3) ρ (A) is a simple eigenvalue of A.

A general algorithm for building ILU factorization can be derived by performing Gaussian elimination and dropping some
of the elements in predetermined off-diagonal positions. Let Sn denote the set of all pairs of indices of off-diagonal matrix
entries, i.e.

Sn = {(i, j)|i 6= j, 1 ≤ i, j ≤ n}.
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Lemma 2.6 ([13]). Let A be an n×nH-matrix. Then, for every zero pattern set Q ⊂ Sn, there exist a unit lower triangular matrix
L = (lij), an upper triangular matrix U = (uij), and a matrix N = (nij), with lij = uij = 0 if (i, j) 6∈ Q , such that A = LU − N.
Moreover, the factors L and U are also H-matrices.

Lemma 2.7 ([13,14]). Let A be an n × nH -matrix. Let A = LU − N and 〈A〉 = L̃Ũ − Ñ be the ILU factorizations of A and 〈A〉
corresponding to a zero pattern set Q ⊂ Sn, respectively. Then each of the following holds:

(a) |L−1| ≤ |̃L|−1, (b) |U−1| ≤ Ũ−1, (c) |N| ≤ Ñ, (d) |(LU)−1N| ≤ (̃LŨ)−1Ñ.

3. Convergence behaviors of nonstationary multisplitting methods with K + 1 relaxed parameters

In this section, we present convergence results of Algorithms 2.3 and 2.4 when the coefficient matrices are M-matrices
or H-matrices. First, we consider Algorithm 2.3. Let

Rωk = ωkM
−1
k Nk + (1− ωk)I,

then Algorithm 2.3 can be written as

x(i) = Hω,ωk,ix
(i−1)
+ Pω,ωk,ib, i = 1, 2, . . . , (3.1)

where

Hω,ωk,i = ω
K∑
k=1

EkRs(k,i)ωk
+ (1− ω)I, i = 1, 2, . . . (3.2)

and

Pω,ωk,i = ω
K∑
k=1

ωkEk

(
s(k,i)−1∑
j=0

Rjωk

)
M−1k , i = 1, 2, . . . . (3.3)

The Hω,ωk,i’s are called iteration matrices for Algorithm 2.3. Then, it is easy to show that Pω,ωk,iA = I − Hω,ωk,i for each i.
Hence, the exact solution ξ of Ax = b satisfies

ξ = Hω,ωk,iξ + Pω,ωk,ib, i = 1, 2, . . . . (3.4)

Theorem 3.1. Let A = D − B be an n × nH-matrix with D = diag(A) and J = |D|−1|B|. Assume that the multisplitting
{Mk,Nk, Ek}k=Kk=1 is H-compatible and diag(|Mk|) ≤ |D|. If

0 < ω < 2/(1+ ρ̄) and 0 < ωk < 2/(1+ ρ), k = 1, 2, . . . , K ,

where ρ̄ = max{ωkρε + |1 − ωk||ρε = ρ(J + εeeT), k = 1, . . . , K}, ε −→ 0+ and e = (1, 1, . . . , 1)T ∈ Rn, ρ = ρ(J), and
s(k, i) ≥ 1 for all nonnegative integers k and 1 ≤ i ≤ K, then Algorithm 2.3 converges for all x(0) ∈ Rn to ξ , the solution of the
linear system Ax = b.

Proof. By Lemma 2.4, the matricesMk are H-matrices. Then using Lemma 2.1, some manipulation yields

|M−1k Nk| ≤ I − 〈Mk〉|D|(I − J), k = 1, 2, . . . , K . (3.5)

Consider the vector e = (1, 1, . . . , 1)T ∈ Rn. Since J = |D|−1|B| is nonnegative, the matrix J + εeeT is irreducible for all
ε > 0, then from Lemma 2.5, there exists a positive vector xε corresponding to the spectral radius such that

(J + εeeT)xε = ρεxε, (3.6)

where ρε = ρ(J + εeeT). The continuity of the spectral radius and Lemma 2.2 ensures that there exists ε0 such that ρε < 1,
for all 0 < ε ≤ ε0. By 〈Mk〉 ≤ |D|, k = 1, 2, . . . , K , from (3.5) and (3.6) we obtain that

|Rωk |xε =
∣∣ωkM−1k Nk + (1− ωk)I∣∣ xε

≤ ωk|M−1k Nk|xε + |1− ωk|xε
≤ ωk(xε − 〈Mk〉−1|D|(1− ρε)xε)+ |1− ωk|xε
≤ (ωkρε + |1− ωk|)xε
≤ ρ̄xε, (3.7)
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since 0 < ωk < 2/(1+ ρ), k = 1, 2, . . . , K , and ε0 −→ 0, then ρ̄ < 1. Hence, from (3.2) and (3.7), one obtains

|Hω,ωk,i|xε =

∣∣∣∣∣ω K∑
k=1

EkRs(k,i)ωk
+ (1− ω)I

∣∣∣∣∣ xε
≤ ω

K∑
k=1

Ek
∣∣Rs(k,i)ωk

∣∣ xε + |1− ω|xε
≤ ω

K∑
k=1

Ekρ̄s(k,i)xε + |1− ω|xε

≤ ω

∣∣∣∣∣ K∑
k=1

Ekρ̄

∣∣∣∣∣ xε + |1− ω|xε
= (ωρ̄ + |1− ω|)xε
< xε. (3.8)

Since 0 < ω < 2/(1 + ρ̄), according to Lemmas 2.2 and 2.3, we have ρ(Hω,ωk,i) ≤ ρ(|Hω,ωk,i|) < 1 for i = 1, 2, . . .. The
proof is complete. �

In what follows, we consider Algorithm 2.4. Let R∗ωk = ωkB
−1
k Ck + (1− ωk)I , then Algorithm 2.4 can be written as

x(i) = H∗ω,ωk,ix
(i−1)
+ P∗ω,ωk,ib, i = 1, 2, . . . , (3.9)

where

H∗ω,ωk,i = ω
K∑
k=1

EkR∗ωk
s(k,i)
+ ω

K∑
k=1

ωkEk

(
s(k,i)−1∑
j=0

R∗ωk
j

)
B−1k Nk + (1− ω)I, i = 1, 2, . . . (3.10)

and

P∗ω,ωk,i = ω
K∑
k=1

ωkEk

(
s(k,i)−1∑
j=0

R∗ωk
j

)
B−1k , i = 1, 2, . . . . (3.11)

The H∗ω,ωk,i’s are called iteration matrices for Algorithm 2.4. Then, it is easy to show that P
∗

ω,ωk,i
A = I − H∗ω,ωk,i for each i.

Theorem 3.2. Let A be an n× nH-matrix. For each 1 ≤ k ≤ K, let A = Mk − Nk and Mk = Bk − Ck be H-compatible splittings.
Then the nonstationary two-stage multisplitting method with K + 1 relaxed parameters using A = Mk − Nk as outer splittings
and Mk = Bk − Ck as inner splittings converges to the exact solution of the linear system Ax = b for any initial vector x(0) if
0 < ω ≤ 1 and 0 < ωk ≤ 1.

Proof. The proof is similar to the proof of Theorem 3.4 in [11]. �

Theorem 3.3. Let A = D− B be an n× nH-matrix with D = diag(A). Let J = |D|−1|B| and let Q1,Q2, . . . ,QK be zero pattern
sets which are subsets of Sn. For each 1 ≤ k ≤ K , let A = LkUk − Nk be the ILU factorization of A corresponding to Qk. Then,
the nonstationary multisplitting method with K + 1 relaxed parameters associated with the multisplittings {LkUk,Nk, Ek}Kk=1
converges to the exact solution of Ax = b for any initial vector x0 if 0 < ω < 2/(1 + ρ̄) and 0 < ωk < 2/(1 + ρ), where
ρ = ρ(J), ρ̄ is defined by Theorem 3.1.

Proof. Since A = D− B and D = diag(A),

〈A〉 = |D| − |B| = |D|(I − J). (3.12)

For each 1 ≤ k ≤ K , let 〈A〉 = L̃kŨk − Ñk be the ILU factorization of 〈A〉 corresponding to Qk. By some manipulation, it can
be shown that

∣∣D−1∣∣ ≤ (̃LkŨk)−1 for all k = 1, 2, . . . , K . It follows that for all k = 1, 2, . . . , K
I ≤

(̃
LkŨk

)−1
|D|. (3.13)

By Lemma 2.7, we have∣∣ωk(LkUk)−1Nk + (1− ωk)I∣∣ ≤ ωk(̃LkŨk)−1Ñk + |1− ωk|I. (3.14)

Let e = (1, 1, . . . , 1)T. Since J ≥ 0, J + εeeT > 0 for any ε > 0 and from Lemma 2.5 there exists a vector xε > 0
corresponding to the spectral radius such that

(J + εeeT)xε = ρεxε, (3.15)
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where ρε = ρ(J + εeeT). From Lemma 2.1, ρ < 1. By continuity of the spectral radius, there exists an ε0 such that ρε < 1
for all 0 < ε ≤ ε0. Now, we choose an ε such that 0 < ε ≤ ε0. Then, from (3.13)–(3.15), we have∣∣ωk(LkUk)−1Nk + (1− ωk)I∣∣ xε ≤ ωk (̃LkŨk)−1 Ñkxε + |1− ωk|xε

≤ ωkρεxε + |1− ωk|xε
= (ωkρε + |1− ωk|)xε
= ρ̄xε, (3.16)

since 0 < ωk < 2/(1+ ρ) for all k = 1, 2, . . . , K , and ε0 −→ 0, then ρ̄ < 1. Hence, we obtain∣∣Hω,ωk,i∣∣ xε =
∣∣∣∣∣ω K∑

k=1

Ek
(
ωk(LkUk)−1Nk + (1− ωk)I

)s(k,i)
+ (1− ω)I

∣∣∣∣∣ xε
≤ ω

K∑
k=1

Ek
(
ωk(̃LkŨk)−1Ñk + |1− ωk|I

)s(k,i)
xε + |1− ω|xε

≤ ω

K∑
k=1

Ekρ̄s(k,i)xε + |1− ω|xε

≤ ω

K∑
k=1

Ekρ̄xε + |1− ω|xε

= (ωρ̄ + |1− ω|)xε. (3.17)

Since 0 < ω < 2/(1+ ρ̄), from Lemmas 2.2 and 2.3, we obtain ρ(Hω,ωk,i) ≤ ρ(|Hω,ωk,i|) < 1. So the proof is complete. �

Theorem 3.4 ([15]). Let A be an n × nH-matrix. Let Q1,Q2, . . . ,QK be zero pattern sets which are subsets of Sn. For each
1 ≤ k ≤ K, let A = Mk − Nk be an H-compatible splitting and Mk = LkUk − Ck be the ILU factorization of Mk corresponding to
Qk. Then, the relaxed nonstationary two-stage multisplitting method with A = Mk − Nk as outer splittings and Mk = LkUk − Ck
as inner splittings converges to the exact solution of Ax = b for any initial vector x0 if 0 < ω ≤ 1.

Theorem 3.5. Let A be an n× nH-matrix. Let Q1,Q2, . . . ,QK be zero pattern sets which are subsets of Sn. For each 1 ≤ k ≤ K ,
let A = Mk − Nk be an H-compatible splitting and Mk = LkUk − Ck be the ILU factorization of Mk corresponding to Qk. Then,
the nonstationary two-stage multisplitting method with K + 1 relaxed parameters using A = Mk − Nk as outer splittings and
Mk = LkUk − Ck as inner splittings converges to the exact solution of Ax = b for any initial vector x0 if 0 < ωk ≤ 1 and
0 < ω < 2/(1 + ρ∗), where ρ∗ = maxk=1,2,...,K {ρ(|H∗ωk,i|)}, and H

∗

ωk,i
’s are iteration matrices of the relaxed nonstationary

two-stage multisplitting method with A = Mk − Nk as outer splittings and Mk = LkUk − Ck as inner splittings for solving a linear
system whose coefficient matrix is A.

Proof. From (3.10), we have∣∣H∗ω,ωk,i∣∣ =
∣∣∣∣∣ω K∑

k=1

EkR∗ωk
s(k,i)
+ ω

K∑
k=1

ωkEk

(
s(k,i)−1∑
j=0

R∗ωk
j

)
(LkUk)−1 Ck + (1− ω)I

∣∣∣∣∣
≤ ω

∣∣∣∣∣ K∑
k=1

EkR∗ωk
s(k,i)
+

K∑
k=1

ωkEk

(
s(k,i)−1∑
j=0

R∗ωk
j

)
(LkUk)−1 Ck

∣∣∣∣∣+ |1− ω|I
= ω|H∗ωk,i| + |1− ω|I, (3.18)

where H∗ωk,i =
∑K
k=1 EkR

∗
ωk
s(k,i)
+
∑K
k=1 ωkEk

(∑s(k,i)−1
j=0 R∗ωk

j
)
(LkUk)−1 Ck. From Theorem 3.4, we have ρ(H∗ωk,i) < 1 if

0 < ωk ≤ 1 for all k = 1, 2, . . . , K . According to Lemma 2.5 there exists a nonnegative vector x corresponding to the
spectral radius such that |H∗ωk,i|x = ρ

(
|H∗ωk,i|

)
x. Hence, we obtain

|H∗ω,ωk,i|x ≤ ω|H
∗

ωk,i|x+ |1− ω|x

= (ωρ(|H∗ωk,i|)+ |1− ω|)x. (3.19)

Since 0 < ω < 2/(1+ ρ(|H∗ωk,i|)) for all k = 1, 2, . . . , K , from Lemmas 2.2 and 2.3, we have ρ(H
∗

ω,ωk,i
) ≤ ρ(|H∗ω,ωk,i|) < 1.

So the proof is complete. �

Corollary 3.6. Suppose that the matrix A satisfies one of the following conditions.
(i) A is an M-matrix.
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(ii) A is strictly or irreducibly diagonally dominant.
(iii) 〈A〉 is symmetric and positive definite.

Then A is an H-matrix and therefore Theorems 3.1–3.4 hold.

Proof. From [3] and Theorems 3.1–3.3 and 3.5, it is easy to obtain them. �

Remark 3.1. If ωk = 1 for all k = 1, 2, . . . , K in Theorem 3.1, it reduces to Theorem 3.1 in [10]; If ω1 = ω2 = · · · = ωK
and ω = 1 in Theorem 3.2, it reduces to theorem 3.4 in [11]; If ωk = 1 for all k = 1, 2, . . . , K in Theorem 3.3, it reduces to
Theorem 3.1 in [15]; Ifω1 = ω2 = · · · = ωK andω = 1 in Theorem 3.5, it reduces to Theorem 3.6 in [15]. Hence, our results
include and extend some previous results.

4. Numerical experiments

In this section,we consider an application of Algorithm2.3with s(k, i) = s(k) to preconditioned Krylov subspacemethod.
From (3.2) and (3.3), we have Hω,ωk,i = Hω,ωk and Pω,ωk,i = Pω,ωk for all i = 1, 2, . . ., where

Hω,ωk = ω
K∑
k=1

EkRs(k)ωk
+ (1− ω)I, i = 1, 2, . . . (4.1)

and

Pω,ωk = ω
K∑
k=1

ωkEk

(
s(k)−1∑
j=0

Rjωk

)
M−1k , i = 1, 2, . . . . (4.2)

If Algorithm 2.3 with s(k, i) = s(k) converges to the exact solution of Ax = b for any initial vector x0, then ρ(Hω,ωk) < 1. It
follows that the matrix Pω,ωk such that Pω,ωkA = I − Hω,ωk is nonsingular. Hence, Pω,ωk

−1 can be used as a preconditioner of
Krylov subspace methods.
For simplicity of exposition, suppose that K = 3 and the zero pattern set Qk is the zero pattern set of A, k = 1, 2, 3. Then,

the H-matrix A = LkUk − Nk is an ILU factorization of A corresponding to the zero pattern set Qk ⊂ Sn, and we construct
a multisplitting {LkUk,Nk, Ek}, k = 1, 2, 3. Clearly, A = LkUk − Nk is an H-compatible splitting for each k. Li’s are lower
triangular matrices and Ui’s are upper triangular matrices. Let Bk = LU and Ck = C for k = 1, 2, 3. The symbol MPre means
that Pω,ωk in (4.2) is used as a preconditioner.
In the following, some numerical experiments will be given. The goals of these experiments are to examine the

effectiveness of the preconditioners generated by the multisplitting methods with K+1 relaxed parameters when combined
with BiCGSTAB Krylov subspace method [5].
All the numerical experiments were performed with MATLAB 6.5. The machine we have used is a PC-Pentium(R)4, CPU

3.06 GHz, 512 M of RAM. In all of our runs we used a zero initial guess. Unless otherwise stated, BiCGSTAB is used with left
preconditioning. The stopping criterion is ‖r (k)‖2/‖r (0)‖2 6 10−6, where r (k) is the residual vector after the kth iteration.
The test matrix A used in this paper is obtained by five-point discretization of the following elliptic second-order PDE:

− (auxx + buyy)+ cux + duy + fu = g (4.3)

with a(x, y) > 0, b(x, y) > 0, c(x, y), d(x, y), and f (x, y) defined on the unit square region Ω = (0, 1) × (0, 1), and with
Dirichlet boundary condition u(x, y) = 0 on the boundary ofΩ . Only the discretized matrix A is of importance, so the right-
hand side b is created from Ae, where e = (1, . . . , 1)T ∈ Rn. Therefore, the right-hand side function g(x, y) in (4.3) is not
relevant.

Example 4.1. This example considers Eq. (4.3) with a(x, y) = b(x, y) = 1, c(x, y) = −10(x+ y), d(x, y) = −10(x− y), and
f (x, y) = 0. We have used a uniform mesh of ∆x = ∆y = 1/(m + 1), which leads to a matrix of order n = m× m, where
∆x and ∆y refer to the mesh sizes in the x- and y-direction, respectively. We use two uniform meshes of ∆x = ∆y = 31
and ∆x = ∆y = 61, which lead to two matrices of order n = 30 × 30 and n = 60 × 60. The corresponding matrices are
called PDE1 and PDE2 which are given in Table 4.1.

Example 4.2. Similarly, this example considers Eq. (4.3) with a(x, y) = b(x, y) = 1, c(x, y) = 10exy, d(x, y) = 10e−xy and
f (x, y) = 0. The corresponding matrices are called PDE3 and PDE4 respectively, which are given in Table 4.2.

5. Conclusion

In this paper, we established the convergence results of K + 1 relaxed multisplitting methods using ILU factorizations,
and we provided performance results of BiCGSTAB with the preconditioners P−1ω,ωk , which are derived from Algorithm 2.3.
Numerical experiments showed that Algorithm 2.3 with Krylov subspace methods such as BiCGSTAB works very well
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Table 4.1
Comparisons of the iteration number for different parameters ω,ω1, ω2, ω3 in (4.2). The symbol ‘‘NPre’’ means that no preconditioner is used, the symbol
‘‘ILU(0)’’ means that the incomplete LU(0) factorization preconditioner is used.

(ω, ω1, ω2, ω3) PDE1 PDE2

(0.5, 0.8, 0.5, 1.0) 14.5 27.5
(1.0, 1.1, 0.8, 0.8) 12.5 26
(1.0, 1.0, 1.0, 1.0) 12 22
(1.0, 1.1, 1.0, 1.1) 11 20.5
(1.5, 1.1, 1.2, 1.5) 10 19
(1.5, 1.4, 1.4, 1.5) 9 20.5
(1.5, 1.5, 1.5, 1.5) 9 17
(1.6, 1.5, 1.5, 1.6) 9.5 17.5

ILU(0) 17.5 36
NPre 69 123

Table 4.2
Comparisons of the iteration number for different parameters ω,ω1, ω2, ω3 in (4.2). The symbol ‘‘NPre’’ means that no preconditioner is used, the symbol
‘‘ILU(0)’’ means that the incomplete LU(0) factorization preconditioner is used.

(ω, ω1, ω2, ω3) PDE3 PDE4

(0.5, 0.8, 0.5, 1.0) 12.5 26
(1.0, 1.1, 0.8, 0.8) 12 22.5
(1.0, 1.0, 1.0, 1.0) 11.5 19
(1.0, 1.1, 1.0, 1.1) 11 19
(1.5, 1.1, 1.2, 1.5) 9 18
(1.5, 1.4, 1.4, 1.5) 8 17
(1.5, 1.5, 1.5, 1.5) 8 15.5
(1.6, 1.5, 1.5, 1.6) 11.5 17

ILU(0) 17 30.5
NPre 49.5 102.5

Fig. 1. The relative residuals obtainedwith BiCGSTABusing (4.2) as a preconditioner and ILU(0) formatrix PDE1, the parametersω = ω1 = ω2 = ω3 = 1.5.

(i.e., BiCGSTAB with the preconditioner P−1ω,ωk performs very well as compared with Algorithm 2.3), which is faster than
BiCGSTAB with the preconditioner ILU(0). For test problems used in this paper, BiCGSTAB with the preconditioner P−1ω,ωk
performs best if the range of all parameters ω and ωk is near 1.5, i.e., the optimal parameters are approximately 1.5 (see
Figs. 1 and 2).
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