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a b s t r a c t

The asymptotic contracted measure of zeros of a large class of orthogonal polynomials
is explicitly given in the form of a Lauricella function. The polynomials are defined by
means of a three-term recurrence relation whose coefficients may be unbounded but
vary regularly and have a different behaviour for even and odd indices. Subclasses of
systems of orthogonal polynomials having their contracted measure of zeros of regular,
uniform,Wigner,Weyl, Karamata and hypergeometric types are explicitly identified. Some
illustrative examples are given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is an usual way of working in quantummany-body physics to transform the Hamiltonian operator of a physical system
into anN-dimensional Jacobimatrix bymeans of the Lanczos algorithmor any of its numerous variants [1,2]. It is also known
that for a general N × N Jacobi matrix the characteristic polynomials of the principal submatrices form a set of orthogonal
polynomials {Pn(x)}Nn=1 which satisfy the recurrence relation

Pn(x) = (x− an) Pn−1(x)− b2n Pn−2(x), n = 1, 2, . . .
P−1(x) = 0, P0(x) = 1,

(1)

where an and bn are the Jacobi entries. It happens that the zeros of these orthogonal polynomials denote the energies of the
levels of the physical system [3]. Here, following [4,5], we consider the class of systems of orthogonal polynomials defined
by a recurrence relation of the previous type with coefficients satisfying the asymptotic conditions

lim
n→∞

a2n
λ2n
= α1, lim

n→∞

b2n
λ2n
= β1, lim

n→∞

a2n+1
λ2n
= α2, lim

n→∞

b2n+1
λ2n
= β2, (2)

where λn = g(n) is a regular varying function with exponent α ≥ 0. A regular varying function with exponent α can be
written [6] as g(x) = xαL(x)where L : R+ −→ R+ is a function which satisfies limx→∞ L(xt)/L(x) = 1.
Associated with orthogonal polynomials of this type, with bounded (λn = 1 or α = 0 and L(x) = 1) and unbounded

(α > 0) coefficients there exist a great variety of physical systems [7,8,2,9].
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2. Background and notations

For each polynomial Pn(x), as defined by the recurrence (1), we consider its contracted and normalized zero counting
measure

ρn :=
1
n

n∑
j=1

δ

(
xj,n
λn

)
where xj,n, (j = 1, . . . , n) are the zeros of Pn(x), δ(xj,n/λn) denotes the Dirac point mass at the scaled zero xj,n/λn and the
scaling factor λn is the nth element of the regular varying sequence such that the asymptotic behaviour shown in (2) holds
true. It could be interesting to remark that when the family {Pn(x)}n satisfies a holonomic linear second order differential
equation, the corresponding scaling factor can be obtained in terms of the coefficients characterizing such an equation
(see [10] for details).
Our aim here is to express in terms of higher order hypergeometric Lauricella functions the corresponding asymptotic

contracted measure of zeros for the sequence {Pn(x)}Nn=1 to be denoted by ρ, i.e. a probability measure that satisfies

lim
n→∞

∫
f dρn =

∫
f dρ

for every continuous function f on R that vanishes at∞. For this purpose, let us first introduce the following parameters
(to be used throughout the paper)

β =

[
1
4
(α1 − α2)

2
+ (β1 + β2)

2
]1/2

, γ =
1
2
(α1 + α2) ,

δ =

[
1
4
(α1 − α2)

2
+ (β1 − β2)

2
]1/2

,

(3)

where αi and βi (i = 1, 2) are the limits given in the above expressions (2). On doing this, the following well known result
of van Assche [4] will play a essential role:

Proposition 1 (Theorem 4 (iii), [4]). Let {Pn(x)}∞n=1 be an orthogonal polynomial sequence satisfying the recurrence (1), such that
the an and bn coefficients behave asymptotically as in (2). Then,

lim
n→∞

1
n

n∑
j=1

f (xj,n/λn) =
∫ 1

0

∫
+∞

−∞

f (x)dF(x− γ tα; δtα, βtα)dt, (4)

for every continuous function f . Here:
(a) {λn}n∈N is a regularly varying sequence with exponent α ≥ 0.
(b) β , γ and δ are the numbers defined in (3).
(c) F(x; u, v) = 1

π

∫ x
−∞

|t|
(v2−t2)1/2(t2−u2)1/2

IB(t)dt, with B = [−v,−u]
⋃
[u, v] being

IB(t) =
{
1 if t ∈ B
0 otherwise.

On the other hand, the FD-Lauricella function of order n is defined by the series (cf. [11])

F (n)D

[
a ; b1 , . . . , bn ; c
x1 , . . . , xn

]
=

∞∑
m1,...,mn=0

(a,m1 + · · · +mn)(b1,m1) · · · (bn,mn) x
m1
1 · · · x

mn
n

(c,m1 + · · · +mn)m1! . . .mn!
(5)

where (a, j) = (a)j stands for the Pochhammer symbol. Among others, this function satisfies the following reduction
properties:
(a) If two variables coincide (e.g. xi = xi+1) then

F (n)D

[
a ; b1 , . . . , bi−1 , bi , bi+1 , . . . , bn ; c
x1 , . . . , xi−1 , xi , xi , . . . , xn

]
= F (n−1)D

[
a ; b1 , . . . , bi−1 , bi + bi+1 , . . . , bn ; c
x1 , . . . , xi−1 , xi , . . . , xn

]
. (6)

(b) In particular, the Lauricella function of two arguments (F (2)D ) reduces to the so-called Appell hypergeometric function
F1:

F (2)D

[
a ; b1 , b2 ; c
x1 , x2

]
= F1[a, b1, b2; c; x1, x2], (7)

where the notation of [12] for F1 is used.

With this background at hand, we are now in a position to show how the Lauricella F (5)D function appears when trying to
obtain the aforementioned asymptotic contracted measure of the zeros.
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3. Main result: Appearance of the Lauricella F (5)
D function

Themoments around the origin,µm,m = 1, 2, . . ., of the normalized asymptotic contractedmeasure of zeros are defined
by

µm = lim
n→∞

1
n

n∑
j=1

(
xj,n
λn

)m
=

∫
xmdρ.

So, taking f (x) = xm in the previous Proposition 1 one can obtain an integral representation (see [13]) for all of them which
reads as follows:

µm =
1
π

∫ 1

0
dt
∫
∞

−∞

xm|x− γ tα|IB(x− γ tα)[
β2t2α − (x− γ tα)2

]1/2 [
(x− γ tα)2 − δ2t2α

]1/2 dx.
Now, we consider the case in which the exponent α of regular variation is positive (if α = 0 no scaling of the variable is
needed; see [14] for details of this case). Following the ideas of [13], it turns out that from these moments it is possible to
construct the so-called characteristic function defined by

Ψ (s) =
∞∑
m=0

(is)m

m!
µm.

Its expression is [13]

Ψ (s) =
1
π

∫
C

|y− γ |eiys1F1(1, 1+ 1/α;−iys)
[β2 − (y− γ )2]1/2[(y− γ )2 − δ2]1/2

dy (8)

where C = C1
⋃
C2 = [γ − β, γ − δ]

⋃
[γ + δ, γ +β] and 1F1(1, 1+ 1/α;−iys) stands for the confluent hypergeometric

function ([12]).
Now, in the most general settings (i.e. when δ, β ∈ R+ and γ ∈ R and β ≥ δ (see (3)), the searched asymptotic

contracted measure of zeros ρ comes out from the Fourier transform of Ψ (s) and can be written in terms of the Lauricella
F (5)D function. As illustration of this we show here the following:

Theorem 2. Let {Pn(x)}∞n=1 be an orthogonal polynomial sequence satisfying the recurrence (1), such that the an and bn
coefficients behave asymptotically as in (2). In addition, let β , γ and δ be the numbers defined in (3) with β > δ > γ > 0.
Then, the asymptotic contracted density is

dρ(x)
dx
=


|x|(1/α)−1

πα
I1 if x ∈ [γ − β, γ − δ]

|x|(1/α)−1

πα
I2 if x ∈ [γ + δ, γ + β]

0 otherwise

(9)

where

I1 =
(
2β(β − γ + x)

β2 − δ2

)1/2
(β − γ )−(1/α)

× F (5)D

 1/2; −1, 1/2, 1/α, 1/2, 1/2; 3/2
β − γ + x

β
,

β − γ + x
2β

,
β − γ + x
β − γ

,
β − γ + x
β − δ

,
β − γ + x
β + δ

 (10)

and

I2 =
(
2β(β + γ − x)

β2 − δ2

)1/2
(β + γ )−(1/α)

× F (5)D

 1/2; −1, 1/2, 1/α, 1/2, 1/2; 3/2
β + γ − x

β
,

β + γ − x
2β

,
β + γ − x
β + γ

,
β + γ − x
β − δ

,
β + γ − x
β + δ

 . (11)

Proof. Using expression (8) of the characteristic function Ψ and taking into account that Fourier’s transform has the same
value as density, that is to say,

dρ(x)
dx
=
1
2π

∫
∞

−∞

e−isxΨ (s)ds,
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the following integral representation is obtained

dρ(x)
dx
=
1
πα

∫
C

|y− γ |(x/y)1/α−1dy
[β2 − (y− γ )2]1/2[(y− γ )2 − δ2]1/2 |y|

.

The assumption β > δ > γ > 0 allows us to conclude that x and y have the same sign and |y| > |x|, so

dρ(x)
dx
=
|x|(1/α)−1

πα

∫
C

|y− γ |y−1/αdy
[β2 − (y− γ )2]1/2[(y− γ )2 − δ2]1/2

.

Representing by G the function inside the integral and having inmind our hypothesis we obtain γ −δ < 0 and γ +δ > 0,
then the integral of G in C leads to I∗1 =

∫ x
γ−δ
Gdy and I∗2 =

∫ γ+β
x Gdy, respectively.

On the other hand, the function F (n)D defined in (5) admits the following integral representation (see [11])

Γ (c)
Γ (a)Γ (c − a)

∫ 1

0
ta−1

(1− t)c−a−1

(1− x1t)b1 . . . (1− xnt)bn
dt. (12)

Then, after appropriate changes of variables, comparison of the above expression with (12) leads to (10) and (11). So, the
assertion (9) follows and the Theorem 2 is proved. �

This general asymptotic density (9) of zeros considerably reduces when there exist some relations between the parameters
δ, β and γ , i.e. when the coefficients of the recurrence relation (1) have special asymptotic behaviours.

4. Particular cases

Let us point out some of the particular relevant cases which are obtained from the reduction properties satisfied by the
FD functions.

Corollary 3. Let {Pn(x)}∞n=1 be an orthogonal polynomial sequence satisfying the recurrence (1), such that the an and bn
coefficients behave asymptotically as in (2) and β , γ and δ are the numbers defined in (3). Then

(a) If γ = 0;β, δ ∈ R+ (i.e. α1 = −α2 in (2)), the asymptotic density of zeros reduces to

dρ(x)
dx
=
|x|(1/α)−1

πα

(
2(β − |x|)
β2 − δ2

)1/2
β(α−2)/2αF (4)D

 1/2; −1+ 1/α, 1/2, 1/2, 1/2; 3/2
β − |x|
β

,
β − |x|
2β

,
β − |x|
β − δ

,
β − |x|
β + δ

 (13)

if x ∈ [−β, −δ] ∪ [δ, β] and dρ(x)dx = 0 otherwise, where F
(4)
D is an FD-Lauricella function of the fourth type [11].

(b) If δ = 0, β ∈ R+ and γ ∈ R (i.e. α1 = α2;β1 = β2 in (2)), the asymptotic contracted density becomes some Appell
hypergeometric function. For instance, when γ − β < 0 and γ + β > 0 one has

dρ(x)
dx
=


|x|(1/α)−1

πα
I3 if x ∈ [γ − β, 0]

|x|(1/α)−1

πα
I4 if x ∈ [0, γ + β]

0 otherwise

(14)

where

I3 =
(
2(β − γ + x)

β

)1/2
(β − γ )−(1/α)F1

[
1/2, 1/2, 1/α; 3/2;

β − γ + x
2β

,
β − γ + x
β − γ

]
(15)

and

I4 =
(
2(β + γ − x)

β

)1/2
(β + γ )−(1/α)F1

[
1/2, 1/2, 1/α; 3/2;

β + γ − x
2β

,
β + γ − x
β + γ

]
. (16)

In particular, if γ = 0, the asymptotic contracted density is

dρ(x)
dx
=
|x|(1/α)−1

πα
(2(β − |x|))1/2 (β)−(α+2)/2αF1

[
1/2, 1/2, 1/α; 3/2;

β − |x|
2β

,
β − |x|
β

]
(17)

if x ∈ [−β, β] and vanishes outside this interval.
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Fig. 1. α = 1, β = 3, γ = 0, δ = 2.

Fig. 2. α = 2, β = 1/2, γ = 0, δ = 0.

(c) If β = δ > 0, γ ∈ R, the asymptotic contracted density is

dρ(x)
dx
=


1
2α

1
|γ − β∗|

(
x

γ − β∗

)(1/α)−1
if x ∈ [γ − β∗, 0]

1
2α

1
|γ + β∗|

(
x

γ + β∗

)(1/α)−1
if x ∈ [0, γ + β∗]

0 otherwise

(18)

where β∗ = [(1/4) (α1 − α2)2 + (max(β1, β2))2]1/2. In particular, if γ = 0,

dρ(x)
dx
=

 1
2αβ

(
|x|
β

)(1/α)−1
if x ∈ [−β, β]

0 otherwise.
(19)

Proof. (a) If γ = 0 the expressions (10) and (11) coincide. In addition to that, using the reduction property (6) with n = 5
and x1 = x3, we obtain the expression we were looking for (13). In Fig. 1 it is represented an example.
(b) If δ = 0, then C = [γ − β, γ − δ]

⋃
[γ +δ, γ +β] = [γ −β, γ +β]. Considering that 0 ∈ C and using the reduction

properties (6) (with n = 5 and x1 = x4 = x5) and (7), we obtain that (10) and (11) conclude as expressions (15) and (16),
respectively.
Moreover, if γ = 0 and using |x|, (15) and (16) coincide and replacing in (14) we obtain the density expression taken in

(17). In Fig. 2 it is represented an example.
(c) Formula (4) when β = δ is transformed (see [4]) in

lim
n→∞

1
n

n∑
i=1

f
(
xn,i
λn

)
=
1
2

∫ 1

0

{
f [(γ + β∗)tα] + f [(γ − β∗)tα]

}
dt

where now (β∗)2 = (1/4)(α1 − α2)2 + β ′ 2 with β ′ = max(β1, β2) and, α1, α2, β1 and β2 are the limits (2).
Taking f (x) = xm we obtain the following moment expressions

µm =
(γ + β∗)m + (γ − β∗)m

2(mα + 1)
.

Moreover, using a similar argument as in the previous proof of Theorem 2, we obtain (18) for the contracted zero density.
Last, we only need to put γ = 0 in (18) to obtain (19). So, Corollary 3 follows. �

Remark 4. (1) In [15], other instances of the density (17) were shown to be the logarithmic function for α = 1 and density
function of polynomic type for α = 1

2(m+1) ,m = 0, 1, . . . ;whenm = 0 one has Wigner’s semicircle law [16]

dρ(x)
dx
=
2
πβ

(
1−

x2

β2

)1/2
(20)

if x ∈ [−β, β] and vanishes outside this interval.
(2) Notice that functions in (19) are called Karamata type functions. We would like to highlight the following particular
cases:
(a) For α = 1 we can see a rectangular (or uniform) density function centered at the origin.
(b) α = 2/3 is the Weyl function.
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4.1. Some examples: The generalized Hermite polynomials

The generalized Hermite polynomials H(µ)n (x) are orthogonal with respect to the measure |x|µ exp(−x2)dx (µ > −1),
and we denote by K (µ)n (x) its monic form. Then K (µ)n (x) satisfy (see [17,18]) a recurrence relation (1) where an = 0 and

b2n =


n
2

if n is even
n+ µ
2

if n is odd.

That is, according to the value of µ the following cases arise:
(a) Ifµ does not depend on the degree n of the polynomial orµ = µ(n) is a regular varying function with exponent smaller
than 1, then α = 1/2 and the parameter limits (2) are α1 = α2 = 0 and β1 = β2 = 1/

√
2. Therefore, the parameters

(3) are β =
√
2, γ = δ = 0 and the asymptotic contracted density is (17):

dρ(x)
dx
=
2|x|
π

√
2(
√
2− |x|) (

√
2)
−5
2 F1

[
1
2
,
1
2
, 2;
3
2
;

√
2− |x|

2
√
2

,

√
2− |x|
√
2

]
if x ∈ [−

√
2,
√
2] and vanishes outside this interval. But this expression reduces to

dρ(x)
dx
=

√
2
π

√
1−

x2

2
if x ∈ [−

√
2,
√
2] and vanishes outside this interval and then Wigner’s semicircle law behaviour (20) appears in this

case.
(b) If µ = µ(n) is a regular varying function with exponent 1, then α = 1/2 and the parameter limits (2) are α1 = α2 =
0, β1 = 1/

√
2 and β2 = 1. Therefore, the parameters (3) are β = 1 + 1/

√
2, γ = 0 and δ = 1 − 1/

√
2, then the

asymptotic contracted density is (13):

dρ(x)
dx
=
2|x|
π

√
(1+ 1/

√
2− |x|)
√
2

(1+ 1/
√
2)−3/2

× F (4)D

 1/2; 1, 1/2, 1/2, 1/2; 3/2
1+ 1/

√
2− |x|

1+ 1/
√
2

,
1+ 1/

√
2− |x|

2(1+ 1/
√
2)

,
1+ 1/

√
2− |x|
√
2

,
1+ 1/

√
2− |x|
2


if x ∈ [−1− 1/

√
2,−1+ 1/

√
2 ] ∪ [1− 1/

√
2, 1+ 1/

√
2 ] and vanishes otherwise.

(c) If µ = µ(n) is a regular varying function with exponent bigger than 1, then α = ν/2 and the parameter limits (2) are
α1 = α2 = β1 = 0 and β2 = 1/

√
2. Therefore, the parameters β∗ = δ = 1/

√
2, and γ = 0, then the asymptotic

contracted density is (19):

dρ(x)
dx
=


√
2
ν

(√
2|x|

)(2/ν)−1
if x ∈ [−1/

√
2, 1/
√
2]

0 otherwise .

Notice that it is a Karamata type function such that when evaluated at ν = 2 it becomes a rectangular (or uniform)
density centered at the origin and for ν = 4/3 is the Weyl function.

5. Concluding remarks

In conclusion, we have analytically determined in terms of hypergeometric Lauricella functions the asymptotic
contractedmeasure of zeros of a large class of orthogonal polynomials. These are defined by a three-term recurrence relation,
whose coefficients have a different limiting behaviour according to whether the indices are even or odd, as shown by (2).
It has been obtained that in the most general case this contracted measure can be expressed in terms of an FD-Lauricella
function of fifth type, which simplifies a great deal when the asymptotic behaviour of the coefficients in the three-term
recurrence relation takes a particular form.
Finally, it could be interesting to mention that the Lauricella functions obtained here represent asymptotic contracted

measure of zeros and so, non-negativity of these functions in some intervals has been also proved as a byproduct.
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