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1. Introduction

The Cauchy problem of an elliptic equation arises frommany physical and engineering problems such as nondestructive
testing techniques [1], geophysics [2], and cardiology [3].
It iswell known that the Cauchy problemof an elliptic equation is ill-posed in the sense that arbitrarily ‘‘small’’ differences

in the data can induce arbitrarily ‘‘large’’ errors in the solution. Under an additional condition, a continuous dependence of
the solution on the Cauchy data can be obtained. This is called conditional stability [4]. Other results on conditional stability
for the elliptic equation can be found in [5,6].
Due to the severe ill-posedness of the problem, it is impossible to solve the Cauchy problem of the elliptic equation by

using classical numericalmethods and it requires special techniques, e.g., regularization strategies. Theoretical concepts and
computational implementation related to the Cauchy problem of the elliptic equation have been discussed bymany authors,
and a lot of methods have been provided. For computational aspects, the readers can consult D.N. Hào [7], H.J. Reinhardt
et al. [8], J. Cheng [5] and Y.C. Hong [9]. For theoretical aspects, the readers can refer to X.T. Xiong [10] and Zhi Qian [11].
The Helmholtz equation arises in many areas, especially in practical physical applications, such as acoustic, wave

propagation and scattering, vibration of the structure, electromagnetic scattering and so on. Several numerical methods
have been proposed to solve this problem, such as alternating iterative algorithm based on the boundary element method
(BEM) [12], the conjugate gradientmethod [13] and themethod of fundamental solutions (MFS) [14,15,13,16–18]. Although
there exists a vast literature on the Cauchy problem for the Helmholtz equation, to the authors’ knowledge, there are much
fewer papers devoted to the error estimates. Although in [19], the authors gave a quasi-reversibility method for solving
a Cauchy problem of the Helmholtz equation in a rectangle domain where they considered a homogeneous Neumann
boundary condition, the results were less encouraging. The main aim of this paper is to present a simple and effective
regularization method, and investigate the error estimate between the regularization solution and the exact one.
This paper is organized as follows. In Section 2, the regularization method-modified boundary method is introduced; in

Sections 3 and 4, a stability estimate is proved under an a priori condition; in Section 5, some numerical results are reported.
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2. Regularization for a Cauchy problem of the Helmholtz equation

Consider two Cauchy problems for the Helmholtz equation:

∆u(x, y)+ k2u(x, y) = 0, 0 < x < a, y ∈ R,
u(0, y) = φ(y), y ∈ R,
ux(0, y) = 0, y ∈ R, (2.1)

and

∆v(x, y)+ k2v(x, y) = 0, 0 < x < a, y ∈ R,
v(0, y) = 0, y ∈ R,
vx(0, y) = h(y), y ∈ R, (2.2)

where k > 0 is the wave number (constant). We need to seek the solutions u(x, y) and v(x, y) from the given data φ, h,
respectively. Physically, φ, h can only be measured, there will be measurement errors, and we would actually have some
data functions φδ(·), hδ(·) ∈ L2(R), for which

‖φδ − φ‖ + ‖hδ − h‖ ≤ δ, (2.3)

where the constant δ > 0 represents a bound on the measurement error, ‖ · ‖ denotes the L2-norm, and there exists a
constant E > 0, such that the following a priori bounds exist (e.g., says, the energy of the solution u(x, y) and v(x, y) at the
right boundary x = a are finite.)

‖u(a, ·)‖ ≤ E, and ‖v(a, ·)‖ ≤ E. (2.4)

Thus, the following problem can be solved becausew(x, y) = u(x, y)+ v(x, y).

Problem 1. Determine the solution w(x, y) for 0 < x < a from the input data φ(·) := w(0, ·), h(·) := wx(0, ·),when
w(x, y) satisfies

∆w(x, y)+ k2w(x, y) = 0, 0 < x < a, y ∈ R,
w(0, y) = φ(y), y ∈ R,
wx(0, y) = h(y), y ∈ R. (2.5)

Let

f̂ (ξ) =
1
√
2π

∫
∞

−∞

f (y)e−iξydy (2.6)

be the Fourier transform of the function f (y) ∈ L2(R). The solution of problem (2.1) can be formulated in the frequency
domain:

û(x, ξ) = cosh(x
√
ξ 2 − k2)φ̂(ξ). (2.7)

We notice that if ξ 2 > k2, for fixed 0 < x ≤ a, cosh(x
√
ξ 2 − k2) is unbounded as ξ 2 → ∞. There we want to seek a

solution u(x, ·) ∈ L2(R), the exact data φ̂(ξ)must decay rapidly as |ξ | → ∞. But in practice, we can only get the noisy data
φ̂δ(·) ∈ L2(R). Hence for the noisy data φ̂δ(·), we cannot obtain a meaningful solution.
Similarly, for problem (2.2), the solution can be found in the frequency domain:

v̂(x, ξ) =
sinh(x

√
ξ 2 − k2)√

ξ 2 − k2
ĥ(ξ). (2.8)

Therefore the solution of (2.5) in the frequency domain is

ŵ(x, ξ) = cosh(x
√
ξ 2 − k2)φ̂(ξ)+

sinh(x
√
ξ 2 − k2)√

ξ 2 − k2
ĥ(ξ). (2.9)

Obviously, Problem 1 is an ill-posed problem and requires special regularization method to be employed. We follow the
idea from Ames et al. [20] where they used a quasi-boundary method (or so-called modified boundary method) for solving
backward heat equation. Consider the following problems with noisy data:

∆uδα(x, y)+ k
2uδα(x, y) = 0, 0 < x < a, y ∈ R,

uδα(0, y)+ αu
δ
α(a, y) = φ

δ(y), y ∈ R,

(uδα)x(0, y) = 0, y ∈ R, (2.10)



X.-T. Xiong / Journal of Computational and Applied Mathematics 233 (2010) 1723–1732 1725

and

∆vδα(x, y)+ k
2vδα(x, y) = 0, 0 < x < a, y ∈ R,

vδα(0, y)+ αv
δ
α(a, y) = 0, y ∈ R,

(vδα)x(0, y) = h
δ(y), y ∈ R, (2.11)

where α > 0 is a small parameter.
Therefore, for (2.5), we have

∆wδα(x, y)+ k
2wδα(x, y) = 0, 0 < x < a, y ∈ R,

wδα(0, y)+ αw
δ
α(a, y) = φ

δ(y), y ∈ R,

(wδα)x(0, y) = h
δ(y), y ∈ R. (2.12)

We should first answer two questions:

• Do the problems (2.10) and (2.11) approximate the following problems:

∆uδ(x, y)+ k2uδ(x, y) = 0, 0 < x < a, y ∈ R,
uδ(0, y) = φδ(y), y ∈ R,

(uδ)x(0, y) = 0, y ∈ R, (2.13)

and

∆vδ(x, y)+ k2vδ(x, y) = 0, 0 < x < a, y ∈ R,
vδ(0, y) = 0, y ∈ R,

(vδ)x(0, y) = hδ(y), y ∈ R, (2.14)

respectively? If the answer is yes, thus the problem (2.12) approximates the problem:

∆wδ(x, y)+ k2wδ(x, y) = 0, 0 < x < a, y ∈ R,
wδ(0, y) = φδ(y), y ∈ R,

(wδ)x(0, y) = hδ(y), y ∈ R. (2.15)

• Are the problems (2.10) and (2.11) well-posed? If the answer is yes, problem (2.12) is well-posed.

In order to answer these two questions, we should pay attention to the assumptionφδ(·), hδ(·) ∈ L2(R). By the technique
of Fourier transform, we can get the solutions of the problems (2.10) and (2.11) in the frequency domain:

ûδα =
cosh(x

√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

φ̂δ, (2.16)

and

v̂δα =
sinh(x

√
ξ 2 − k2)− α sinh((1− x)

√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

ĥδ(ξ)√
ξ 2 − k2

. (2.17)

Hence the solution of problem (2.12) in frequency domain is

ŵδα =
cosh(x

√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

φ̂δ +
sinh(x

√
ξ 2 − k2)− α sinh((1− x)

√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

ĥδ(ξ)√
ξ 2 − k2

. (2.18)

Now for the first question, from (2.16)–(2.18) we can easily see that when α → 0, ûδα → ûδ , v̂δα → v̂δ and ŵδα → ŵδ ,
uniformly in x.
As to the secondquestion,we only need to prove the stability of the problems. For problem (2.10),wehave the conclusion:

if any two functions φδ,1 and φδ,2 satisfy ‖φδ,1 − φδ,2‖ ≤ ε, let uδα,1 and u
δ
α,2 be the corresponding solutions, respectively,

set α = O(ε), then ‖uδα,1 − u
δ
α,2‖ → 0, as ε → 0. In fact, by Parseval identity, we have

‖uδα,1 − u
δ
α,2‖ = ‖û

δ
α,1 − û

δ
α,2‖ =

∥∥∥∥∥ cosh(x
√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

(φ̂δ,1 − φ̂δ,2)

∥∥∥∥∥
≤ sup

ξ∈R

∣∣∣∣∣ cosh(x
√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

∣∣∣∣∣ ε. (2.19)
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Case I. If ξ 2 − k2 ≤ 0, then cosh(x
√
ξ 2 − k2) = cos(x

√
k2 − ξ 2), cosh(a

√
ξ 2 − k2) = cos(a

√
k2 − ξ 2), therefore

‖uδα,1 − u
δ
α,2‖ ≤ ε.

Case II. If ξ 2 − k2 > 0, then by the inequality (3.1) in Lemma 3.1,

sup
ξ∈R

∣∣∣∣∣ cosh(x
√
ξ 2 − k2)

1+ α cosh(a
√
ξ 2 − k2)

∣∣∣∣∣ ≤ supξ∈R

ex
√
ξ2−k2

1+ α
2 e
a
√
ξ2−k2

≤

(α
2

)− xa
.

Hence if α = O(ε), then

‖uδα,1 − u
δ
α,2‖ → 0, for ε → 0.

Similarly, for problem (2.11), if any two data functions satisfy ‖hδ,1 − hδ,2‖ ≤ ε, and α = O(ε), then ‖vδα,1 − v
δ
α,2‖ → 0,

as ε → 0. In fact, in Section 4, (4.10), (4.13) and (4.14) imply the result.
Now we prove the main conclusions.

3. Error estimates

First we need two inequalities.

Lemma 3.1. Let 0 < x < a, then

sup
η>0

eηx

1+ αeaη
≤ α−

x
a ; (3.1)

sup
η>0

sinh(ηx)
ηexη

≤ x. (3.2)

Proof. Let f (η) = sinh(xη)
ηexη , we have the first order derivative

f ′(η) =
xη − e2xη−1

2

(ηexη)2
. (3.3)

Since er − 1 ≥ r for r ≥ 0, we get xη − e2xη−1
2 ≤ 0. It is obvious that f (η) is a decreasing function. Therefore

f (η) ≤ limη→0+ f (η) = x. �

For system (2.1), we can obtain the error estimate between the regularized solution uδα and the exact one u.

Lemma 3.2. Suppose u be the solution of problem (2.1) with the exact data φ and uδ be the regularization solution defined by
with the noisy data φδ , let φδ satisfies (2.3) and let the exact solution u at x = a satisfy (2.4). If we select α = ( δE ), then for fixed
0 < x < a we get the error estimate

‖uδα(x, ·)− u(x, ·)‖ ≤ 2δ
1− xa (2E)

x
a , for δ→ 0. (3.4)

For system (2.2), similarly we have:

Lemma 3.3. Suppose v be the solution of problem (2.2)with the exact data h and vδ be the regularization solution with the noise
data hδ , let hδ satisfies (2.3) and let the exact solution v at x = a satisfy (2.4). If we select α = ( δE ), then for fixed 0 < x < a we
get the error estimate

‖vδα(·, y)− v(·, y)‖ ≤ (2a+ 1)δ
1− xa (2E)

x
a (1+ o(1)), for δ→ 0. (3.5)

Theorem 3.4. Suppose that w = u+v is the solutionwith exact data [φ, h] and that wδα = u
δ
α+v

δ
α is the solutionwithmeasured

data [φδ, hδ]. If (2.4) holds, and the measured functions satisfy (2.3) and if we choose α = ( δE ), then for fixed 0 < x < a, we get
the error estimate

‖wδα(·, y)− w(·, y)‖ ≤ (2a+ 3)δ
1− xa (2E)

x
a (1+ o(1)), for δ→ 0. (3.6)
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Proof. According to the Parseval identity, we have ‖ŵ − ŵδα‖ = ‖w − w
δ
α‖, and ‖w − w

δ
‖ = ‖(u + v) − (uδ + vδ)‖ ≤

‖u− uδ‖ + ‖v − vδ‖; then the theorem is straightforward by using triangle inequality and Lemma 3.2, Lemma 3.3.
From Theorem 3.4, we find that wδ is an approximation of exact solution w. The approximation error depends

continuously on the measurement error for fixed 0 < x < a. However, as x → a, the accuracy of regularized solution
becomes progressively lower. This is a common thing in the theory of ill-posed problems, if we do not have additional
conditions on the smoothness of the solution.
To retain the continuous dependence of the solution at x = a, instead of (2.3),we introduce a stronger a priori assumption,

‖w(x, ·)|x=a‖p ≤ E, (3.7)

where ‖ · ‖p denotes the norm of Sobolev space Hp(R) and p > 0. �

Remark 3.5. We separately consider the case 0 ≤ x ≤ a and the case x = a in order to emphasize the following facts. For
the case 0 ≤ x < a, the a priori bound ‖w(x, ·)‖ is sufficient. However, for the case x = a, the stronger a priori bound for
‖w(x, ·)|x=a‖p where p > 0must be imposed. By this assumption, if α = δ

E (ln
E
δ
)p with p > 0, we can get the error estimate

betweenw(a, ·) andwδα(a, ·):

‖wδα(a, ·)− w(a, ·)‖ ≤ O

(
E
(
ln
E
δ

)−p)
, for δ→ 0. (3.8)

This is a logarithmic stability estimate. This often occurs in the boundary error estimate for ill-posed problems.

Remark 3.6. The modified method (2.12) can also be replaced by

∆wδα(x, y)+ k
2wδα(x, y) = 0, 0 < x < a, y ∈ R,

wδα(0, y) = φ
δ(y), y ∈ R,

(wδα)x(0, y)+ α(w
δ
α)x(a, y) = h

δ(y), y ∈ R. (3.9)

Remark 3.7. The error estimates (3.6) and (3.8) are order optimal according to the general regularization theory [21,22].

4. Proofs of Lemmas 3.1–3.3

In this section, we denote η =
√
ξ 2 − k2.

Proof of Lemma 3.1. The proof is very easy by using the method in Carasso [23].

Proof of Lemma 3.2. Case I: for ξ 2 > k2 (ill-posed part), in this case, η > 0.
By Parseval identity and triangle inequality, we have

‖uδα(x, ·)− u(x, ·)‖ = ‖ûδα(x, ·)− û(x, ·)‖ ≤ ‖ûα(x, ·)− û(x, ·)‖ + ‖ûδα(x, ·)− ûα(x, ·)‖. (4.1)

For the second term on the right-hand side of above inequality, we have

‖ûδα(x, ·)− ûα(x, ·)‖ =
∥∥∥∥ cosh(xη)
1+ α cosh(aη)

φ̂δ(ξ)−
cosh(xη)

1+ α cosh(aη)
φ̂(ξ)

∥∥∥∥ , (4.2)

i.e.,

‖ûδα(x, ·)− ûα(x, ·)‖ ≤ sup
η>0

cosh(xη)
1+ α cosh(aη)

δ ≤ sup
η>0

exη

1+ α
2 e
aη
δ. (4.3)

By Lemma 3.1, we get

‖ûδα(x, ·)− ûα(x, ·)‖ ≤ sup
η>0

exη

1+ α
2 e
aη
δ ≤

(α
2

)− xa
δ =

(
δ

2E

)− xa
δ ≤ δ1−

x
a (2E)

x
a . (4.4)

For the first term on the right-hand side of (4.1), we have

‖ûα(x, ·)− û(x, ·)‖ =
∥∥∥∥ cosh(xη)
1+ α cosh(aη)

φ̂(ξ)− cosh(xη)φ̂(ξ)
∥∥∥∥ = ∥∥∥∥α cosh(xη) cosh(aη)1+ α cosh(aη)

φ̂(ξ)

∥∥∥∥ . (4.5)
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Via (2.7), we have

φ̂(ξ) =
û(a, ξ)
cosh(aη)

,

‖ûα(x, ·)− û(x, ·)‖ = α

∥∥∥∥ cosh(xη)
1+ α cosh(aη)

û(a, ξ)
∥∥∥∥

≤ α sup
η>0

cosh(xη)
1+ α cosh(aη)

‖û(a, ·)‖.

By the a priori assumption on ‖u(a, ·)‖ ≤ E, it yields

‖ûα(x, ·)− û(x, ·)‖ ≤ αE sup
η>0

cosh(xη)
1+ α cosh(aη)

. (4.6)

Using Lemma 3.1, we have

‖ûα(x, ·)− û(x, ·)‖ ≤ αE sup
η>0

exη

1+ α
2 e
aη
≤ 2E

(α
2

)1− xa
= 2E

(
δ

2E

)1− xa
≤ δ1−

x
a (2E)

x
a . (4.7)

Combining (4.4) and (4.7), we have

‖uδα(x, ·)− u(x, ·)‖ ≤ 2δ
1− xa (2E)

x
a .

Case II: for ξ 2 ≤ k2 (well-posed part), in this case, η ≤ 0, and cosh(η) = cos(k2 − ξ 2).
We can easily get

‖uδα(x, ·)− u(x, ·)‖ ≤ δ. (4.8)

Thus, we get Lemma 3.2. �

Proof of Lemma 3.3. Case I: for ξ 2 > k2 (ill-posed part), in this case, η > 0.
By Parseval identity and triangle inequality, we have

‖vδα(x, ·)− v(x, ·)‖ = ‖v̂δα(x, ·)− v̂(x, ·)‖ ≤ ‖v̂α(x, ·)− v(x, ·)‖ + ‖v̂δα(x, ·)− v̂α(x, ·)‖; (4.9)

for the second term on the right-hand side of above inequality, we have

‖v̂δα(x, ·)− v̂α(x, ·)‖ =

∥∥∥∥∥ sinh(xη)− α sinh((a− x)η)1+ α cosh(aη)
ĥδ(ξ)
η
−
sinh(xη)− α sinh((a− x)η)

1+ α cosh(aη)
ĥ(ξ)
η

∥∥∥∥∥ , (4.10)

i.e.,

‖v̂δα(x, ·)− v̂α(x, ·)‖ ≤ sup
η>0

∣∣∣∣ sinh(xη)− α sinh((a− x)η)η(1+ α cosh(aη))

∣∣∣∣ δ. (4.11)

Then

‖v̂δα(x, ·)− v̂α(x, ·)‖ ≤ sup
η>0

∣∣∣∣ sinh(xη)
η(1+ α cosh(aη))

∣∣∣∣ δ + sup
η>0

∣∣∣∣ sinh((a− x)η)η(1+ α cosh(aη))

∣∣∣∣αδ, (4.12)

i.e.,

‖v̂δα(x, ·)− v̂α(x, ·)‖ ≤ sup
η>0

sinh(xη)
ηexη

∣∣∣∣ exη

(1+ α
2 e
aη)

∣∣∣∣ δ + sup
η>0

sinh((a− x)η)
ηe(a−x)η

∣∣∣∣ e(a−x)η

(1+ α
2 e
aη)

∣∣∣∣αδ. (4.13)

By Lemma 3.1, we get

‖v̂δα(x, ·)− v̂α(x, ·)‖ ≤ x
(α
2

)− xa
δ + αδ(a− x)

(α
2

)− a−xa
≤ (2a− x)δ1−

x
a (2E)

x
a ≤ 2aδ1−

x
a (2E)

x
a . (4.14)

For the first term on the right-hand side of (4.9), we have

‖v̂α(x, ·)− v̂(x, ·)‖ =

∥∥∥∥∥ sinh(xη)− α sinh((a− x)η)1+ α cosh(aη)
ĥ(ξ)
η
− sinh(xη)

ĥ(ξ)
η

∥∥∥∥∥ , (4.15)
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i.e.,

‖v̂α(x, ·)− v̂(x, ·)‖ =

∥∥∥∥∥α sinh((a− x)η)+ α sinh(xη) cosh(aη)1+ α cosh(aη)
ĥ(ξ)
η

∥∥∥∥∥
=

∥∥∥∥∥ α2 (sinh((a+ x)η)+ sinh((a− x)η))1+ α cosh(aη)
ĥ(ξ)
η

∥∥∥∥∥ .
By the a priori assumption on ‖v(a, ·)‖ ≤ E, it yields

‖v̂α(x, ·)− v̂(x, ·)‖ ≤
α

2
E sup
η>0

sinh((a+ x)η)+ sinh((a− x)η)
(sinh(aη)(1+ α cosh(aη)))

≤
α

2
E sup
η>0

[
sinh((a+ x)η)

(sinh(aη)(1+ α cosh(aη)))
+
sinh((a− x)η)
sinh(aη)

]
.

Now we investigate the functions f1(η) :=
sinh((a+x)η)
sinh(aη) , and f2(η) :=

sinh((a−x)η)
sinh(aη) . Obviously, f2(η) ≤ 1, but since

τ(η) := 1−e−2(a+x)η

1−e−2aη
is a decreasing function for η > 0,

f1(η) = exη
1− e−2(a+x)η

1− e−2aη
≤ exη

(
1+

x
a

)
≤ 2exη. (4.16)

Therefore, we have

‖v̂α(x, ·)− v̂(x, ·)‖ ≤ αE sup
η>0

exη

1+ α
2 e
aη
+
α

2
E ≤ 2E

(α
2

)1− xa
+
α

2
E = δ1−

x
a (2E)

x
a (1+ o(1)). (4.17)

Combining (4.14) and (4.17), we get

‖vδα(x, ·)− v(x, ·)‖ ≤ δ
1− xa (2E)

x
a (1+ o(1)). (4.18)

Case II: for ξ 2 ≤ k2 (well-posed part), in this case, η ≤ 0, and cosh(η) = cos(k2 − ξ 2), sinh(η) = i sin(k2 − ξ 2). We can
easily get

‖vδα(x, ·)− v(x, ·)‖ ≤ δ. (4.19)

Thus, the proof of Lemma 3.3 completed. �

5. A numerical example

In this section, a simple example is devised for verifying the validity of the proposed method.
To test the accuracy of the approximate solution, we use the root mean square error (RSE) and the relative root mean

square error (RRSE), which are defined for two vectors W and W ∗ (where W and W ∗ denote the exact and computed
solutions at the test points, respectively):

RSE(W ) =

√√√√1
n

n∑
j=1

(Wj −W ∗j )2; (5.1)

RRSE(W ) =

√
n∑
j=1
(Wj −W ∗j )2√
n∑
j=1
(Wj)2

. (5.2)

The forthcoming numerical example is devised in the following way: first we sample the Cauchy data pairs (φ(y), h(y))
at the y-grid to get vectorsΦ and H , then we add random distribution perturbation and obtainΦδ and Hδ ,i.e.,

Φδ = Φ + σ1 rand(size(Φ)), Hδ = H + σ2 rand(size(H)), (5.3)

where

Φ = (φ(y1), . . . , φ(yn))T , (5.4)

H = (h(y1), . . . , h(yn))T , (5.5)
δ = RSE(Φδ − Φ)+ RSE(Hδ − H), (5.6)
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a b

Fig. 1. x = 0.1, k = 1, α = 0.0006, σ1 = 10−4 , σ2 = 10−3 (1a): recovery of real part with RSE = 0.0148, RRSE = 0.0465; (1b): recovery of imaginary
part with RSE = 0.0360, RRSE = 0.0935.

a b

Fig. 2. x = 0.1, k = 1, α = 0.06, σ1 = 10−2 , σ2 = 10−1 (2a): recovery of real part with RSE = 0.0342, RRSE = 0.1076; (2b): recovery of imaginary part
with RSE = 0.0596, RRSE = 0.1544.

σ1 indicates the error level of Φ , and σ2 denotes the error level of H . Considering that the flux error is usually much larger,
we take σ2 10 times as large as σ1. The symbol rand(size(·)) is a random number between [−1, 1].
We consider the following Cauchy problem:

∆u(x, y)+ k2u(x, y) = 0, 0 < x < 1, y ∈ R,
u(0, y) = ekiy, y ∈ R,

ux(0, y) = kiekiy, y ∈ R, (5.7)

The exact solution u(x, y) is given by u(x, y) = eki(x+y), where i =
√
−1.

We solve the discretized version of the Cauchy problem by using Matlab in IEEE double precision with unit round-off
1.1 × 10−16. Since the solution is periodic, so in computation we take−2 ≤ y ≤ 2 and fix x. The regularized solution was
computed by the Fast Fourier Transform (FFT) and inverse Fast Fourier Transform technique according to formula (2.18).
The regularization parameter α is chosen by Theorem 3.4 where we take E = 1.
Figs. 1–3 show that inverse solutions are extremely sensitive to measurement errors, measurement locations. A small

noise in the measurements (φ, h) tends to produce large oscillations, which becomes even more significant as the sensors
are placed farther away from the surface at x = 0. The large oscillation appears in Figs. 1–4 at the ends of the test interval
[−2, 2] is due to Gibbs phenomenon. Fig. 4 shows that for larger wave number k, the regularizationmethod also works well.
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a b

Fig. 3. x = 0.6, k = 1, α = 0.0006, σ1 = 10−4 , σ2 = 10−3 (3a): the recovery of real part with RSE = 0.3378, RRSE = 0.9968; (3b): recovery of imaginary
part with RSE = 0.7333, RRSE = 2.0048.

a b

Fig. 4. x = 0.1, k = 3, α = 0.0006, σ1 = 10−4 , σ2 = 10−3 (4a): recovery of real part with RSE = 0.0348, RRSE = 0.1000; (4b): recovery of imaginary
part with RSE = 0.0244, RRSE = 0.0680.

6. Concluding remarks

In this paper, we consider the non-characteristic Cauchy problem for the Helmholtz equation. SomeHölder-type stability
estimates are proved. This is an improvement for the results obtained in [19]. As for the case of finite domain, the
regularization solution can be solved by the boundary element method [15]. Themodifiedmethod can be easily generalized
to the three-dimensional case [24] where we have used the cut-off method and the Tikhonov method.
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