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a b s t r a c t

Additive Congruential RandomNumber (ACORN) generators represent an approach to gen-
erating uniformly distributed pseudo-random numbers that is straightforward to imple-
ment efficiently for arbitrarily large order and modulus; if it is implemented using integer
arithmetic, it becomes possible to generate identical sequences on any machine.
This paper briefly reviews existing results concerning ACORN generators and relevant

theory concerning sequences that are well distributed mod 1 in k dimensions. It then
demonstrates some new theoretical results for ACORN generators implemented in inte-
ger arithmetic with modulus M = 2µ showing that they are a family of generators that
converge (in a sense that is defined in the paper) to being well distributed mod 1 in k
dimensions, asµ = log2M tends to infinity. By increasing k, it is possible to increase with-
out limit the number of dimensions in which the resulting sequences approximate to well
distributed.
The paper concludes by applying the standard TestU01 test suite to ACORN generators

for selected values of the modulus (between 260 and 2150), the order (between 4 and 30)
and various odd seed values. On the basis of these and earlier results, it is recommended
that an order of at least 9 be used together with an odd seed and modulus equal to 230p,
for a small integer value of p. While a choice of p = 2 should be adequate for most typical
applications, increasing p to 3 or 4 gives a sequence that will consistently pass all the tests
in the TestU01 test suite, giving additional confidence in more demanding applications.
The results demonstrate that the ACORN generators are a reliable source of uniformly

distributed pseudo-random numbers, and that in practice (as suggested by the theoretical
convergence results) the quality of the ACORN sequences increases with increasing
modulus and order.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There aremanymathematical and numerical problemswhose solution requires a reliable source of uniformly distributed
pseudo-randomnumbers.Monte Carlomethods provide one example of such a solutionmethod,with applications including
numerical optimisation, numerical integration, Bayesian inference, geostatistical simulation, statistical physics and other
statistical applications.
The term ‘Monte Carlo method’ has been widely used, and various definitions have been adopted by different authors,

see for example [1–4]. In this article, following Wikramaratna [5], the term is used in its most general sense.
In theory the accuracy of a properly formulatedMonte Carlomethod increaseswith the number of realisations; in practice

this continuing improvement is dependent on the quality of a pseudo-random number generator. The question of precisely
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what conditions must be satisfied by the random sequence used in a Monte Carlo calculation to ensure convergence of
the simulation results has been the subject of much debate (see, for example, [6]). Knuth considers various alternative
definitions of what is meant by a random sequence, and introduces the concepts of a k-distributed sequence and of an
infinite-distributed or completely uniformly distributed sequence (which is the limiting case of a k-distributed sequence as
k tends to infinity). We note that, although it is possible to define infinite-distributed sequences deterministically (Franklin
[7]), there is no computationally practical algorithm for evaluating these sequences accurately on a computer with finite
word-length and working in finite-precision arithmetic. In fact, it can be argued that the concept of an infinite-distributed
sequence is meaningful only in relation to infinite sequences (rather than for the finite-length sequences that are used in
practice in computations); as a resultwe believe that k-distributedness (for any specified value of k) is amore useful property
to consider in practice.
The ACORN generators were first proposed in [8] in 1989. Subsequent papers over an extended period [9,5,10] have

suggested that the ACORN approach compares favourably with some other commonly used approaches, in particular the
linear congruential generators.
New results, documented in this paper, show that ACORN generators merit consideration for use in the most demanding

applications. We demonstrate that the ACORN generators are a family of generators that allow us to approximate arbitrarily
closely to a k-distributed sequence for any specified finite value of k. We go on to provide a practical demonstration of the
convergence results by applying a standard suite of empirical tests (the TestU01 test suite – see L’Ecuyer and Simard [11])
to a whole series of ACORN sequences of different order and modulus and initialised with a range of different seeds.

2. The ACORN generator

The kth-order Additive Congruential Random Number (ACORN) generator is defined in [8,9] from an integer modulusM ,
an integer seed Y 00 satisfying 0 < Y

0
0 < M and an arbitrary set of k integer initial values Y

m
0 , m = 1, . . . , k, each satisfying

0 ≤ Ym0 < M , through the equations

Y 0n = Y
0
n−1 n ≥ 1 (1)

Ymn = (Y
m−1
n + Ymn−1)modM n ≥ 1,m = 1, . . . , k (2)

where by (Y )modM we mean the remainder on dividing Y by M . The numbers Ymn can be normalised to the unit interval by
dividing byM:

Xmn = Y
m
n /M n ≥ 1. (3)

The original implementation proposed in [8] used real arithmetic modulo 1, calculating the Xmn directly. Owing to the effects
of rounding errors in real arithmetic the sequenceswere not reproducible on differentmachines or with different compilers,
although the sequences still exhibited similar statistical behaviour; consequently, although period lengths were large, they
could not be predicted or determined with any certainty; finally, it was not possible to make a clear and unambiguous
statement of how best to initialise the generator. Use of an integer implementation based on Eqs. (1) to (3) overcomes these
limitations and the original implementation is therefore considered to be superseded by this newer approach [9,10]. In the
present paper we give theoretical results that illustrate the close relationship between the two different representations,
and that demonstrate the value of considering the algorithm defined by Eqs. (1) to (3) as a special case of the more general
concept that will be defined below by Eqs. (5) and (6).
Empirical testing, including that documented in [8] and more recently (making use of the Diehard statistical test suite,

Marsaglia [12]) in [10,13], has demonstrated that the numbers Xkn approximate to being uniformly distributed in the half-
open unit interval [0, 1) and satisfy a wide range of statistical tests of randomness. Results from these tests suggested
that increasing the order of the generator improves the randomness and also that increasing the modulus improves the
randomness of the generator. These tentative conclusions are strongly supported by the more detailed testing that has now
been completed (making use of the TestU01 test suite, L’Ecuyer and Simard [11]) — the results of these empirical tests, which
were applied to several hundreds of different ACORN generators, are documented later in the present paper.
We observe that the ACORN generator is defined on the half-open interval [0, 1), and that it is possible for identically zero

values to occur, albeit rarely. When the resulting variates are converted to real values on the unit interval, it is possible in
addition to have values that get rounded to either 0 or 1 given the available precision.With some applications, the occurrence
of the values 0 or 1 can cause computational problems; if this is the case then either the application or the pseudo-random
number generator needs to bemodified to address this.We note that the computational issue arises primarily because of the
limited precision available in real arithmetic rather than because of the generator being defined on the half-open interval
(for example, for an ACORN generator defined modulo 260, we can in principal redefine it on the open interval (0, 1) simply
by adding 2−61 to each variate; however thiswouldmake no differencewhatsoever to the issues thatmay arise fromvariates
getting rounded to 0 or 1).
It is worth briefly touching on the computational performance of the ACORN algorithm, compared with other standard

algorithms for pseudo-random number generation. L’Ecuyer and Simard [11] quote figures of 4.3 s for theMersenne Twister
algorithmMT19337 (see [14], for a description of this algorithm) to generate 108 random variates on a 32-bit processor with
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2.8 GHz clock speed; in general they obtained times that ranged from 2 s up to more than 100 s for algorithms that were
successful on the TestU01 tests. Wikramaratna [10] tabulated the computational performance of one implementation of the
ACORN algorithm for a range of values of order and modulus, giving performance of between 100 and 1000 s to generate
108 variates on a 32-bit processor with 600 MHz clock speed. We have undertaken further testing of the ACORN algorithm
and have been able to get an overall speed-up by a factor of around 50 by a combination of faster 32-bit processor (2.55 GHz
clock speed), full compiler optimisation using a Digital Visual Fortran compiler (v5.0.A) and some improvements to the way
in which we have implemented the algorithm and in particular the integer addition modulo 230. This overall speedup can
be broken down into a factor of 5 due to the faster cpu, a factor of 2 as a result of the compiler optimisation, and a factor of 5
from the algorithmic improvements. For a tenth-order ACORN generator, modulus 260, the time for generating 108 variates
was reduced to around 5 s (compared with 287 s for generating the same number of variates based on Table 6 of [10]).
If the modulus is increased from 260 to 290, this increases the time by about 40%. These timings are still for a completely
general version of ACORN, which can be called with any value of the order and for any modulus of the form 230p, where p is
any positive integer. Further performance improvements might be obtained by restricting the routine to a single specified
order and/or a single specified value of p. On the basis of these results we believe the computational performance is on a
par with the best alternative pseudo-random number generation algorithms. A more precise evaluation of computational
performancewould require direct comparison of specific implementations of each algorithm run on the same hardware and
under similar conditions. However, we note that in practice for any real Monte Carlo calculation the generation of random
variates is likely to consume only a small proportion of the total computational effort, so any more detailed comparison
of timings is likely to be of mainly academic interest. From a practical point of view the quality of the pseudo-random
sequences and the impact of this quality on the convergence of theMonte Carlo estimates is muchmore significant than the
computational performance.
Wikramaratna [9] showed that the numbers Ymn are of the form

Ymn =

(
m∑
i=0

Y i0Z
m−i
n

)
modM

=

(
m∑
i=0

Y i0

(
(n+m− i− 1)!
(n− 1)!(m− i)!

))
modM

. (4)

The analysis went on to show that the kth-order ACORN generator approximates to being uniformly distributed in all
dimensions up to k. In this paper we define more precisely the sense in which this statement holds true, and specify a
few simple constraints on the parameter values that need to be satisfied in order to achieve this.

3. Background theory

3.1. Basic definitions

We recap briefly on some notation and basic definitions used in [9]. LetR be the real line, let I be the restriction of the
real line to the unit interval, and let Z be the set of integers. Let x = (x1, x2, . . . , xk) be a vector with real components;
thus xεRk. The fractional partof x is {x} = ({x1}, {x2}, . . . , {xk}). The k-dimensional unit cube Ik is the interval [0, 1). The set
of points xεIk such that aj ≤ xj < bj for j = 1, 2, . . . , k will be denoted by [a, b). Let (xn), n = 1, 2, . . ., be a sequence of
vectors inRk. For a subset [a, b) of Ik and for any given integer p let the counting function A([a, b);N, p) denote the number
of points {xp+n}, 1 ≤ n ≤ N , that lie in [a, b).

Definition. The sequence of vectors (xn), n = 1, 2, . . ., is said to be u.d. (uniformly distributed) mod 1 in Rk if, for
all half-open intervals [a, b) contained in or equal to Ik, and for each fixed p greater than or equal to zero we have
limN→∞ (A([a, b);N, p)/N) =

∏k
j=1(bj − aj). If in addition the convergence to this limit is uniform in p, then the sequence

(xn), n = 1, 2, . . ., is said to be w.d. (well distributed) mod 1 inRk. A sequence of real numbers (rn), n = 1, 2, . . ., is said to
be u.d. (respectively w.d.) mod 1 inRk if the corresponding sequence of vectors (xn) = (rn, rn+1, . . . , rn+k−1), n = 1, 2, . . .
is u.d. (respectively w.d.) mod 1 inRk. �

The formal definition of u.d. mod 1 was due originally toWeyl [15,16], who proved theWeyl Criterion giving a necessary
and sufficient condition for a sequence to be u.d. mod 1. The special case known as w.d. mod 1 was defined by [17,18],
who also gave the corresponding Weyl Criterion for a sequence to be w.d. mod 1. These definitions and the corresponding
versions of theWeyl Criterion are also discussed in [19]. It follows from the definitions that a sequence that is w.d. mod 1 in
Rk must necessarily be u.d. mod 1 inRk; on the other hand it is straightforward to find counter-examples to demonstrate
that the converse is not true.

3.2. The key existing result concerning ACORN sequences

Eqs. (1) to (3) can be rewritten in the form

X0n = X
0
n−1 n ≥ 1 (5)

Xmn = (X
m−1
n + Xmn−1)mod 1 n ≥ 1,m = 1, . . . , k (6)
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where X0n satisfies 0 < X
0
n < 1 and X

m
n (m ≥ 1) satisfy 0 ≤ X

m
n < 1. We observe that if the Xmn are restricted to being

rational fractions, then this is exactly equivalent to (1) to (3) for a suitably chosen value ofM; however it is also useful from
a theoretical point of view to generalise Eqs. (5) and (6) to allow the Xmn to take any real values in the appropriate ranges.
We observe that the Xmn can be written in the following form, which is equivalent to Eq. (4):

Xmn =

(
m∑
i=0

X i0Z
m−i
n

)
mod 1

=

(
m∑
i=0

X i0

(
(n+m− i− 1)!
(n− 1)!(m− i)!

))
mod 1

. (7)

Wikramaratna [9] proved a number of theorems concerning well-distributed sequences, leading to the key result that the
kth-order ACORN sequence Xkn , n = 0, 1, 2, . . ., defined by Eq. (7) with m = k is w.d. mod 1 in Rk provided only that the
seed X00 takes an irrational value.
It is worth noting as an aside that Knuth [6] has shown that if a sequence of real numbers (rn), with un equal to the

fractional part of rn, is u.d. mod 1 inRk and if f (x1, x2, . . . , xk) is a Riemann-integrable function of k variables, then the limit(
limn→∞ 1

n

∑
1≤j≤n f (uj,uj+1,...,uj+k−1)

)
exists and is equal to

∫ 1
0 · · ·

∫ 1
0 f (x1, x2, . . . , xk) dx1 . . . dxk. Knuth uses this result to

prove that various standard statistical tests (in particular, the permutation test of order k and the serial correlation test for
pairs of terms with a separation of k − 1) will necessarily be satisfied for any sequence that is u.d. mod 1 inRk. Since w.d.
mod 1 inRk is a stronger condition than u.d.mod 1 inRk, it is clear that these same resultswould apply to ACORN sequences
defined by (7) and having an irrational seed.
It remains an open question whether, and if so under what precise conditions, the properties of u.d. (or w.d.) mod 1 in

Rk might be sufficient to guarantee convergence of particular examples or classes of Monte Carlo simulations.

4. Convergence results for ACORN sequences

An interesting feature of the ACORN approach concerns the existence of two different ways of specifying the ACORN
sequences. The first uses Eqs. (1) to (3) and exact integer arithmetic (leading to practical implementations, reproducibility
of sequences as well as to theoretical results concerning periodicity that in practice define a maximum useable length
within which the sequence is guaranteed not to repeat itself). The second approach uses Eqs. (5) and (6), which are exactly
equivalent to (1) to (3) for certain specific choices of (rational) seed and initial values, but which also go further, allowing
some powerful number theoretic results to be provedwhen themethod is generalised to allow irrational values to be chosen
for the seed (and also, if desired, for the initial values). The two theorems that are proved in the following section help
to clarify the relationship between the two approaches, and give us practical criteria under which we can calculate the
terms in the more general sequences to arbitrary accuracy (limited only by the precision available for the representation of
real numbers with the particular combination of hardware and compiler) as the limit of a sequence of variates that can be
evaluated to any desired accuracy using the more restrictive approach.
We show first, in Theorem 1, that every kth-order ACORN sequencewithmodulusM = 2µ is equivalent (to β < µ binary

digits precision) to the first M terms in a sequence that is w.d. mod 1 inRk (in fact, we go further than this, showing that
there are actually an infinite number of such equivalent sequences). This result demonstrates that every kth-order ACORN
sequence is an approximation to a sequence that is w.d. mod 1 inRk, and that increasing the modulus used in defining the
ACORN sequence leads to a better approximation to w.d. mod 1 inRk (in the sense that this increases both the maximum
number of termsM that can be generated and also the available precision β).
Second, in Theorem 2, we show that given a specified ACORN sequence that is w.d. mod 1 inRk (in particular, using the

result proved in [9], this requires only that the order should be k and the seed should be irrational) a number N of terms
required and a number β of binary digits precision required then we can define an ACORN sequence and evaluate it on a
finite-precision computer such that the first N terms of the ACORN sequence are equal (to β binary digits precision) to the
first N terms of the specified k-distributed sequence. We also provide a lower bound on the modulus and a specification of
the corresponding seed and initial values that will allow these terms to be calculated to the desired accuracy. This shows
that it is possible to generate any specified number of terms from certain particular sequences that are w.d. mod 1 inRk to
arbitrary accuracy, limited only by the available precision for storing real numbers.
Theorem 2 shows that in the event of there being certain particular choices of seed that gave a particularly rapid

convergence, then we would have a practical method of generating those specific sequences to arbitrary accuracy and for
arbitrary numbers of terms on any computer. In practice we have found that for any given choice of modulus M = 2µ,
the ACORNmethod gives remarkably consistent statistical behaviour over the whole spectrum of choices of seed and initial
values, provided only that the seed takes an odd value (which in turn guarantees the period length of the resulting sequence).
Thus in our experience we do not usually need to fall back on Theorem 2 in practical applications; however the existence
of the convergence proofs tells us about the limiting behaviour, and would allow us for example to test the adequacy of the
results of a Monte Carlo calculation by repeating the calculation using an ACORN generator with successively larger values
of the modulus and order until we were able to verify that the results were sufficiently well converged.

Theorem 1. Given an arbitrary kth-order ACORN sequence specified by Eqs. (1) to (3) together with a modulus M = 2µ and an
appropriate set of initial conditions (including an odd value for the seed), together with a required precision β ≤ µ, then the first



2306 R.S. Wikramaratna / Journal of Computational and Applied Mathematics 233 (2010) 2302–2311

M terms of the sequence are equal (to β binary digits precision) to the first M terms of an infinite sequence that is w.d. mod 1
in Rk.

Proof. The proof is by construction of a sequence that is w.d. mod 1 inRk and satisfies the requirements of the theorem (in
fact, we show that there are an infinite number of such sequences).
Consider an arbitrary kth-order ACORN sequence, having seed Y 00 and initial values Y

m
0 ,m = 1, . . . , k.

By definition, the kth-order ACORN sequence defined by Eqs. (5) and (6) with seed X00 = Y 00 /M and initial values
Xm0 = Y

m
0 /M is identical to the specified sequence.

Now perturb this ACORN sequence by adding ε/2s to the seed, for an arbitrary irrational ε, 0.5 < ε < 1, and some
integer s ≥ 1 (to be specified), and keeping the initial values unchanged. We note that restricting the choice of ε and s
in this way ensures that each allowable combination gives rise to a unique value of ε/2s and consequently to a unique
perturbed sequence. For each choice of ε and s, the perturbed sequence is an ACORN sequence with an irrational seed, equal
to (X00 + ε/2

s); therefore using the result from [9] the perturbed sequence is w.d. mod 1 inRk for every choice of s.
The magnitude of the perturbation, equal to the difference between theMth term in the original sequence and theMth

term in the perturbed sequence, is itself an ACORN sequencewith seed ε/2s and all the initial values set to zero; substituting
these values into Eq. (7), we obtain the following equation for the magnitude of the perturbation:

δkn =
( ε
2s
Zkn
)
mod 1
=

(
ε

2s
(n+ k− 1)!
(n− 1)!k!

)
mod 1

=
ε

2s
nk
(
1
(
1+ 1

n

) (
1+ 2

n

)
. . .
(
1+ k−1

n

)
k!

)
≤
ε

2s
nk ≤

ε

2s
Mk (8)

provided that 1 ≤ n ≤ M . Now choose

s > s0 = 1+ β + kµ. (9)

Then the magnitude of the perturbation will satisfy

δkn ≤ δkM <
ε

21+β+kµM−k
=

ε

21+β+kµ (2µ)−k
=

ε

21+β
<

1
21+β

, n = 1, , 2, . . . ,M. (10)

Thus corresponding terms in the two sequences will be equal to an accuracy of at least β binary digits. �

Theorem 2. Given any kth-order ACORN sequence specified by Eqs. (5) and (6), together with an appropriate set of initial
conditions (in particular, with an irrational seed χ00 – which ensures that the sequence is w.d. mod 1 inRk – and an arbitrary set
of k initial values χm0 , m = 1, . . . , k), then we can calculate the first N = 2

ν terms of the sequence to β binary digits accuracy
from an ACORN sequence specified by Eqs. (1) to (3) with appropriate values of the modulus, seed and initial values.

In particular, given β and N = 2ν , we can choose the modulus equal toM = 2µ where µ is the least integer such that

µ > 2+ β + kv + log2

(
(1+ k−1

2N )
k

(k− 1)!

)

> 2+ β + kv + log2

(
1(1+ 1

N ) . . . (1+
k−1
N )

(k− 1)!

)
= 2+ β + log2

(
(N + k− 1)!

(N − 1)!(k− 1)!

)
(11)

with the seed and initial values chosen to be equal to

Ym0 = 1+ 2
[
M
2
χm0

]
m = 0, . . . , k (12)

where the notation [χ ] means the integer part of χ .

Proof. Let M = 2µ, where µ is as specified in (11) and consider a kth-order ACORN generator, defined by Eqs. (1) to (3)
with modulus equal toM and seed and initial values as specified in (12). Note that choosing this form for the Ym0 ensures in
particular that the seed takes an odd value;Wikramaratna [9] has shown that the period length of an ACORN sequence with
modulus equal to a power of 2 will be an integer multiple of the modulus, provided only that the seed is chosen to be odd,
so the adopting of (12) guarantees a period length of at least M . By definition, this generator is identical to the kth-order
ACORN generator defined by Eqs. (5) to (7) with rational seed and initial values equal to

Xm0 =
Ym0
M

m = 0, . . . , k. (13)
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Table 1
Values of the function f (k, ν), Eq. (19), for various values of k and ν.

ν k
8 10 12 15 20

5 29.9 34.4 38.5 43.9 51.7
10 68.7 82.6 95.8 114.8 144.5
15 108.7 132.5 155.8 189.7 244.3
20 148.7 182.5 215.7 264.7 344.2
25 188.7 232.5 275.7 339.7 444.2
30 225.7 279.2 332.2 410.7 539.9

We can consider this sequence to be a perturbation of the original sequence; the magnitude of the perturbation is itself a
kth-order ACORN sequence defined by Eqs. (5) to (7) with seed and initial values given by

δm0 = χ
m
0 − X

m
0 <

1
M

m = 0, . . . , k. (14)

By definition, since χ00 is irrational, the seed δ
0
0 must be non-zero.

Substituting the seed and initial values for the perturbation into Eq. (7), then we can use the inequality in (14) to show
that, as long as the magnitude of the perturbation remains less than unity,

δkn =

k∑
i=0

δi0Z
k−i
n =

k∑
i=0

δi0

(
(n+ k− i− 1)!
(n− 1)!(k− i)!

)

<
(k+ 1)
M

(
(n+ k− 1)!
(n− 1)!k!

)
. (15)

Rearranging Eq. (11), and making use of the fact that (k+1)k < 2

M = 2µ > 21+β(k+ 1)
(
(N + k− 1)!
(N − 1)!k!

)
(16)

(k+ 1)
M

(
(N + k− 1)!
(N − 1)!k!

)
<

1
21+β

. (17)

Then, making use of the fact that the δkn in (15) is a monotonic increasing function of n, we can substitute from Eqs. (17) into
(15) to give

δkn ≤ δkN <
(k+ 1)
M

(
(N + k− 1)!
(N − 1)!k!

)
<

1
21+β

n = 1, 2, . . . ,N (18)

so the first N terms in the perturbed sequence and in the original sequence are identical to an accuracy of β binary digits,
as required by the theorem. �

Weobserve that in Theorem2we can choose any irrational value lying between 0 and 1 for the seed, provided thatwe are
able to calculate it to any required accuracy. Thus suitable choices would for example include values such as (π/4), (π − 3),
(
√
2/2), (

√
3− 1), (

√
3−
√
2).

If we define the function

f (k, v) = 1+ kv + log2

(
(1+ k−1

2N )
k

(k− 1)!

)
(19)

(where it must be remembered that N = 2ν is itself a function of ν) then the first line of Eq. (11) becomes

µ > 1+ β + f (k, v). (20)

For any given values of k and ν, it is possible to estimate the corresponding value of f (k, ν) from Eq. (19). Table 1 shows
values of f (k, ν) tabulated for a range of values of k and ν. Suppose that we are working in double-precision real arithmetic
(for which the typical precision would be around 43 binary digits). We can use Eq. (20) to estimate a lower bound on the
modulus to generate sequences of length 2ν that can be guaranteed well distributed to the full available precision of 43
binary digits to be M = 2µ, where µ > 1 + 43 + f (k, ν). Thus for example taking k = 10 and ν = 20, we would obtain
f (k, ν) = 182.5 andµ > 227. Use of the resulting sequence would be computationally practicable, taking some three times
as long, per variate, compared with a tenth-order ACORN generator with µ = 90.
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Table 2
Results of applying TestU01 BigCrush test battery to ACORN generators with modulus 260 .

Order Period Seed=54739173 Seed= 1 Seed=123456789 Seed=987654321 Seed=12101955 Seed=55910121 Average
Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect

4 262 34 3 33 2 34 4 29 2 33 3 32 2 32.5 2.7
5 262 19 0 19 0 19 2 18 1 19 0 19 0 18.8 0.5
6 262 8 0 9 0 9 0 9 0 8 0 9 0 8.7 0.0
7 262 6 1 6 1 5 2 7 0 6 1 7 0 6.2 0.8
8 263 2 0 2 0 2 0 2 1 2 0 2 0 2.0 0.2
9 263 1 0 1 0 1 0 1 0 1 0 0 1 0.8 0.2
10 263 1 0 1 0 1 0 1 0 1 0 0 1 0.8 0.2
11 263 1 0 1 0 1 0 1 0 1 0 1 0 1.0 0.0
12 263 1 0 1 0 1 0 0 1 0 1 1 0 0.7 0.3
13 263 0 1 1 0 1 0 1 0 0 1 1 0 0.7 0.3
14 263 1 1 1 0 1 0 1 0 1 0 1 0 1.0 0.2
15 263 1 0 1 0 0 0 1 0 0 0 1 0 0.7 0.0
16 264 1 0 1 1 1 0 1 1 1 0 1 2 1.0 0.7
17 264 0 1 0 0 0 0 0 0 0 0 0 1 0.0 0.3
18 264 0 1 0 0 0 0 0 0 0 0 1 0 0.2 0.2
19 264 0 0 0 2 0 0 0 1 0 0 1 0 0.2 0.5
20 264 0 0 0 1 0 0 0 0 0 0 0 0 0.0 0.2
25 264 0 1 0 0 0 0 0 0 0 0 0 1 0.0 0.3
30 264 0 1 0 0 0 0 0 0 0 0 0 0 0.0 0.2

5. Empirical testing using TESTU01

L’Ecuyer and Simard [11] have considered the application of empirical tests of uniformity and randomness for sequences
generated by a wide range of algorithms. They have developed a comprehensive set of empirical tests that are designed
to detect undesirable characteristics in such sequences. L’Ecuyer and Simard describe the TestU01 package in some detail
and present results of applying it to a large number of different sequences, identifying generators that pass all of the tests
(collectively called the BigCrush test battery), as well as identifying many generators (including some that are widely used)
that have serious deficiencies as regards certain specific tests.
In their paper, L’Ecuyer and Simard [11] tested a large number of different pseudo-randomnumber generation algorithms

(about 90 different algorithms in total, that were either widely used or recently proposed) and identified a subset of these
generators that passed all of their tests, according to a specific set of criteria. L’Ecuyer and Simard identify the generators
that survived their testing as the long-period multiplicative recursive generators with good structure, the multiplicative
lagged-Fibonacci generators, some non-linear generators designed for cryptology and some combined generators having
components from different families; they suggest that the combined generators should be given more attention because
theoretical guarantees about their uniformity can be proved, their period can easily be made very long, and splitting their
period into disjoint sub-sequences is easy (assuming that it can be done for their components).
The ACORN generators were not included among those that were specifically considered by L’Ecuyer and Simard,

although all ACORN generators have previously been shown [10] to be equivalent to particular examples of multiple
recursive generators that are straightforward to initialise and to compute and have good structure. In the present paper,
we have applied the same set of criteria (as used by L’Ecuyer and Simard) to systematically test more than three hundred
ACORN generators with different moduli (260, 290, 2120, and 2150) and orders (ranging between 4 and 30) and for a number
of initialisations (selecting different odd values for the seed in each case). The tests were run in 2008 using Version 0.6.1 of
the TestU01 package, using the BigCrush battery of tests (which calculates 90 different test statistics for each sub-sequence
that is tested, generating some 238 pseudo-random numbers from each sub-sequence) together with an implementation
of the ACORN algorithm that was being developed and tested by Numerical Algorithms Group Ltd for inclusion in Mark
22 of their Software Libraries [20], which has recently been released. We have followed L’Ecuyer and Simard in defining a
‘‘failure’’ to be a p-value outside the range [10−10, 1–10−10] with a ‘‘suspect’’ value falling in one of the ranges [10−10, 10−4]
or [1–10−4, 1–10−10]. The choice of the six seed values used for testingwas in effect arbitrary, with the only restriction being
to choose odd values. Results are presented in Tables 2–5 (formodulus 260, 290, 2120, and 2150 respectively). The tables show,
in each case, the specification of the ACORN sequence (order and resulting period length) and then for each choice of seed a
tabulation of the number of tests failed and the number of suspect values. The final columns of each table give the average
number of failures and of suspect values over the whole range of initialisations that were tested.
The results obtained with the ACORN sequences show that for each of the initialisations that were tested the ACORN

generators with order 9 or more passed all of the tests, provided the modulus was 290 or greater. Close inspection of the
small number of ‘‘suspect’’ values for generators that passed all of the tests shows that there is no systematic pattern in the
particular tests that threw up suspect values, suggesting that they do indeed represent statistical ‘noise’ rather than any
systematic problem with the generators.
Where the modulus was limited to 260, the reduction in precision led to a slight degradation in the TestU01 results –

even so, each ACORN sequence of order 9 or more failed on at most one of the tests (with the failure occurring on one
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Table 3
Results of applying TestU01 BigCrush test battery to ACORN generators with modulus 290 .

Order Period Seed=54739173 Seed= 1 Seed=123456789 Seed=987654321 Seed=12101955 Seed=55910121 Average
Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect

4 292 25 1 28 1 25 2 24 5 36 2 28 2 27.7 2.2
5 292 17 1 18 1 19 0 18 2 19 0 18 1 18.2 0.8
6 292 9 0 9 0 9 0 9 0 9 0 9 0 9.0 0.0
7 292 5 2 5 1 7 0 7 0 5 2 7 0 6.0 0.8
8 293 2 0 2 0 2 0 2 0 2 0 2 0 2.0 0.0
9 293 0 0 0 0 0 0 0 1 0 1 0 0 0.0 0.3
10 293 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
11 293 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
12 293 0 1 0 0 0 0 0 0 0 0 0 0 0.0 0.2
13 293 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
14 293 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
15 293 0 0 0 0 0 0 0 1 0 0 0 0 0.0 0.2
16 294 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
17 294 0 0 0 0 0 0 0 1 0 1 0 0 0.0 0.3
18 294 0 0 0 0 0 0 0 0 0 0 0 1 0.0 0.2
19 294 0 0 0 0 0 1 0 0 0 0 0 0 0.0 0.2
20 294 0 0 0 0 0 0 0 0 0 2 0 0 0.0 0.3
25 294 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
30 294 0 0 0 0 0 0 0 0 0 1 0 0 0.0 0.2

Table 4
Results of applying TestU01 BigCrush test battery to ACORN generators with modulus 2120 .

Order Period Seed=54739173 Seed= 1 Seed=123456789 Seed=987654321 Seed=12101955 Seed=55910121 Average
Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect

6 2122 9 0 8 0 8 1 9 0 7 1 8 1 8.2 0.5
7 2122 6 1 6 2 5 3 5 2 6 2 6 0 5.7 1.7
8 2123 2 0 2 1 2 0 2 0 2 0 2 0 2.0 0.2
9 2123 0 0 0 0 0 0 0 0 0 0 0 1 0.0 0.2
10 2123 0 0 0 1 0 0 0 0 0 0 0 0 0.0 0.2
12 2123 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
15 2123 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
20 2124 0 0 0 0 0 0 0 0 0 1 0 0 0.0 0.2

Table 5
Results of applying TestU01 BigCrush test battery to ACORN generators with modulus 2150 .

Order Period Seed=54739173 Seed= 1 Seed=123456789 Seed=987654321 Seed=12101955 Seed=55910121 Average
Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect Failures Suspect

6 2152 9 0 9 0 9 0 9 0 9 0 9 0 9.0 0.0
7 2152 5 2 7 1 6 2 6 1 6 1 7 1 6.2 1.3
8 2153 2 0 2 0 2 0 2 0 2 0 2 0 2.0 0.0
9 2153 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
10 2153 0 0 0 0 0 2 0 0 0 0 0 0 0.0 0.3
12 2153 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
15 2153 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0
20 2154 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0

specific example of the eight-dimensional Birthday Spacings test in each such case), while for generators with order 20 or
more, each of the ACORN generators that was tested passed all of the tests even with modulus 260. The TestU01 tests also
demonstrated the limitation of ACORN generators with lower order: for all of the ACORN generators with order 8 (or less)
that were tested, the generators failed on at least two of the tests irrespective of the modulus, with the number of failures
progressively increasing as the order was further reduced.
Our latest results suggest that all ACORN generatorswith order 9 ormore having sufficientmodulus (a power of 2, at least

290) and initialised with an odd seed value are likely to be included in the list of generators that survive the TestU01 tests
(whereas ACORNgeneratorswith order 8 or less should certainly be excluded from this list).We have also demonstrated that
these ACORN generators share the attractive characteristics (namely, that theoretical guarantees about their uniformity can
be proved, their period can bemade very long, and splitting their period into disjoint sub-sequences is straightforward) that
were attributed by L’Ecuyer and Simard to combined generators and in addition they have the property that their statistical
performance can be further improved as required by increasing the order and then choosing a sufficiently large power of 2
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as the modulus and an arbitrary odd value for the seed. We believe that this makes the ACORN generators attractive for use
in simulation, either on their own or as one component in a combined generator.
It is worth observing that L’Ecuyer and Simard [11] made use of a more recent version of their TestU01 test suite, which

includes some additional test statistics that were not included in the version 0.6.1 that was used for the work described
in this paper (some 106 different test statistics, compared with 90 in version 0.6.1). Both versions generate and test some
238 pseudo-random numbers from each generator that is considered. Without re-running all of our test cases using a more
recent version of TestU01 (which would require many thousands of hours of cpu time), it is not possible to say for certain
what the outcome would be for the additional test statistics in any particular case. However, even if we were to undertake
these additional tests (or indeed any further tests that might be devised in the future), there is always a possibility that a
specific generator that has passed all tests to datewill fail on a new test that exposes a particular weakness of that generator.
For the ACORN algorithm we believe, on the basis of the theoretical analysis that led to Theorems 1 and 2 above, that any
such ‘weaknesses’ are likely to be resolved by sufficiently increasing both the order and the modulus of the generator. As an
example, suppose that a new test were to be devised that required uniformity in 12 dimensions; any ACORN generator with
order 11 or lesswould be expected to fail such a test, regardless of themodulus used. However, by increasing the order of the
generator to 12 or more, and using a sufficiently large modulus we would then expect the ACORN generator to consistently
pass such a test.
From a theoretical viewpoint a generator that passes all the tests would be expected to have far smaller likelihood of a

‘failure’ than of a ‘suspect value’ arising by chance. It might seem surprising that in certain cases (in particular in all cases
with order less than or equal to 8 in Tables 2–5) the number of failures is greater than the number of suspect values. The
reason for this behaviour is that all these lower order ACORN generators have certain weaknesses which are being detected
by the consistent failure on specific tests — exactly the same behaviour is observed in the results presented by L’Ecuyer
and Simard for generators that fail on one or more of their tests. Our objective in this paper has been to investigate the
performance of ACORN generators for different values of order and modulus, and all the tables include results for some
generators which show inadequacies because either the order or the modulus is too small. The performance of the ACORN
generators consistently improves with increasing order and modulus, and with sufficiently large order and modulus the
likelihood of ‘failure’ is indeed significantly less than the likelihood of a ‘suspect values’. This is clear from an inspection of
the final two columns on each of the Tables 2–5, which show the average number of failures and suspect values for each
order and modulus of ACORN generator that was tested.

6. Conclusions

In this paper, we have considered two different definitions of the kth-order ACORN random number generator.
The first of these, Eqs. (1) to (3), is defined in exact integer arithmetic modulo a large integer power of 2 (with the

resulting variates finally rescaled to the unit interval by dividing by themodulus). This leads to an efficient implementation,
theoretically provable periodicity with arbitrarily long period length and sequences that are reproducible on any hardware
using virtually any high-level computing language.
The second, Eqs. (5) and (6), is defined in real arithmeticmodulo 1, and (provided the seed could be chosen to be irrational)

gives rise to an infinite sequence of variates that can be proved to be w.d. mod 1 inRk. Although it cannot be used directly
for evaluating the sequences (since this would require infinite-precision real arithmetic to guarantee identical sequences
on different machines) it has proved useful as a starting point for theoretical analysis of the ACORN algorithm.
We have given proofs of two theorems concerning the relationship between these different definitions of ACORN random

number generators:

(i) Any kth-order ACORN sequence defined and evaluated using the integer formulation moduloM = 2µ is equivalent (to
a precision of β < µ binary digits) to the firstM terms of a sequence that is w.d. mod 1 inRk.

(ii) Any kth-order ACORN sequence defined using the real formulation, modulo 1, and having an irrational seed (which we
have previously shown to be well distributed in k dimensions) can be approximated to any specified accuracy (β binary
digits, for any β) over an arbitrary number N = 2ν of terms. The sub-sequence can be evaluated using the integer
formulation, choosing a modulusM that depends on N and β , together with an appropriate initialisation.

Empirical testing, carried out using the TestU01 test suite, has provided a practical demonstration of the theoretical
convergence results, giving consistent results over the range of initialisations that were tested. The results presented in
this paper provide support for the recommendation (made by the author in 2000 [5]) that an order of at least 10 be used
together with an odd seed and modulus equal to 230p, for a small integer value of p. The latest results suggest that while a
choice of p = 2might be adequate for most typical applications, increasing p to 3 or more should guarantee a sequence that
will consistently pass all of the tests from version 0.6.1 of the TestU01 BigCrush test battery, giving increased confidence in
more demanding applications. As far as the restriction on order is concerned, the new results show (at least as regards the
TestU01 tests) that a similar quality of performance might also be obtained for order 9, but not for orders of 8 or less.
On the basis of the results obtained to date, combinedwith the theoretical analysis, wemight therefore reasonably expect

all the TestU01 tests to be passed by almost all ACORN generators of order 9 or more having modulus 230p (where p is at
least 3), an odd seed value and arbitrary initial values. Since each choice of seed gives rise to a completely different sequence,
the ACORN algorithm (even when restricted to modulus 290 and order 10) gives us a choice of at least 289 (∼6 × 1026)
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different sequences, each having period length in excess of 293 (∼1028), that wemight reasonably expect to pass each of the
TestU01 tests. Every different choice of order larger than 9 would give a similar number of sequences to choose from, while
choosing the modulus to be a larger power of 2 would give access to even larger numbers of sequences with even longer
period length.
If the range of tests were to be extended so as to demand uniformity for a greater number of digits precision or uniformity

in higher dimensions, then we might need to increase the modulus and/or order of the ACORN generators in order to pass
the new test. However, on the basis of the theoretical analysis of the algorithmwewould still expect to see a similar pattern
in the results of empirical testing — so all ACORN generators with a sufficiently large order, a sufficient modulus and an odd
seed might still be expected to pass the new test.
The ACORN algorithm is simple both conceptually and to program, requiring a few tens of lines of code in virtually

any high-level computing language (see [10] for an example implementation). Thus using the kth-order ACORN generator
has been shown to be a computationally practical method of defining sequences that are w.d. mod 1 in Rk, for any k, and
of evaluating the terms in arbitrarily long sub-sequences of those sequences to any specified accuracy. It remains to be
seen whether analogous theoretical convergence results can be derived for any of the existing alternative approaches to
pseudo-random number generation. However, it is worth noting that this would probably require an approach different to
that adopted here, since it is the unique recursive nature of the ACORN algorithm that leads to simplicity and efficiency in
implementation (which works for arbitrary modulus and order), as well as to the theoretical convergence results that have
been demonstrated in this paper.
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