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a b s t r a c t

In this paper, we propose two derivative-free iterative methods for solving nonlinear
monotone equations, which combines two modified HS methods with the projection
method in Solodov and Svaiter (1998) [5]. The proposed methods can be applied to solve
nonsmooth equations. They are suitable to large-scale equations due to their lower storage
requirement. Under mild conditions, we show that the proposed methods are globally
convergent. The reported numerical results show that the methods are efficient.
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1. Introduction

We consider the nonlinear monotone equation

F(x) = 0, (1.1)

where F : Rn → Rn is continuous and monotone. By monotonicity, we mean

(F(x)− F(y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

Weaimat developing conjugate gradient basedmethod for solving large-scale nonlinear equations forwhich the Jacobian
of F is not available. In the solutions of large-scale unconstrained optimization problems, the conjugate gradient methods
are particularly welcome efficient due to their simplicity and lower storage. Quite recently, Zhang et al. [1] proposed a three
term modified PRP method for unconstrained optimization problems. A good property of the modified PRP method is that
it generates descent directions for the objective function. The reported numerical results in [1] show that it is competitive
with the CG-DESCENT method [2]. The purpose of this paper is to use the idea of the modified PRP method in [1] to develop
two derivative-free methods for solving nonlinear monotone equations.
Monotone equations arise in various applications. One important example is the subproblem in the generalized proximal

algorithms with Bregman distances [3]. Some monotone variational inequality problems can also be converted into nonlin-
earmonotone equations [4]. The study in the iterativemethods formonotone equations have receivedmuch attention in the
last decade [5–9]. Using themonotonicity of F , Solodov and Svaiter [5] proposed an inexact Newtonmethod for solving (1.1)
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by combining the Newton method with a projection strategy. An attractive property of the method is that the whole se-
quence of iterates converges to a solution of the system without any regularity assumptions. In addition, the sequence of
the distances from the iterates to the solution set of the equations is decreasing. Zhou and Toh [7] extended Solodov and
Svaiter’s result and obtained the superlinear convergence of a Newton-type methods even if the equation has singular so-
lutions. Zhou and Li [9] applied Solodov and Svaiter’s projection strategy to the BFGS methods and limited memory BFGS
methods for solving monotone equation. Zhang and Zhou [8] developed a spectral gradient projection method by combin-
ing the spectral gradient method [10] with the projection method in [5]. Wang et al. [6] proposed a projection method for a
system of nonlinear monotone equations with convex constraints. Based on the technique proposed by Solodov and Svaiter,
recently, Li et al. [11] extended the two modified PRP methods in [12,1] to monotone equations. The reported numerical
results indicate that the proposed method is promising.
In this paper, we propose two derivative-free iterative methods for solving large-scale nonlinear monotone equations.

The proposed methods can be applied to solve nonsmooth equations. Moreover, they are suitable to large-scale equations
due to their lower storage requirement. Under some mild conditions, we prove the global convergence of the method.
In the next section, we first propose the methods and show their global convergence. In the last section, we report some

preliminary numerical results.

2. Algorithms and their global convergence

Given an initial point x0, an iterative scheme for problem (1.1) generally generates a sequence of iterates {xk} by

xk+1 = xk + αkdk, k = 0, 1, . . . ,

which employs a line search procedure along the direction dk to compute the stepsizeαk. Typical line searches includeArmijo
or Wolfe searches. For monotone equations, however, it is desirable to accelerate the process by using the monotonicity of
the equation. Let zk = xk + αkdk. By the monotonicity of F , the hyperplane

Hk = {x ∈ Rn|(x− zk)T F(zk) = 0}

strictly separates xk from the solution set of (1.1). Based on this fact, Solodov and Svaiter [5] advised to let the next iterate
xk+1 be the projection of xk onto this hyperplane Hk. That is, xk+1 is determined by

xk+1 = xk −
F(zk)T (xk − zk)
‖F(zk)‖2

F(zk).

We will propose two kinds of derivative-free methods for (1.1) by using this projection strategy.
In the remainder of this paper, we always assume that F satisfies the following assumptions.

Assumption A. (a) Function F is monotone:

(F(x)− F(y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

(b) Function F is Lipschitz continuous, that is, there exists a constant L > 0 such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

2.1. Algorithm

We first propose a model method that is similar to that in [11], called the Projection Based Method.

Algorithm 2.1 (Projection Based Method).
Step 0. Given an initial point x0 ∈ Rn, and constants β > 0, σ > 0, ρ ∈ (0, 1). Let k := 0.
Step 1. Stop if F(xk) = 0. Otherwise, determine dk satisfying

F Tk dk ≤ −δ‖Fk‖
2, (2.1)

where δ > 0 is a constant and Fk is the abbreviation of F(xk).
Step 2. Let αk = max{βρ i : i = 0, 1, . . .} be determined by the line search rule

− F(xk + αkdk)Tdk ≥ σαk‖F(xk + αkdk)‖ · ‖dk‖2. (2.2)

Step 3. Compute zk = xk + αkdk.
Step 4. Stop if F(zk) = 0. Otherwise, let

xk+1 = xk −
F(zk)T (xk − zk)
‖F(zk)‖2

F(zk). (2.3)

Let k := k+ 1. Go to Step 1.
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Remark 2.1. (a) If there exists a real function f : <n → <, such that F(x) = ∇f (x), where ∇f (x) is the gradient of f , then
(2.1) means that dk is a sufficiently descent direction of f at xk.

(b) The line search rule (2.2) which is a modification of the derivative-free line search was proposed in [13]. It is not difficult
to see that inequality (2.2) holds for all αk > 0 sufficiently small as long as dk satisfies (2.1). Consequently, it is well
defined and can be implemented by some backtracking process.

In this paper, we propose two kinds of dk that satisfies (2.1). The first one is based on the three term conjugate gradient
method proposed in [1]. Specifically, dk is given by

dk =
{
−F0, k = 0,
−Fk + βMHSk dk−1 + θMk wk−1, k ≥ 1, (2.4)

where

βMHSk =
F Tk wk−1
wTk−1dk−1

, θMk = −
F Tk dk−1
wTk−1dk−1

,

wk = yk + t‖Fk‖s̄k, s̄k = zk − xk = αkdk,

yk = Fk+1 − Fk, t = 1+ ‖Fk‖−1max
(
0,−

yTk s̄k
‖s̄k‖2

)
.

If in Step 1 of Algorithm 2.1 dk is determined by (2.4), we call Algorithm 2.1 the MHS based method.
We then propose a two term MHS based method, which is Algorithm 2.1 with dk determined by

dk =


−F0, k = 0,

−Fk + βMHSk

(
I −

FkF Tk
‖Fk‖2

)
dk−1, k ≥ 1. (2.5)

This formula was originated in [12] for unconstrained optimization problems. Here, we extend it to the nonlinear equations.
It is not difficult to know that dk defined by (2.4) or (2.5) satisfies

F Tk dk = −‖Fk‖
2. (2.6)

The remainder of this section is devoted to the global convergence of MHS based method and the two term MHS based
method. We first derive some nice properties of Algorithm 2.1.

Lemma 2.1. Let sequences {xk} and {zk} be generated by Algorithm 2.1. Then, we have

αk ≥ min
{
β,

δρ

L+ σ‖F(z ′k)‖
‖Fk‖2

‖dk‖2

}
, (2.7)

where z ′k = xk + α
′

kdk, α
′

k = ρ
−1αk.

Proof. If αk 6= β , by the line search process, we know that α′k = ρ
−1αk does not satisfy (2.2). That is,

−F(z ′k)
Tdk < σα′k‖F(z

′

k)‖ · ‖dk‖
2.

It follows from (2.1) and the Lipschitz continuity of F that

δ‖Fk‖2 ≤ −F Tk dk = (F(z
′

k)− F(xk))
Tdk − F(z ′k)

Tdk
≤ Lα′k‖dk‖

2
+ σα′k‖F(z

′

k)‖ · ‖dk‖
2

≤ ρ−1αk(L+ σ‖F(z ′k)‖)‖dk‖
2.

Hence, it holds that

αk ≥
δρ

L+ σ‖F(z ′k)‖
‖Fk‖2

‖dk‖2
.

This implies (2.7). �

The following lemma shows a nice property of Algorithm 2.1. It can be proved in a way similar to the proof of Lemma 2.1
in [5].

Lemma 2.2. Suppose that x̄ satisfies F(x̄) = 0. Let {xk} be generated by Algorithm 2.1. Then, we have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖xk+1 − xk‖2.
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Particularly, the sequence {‖xk‖} is bounded and
∞∑
k=0

‖xk+1 − xk‖2 <∞.

Lemma 2.3. Suppose that {xk} is generated by Algorithm 2.1. Let sk = xk+1 − xk. Then, we have

σα2k‖dk‖
2
≤ ‖sk‖ ≤ αk‖dk‖. (2.8)

Particularly, we have

lim
k→∞

αk‖dk‖ = 0. (2.9)

Proof. The first inequality in (2.8) follows from line search rule (2.2) directly, while the second inequality can be obtained
by Cauchy inequality. Indeed, we have

‖xk+1 − xk‖ =
|F(zk)T (xk − zk)|
‖F(zk)‖

≤
‖F(zk)‖ ‖xk − zk‖
‖F(zk)‖

= ‖zk − xk‖ = αk‖dk‖. �

Lemma 2.4. Let {xk} be generated by Algorithm 2.1, x̄ satisfy F(x̄) = 0, z ′k = xk+α
′

kdk, α
′

k = ρ
−1αk. Then, the sequences {‖Fk‖}

and {‖F(z ′k)‖} are bounded. That is, there exists constant M ≥ 0, such that

‖Fk‖ ≤ M, ‖F(z ′k)‖ ≤ M. (2.10)

Proof. From Lemma 2.2, we know ‖xk − x̄‖ ≤ ‖x0 − x̄‖. It follows from (2.9) that there exists constant M ′ > 0 such that
αk‖dk‖ ≤ M ′, and that

‖z ′k − x̄‖ ≤ ‖xk − x̄‖ + α
′

k‖dk‖ ≤ ‖x0 − x̄‖ + ρ
−1αk‖dk‖

≤ ‖x0 − x̄‖ + ρ−1M ′.

Since F(x) is Lipschitz continuous, we have

‖Fk‖ = ‖F(xk)− F(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖

and

‖F(z ′k)‖ = ‖F(z
′

k)− F(x̄)‖ ≤ L‖z
′

k − x̄‖ ≤ L(‖x0 − x̄‖ + ρ
−1M ′).

DenoteM = max(L‖x0 − x̄‖, L(‖x0 − x̄‖ + ρ−1M ′)). We get (2.10). �

2.2. Global convergence

In this subsection, we establish the global convergence of the algorithms proposed in the previous subsection.
The following theorem establishes the global convergence of the MHS based method.

Theorem 2.1. Let {xk} be generated by the MHS based method. Then, we have

lim inf
k→∞

‖Fk‖ = 0. (2.11)

Proof. If (2.11) does not hold, there exists ε > 0 such that

‖Fk‖ ≥ ε, ∀k ≥ 0.

From (2.6), we know ‖Fk‖ ≤ ‖dk‖, which implies

‖dk‖ ≥ ε, ∀k ≥ 0.

By the definition of t , it is clear that t ≥ 1− ‖Fk‖−1
yTk s̄k
‖s̄k‖2

. So, we get

wTk s̄k = y
T
k s̄k + t‖Fk‖ ‖s̄k‖

2

≥ yTk s̄k +
(
1− ‖Fk‖−1

yTk s̄k
‖s̄k‖2

)
‖Fk‖ ‖s̄k‖2

= ‖Fk‖ ‖s̄k‖2 ≥ ε‖s̄k‖2. (2.12)
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This means,

wTk−1dk−1 =
1
αk−1

wTk−1s̄k−1 ≥
1
αk−1

ε‖s̄k−1‖2 = εαk−1‖dk−1‖2. (2.13)

Moreover, by the definition ofwk, (2.10) and the fact

‖yk‖ = ‖F(xk+1)− F(xk)‖ ≤ L‖sk‖,

we have

‖wk‖ ≤ ‖yk‖ + t‖Fk‖ ‖s̄k‖

= ‖yk‖ +
[
1+ ‖Fk‖−1max

(
0,−

yTk s̄k
‖s̄k‖2

)]
‖Fk‖ ‖s̄k‖

≤ ‖yk‖ +
(
1+ ‖Fk‖−1

|yTk s̄k|
‖s̄k‖2

)
‖Fk‖ ‖s̄k‖

≤ 2‖yk‖ + ‖Fk‖ ‖s̄k‖
≤ 2L‖sk‖ +Mαk‖dk‖. (2.14)

It follows from (2.4) that for all k ≥ 1,

‖dk‖ ≤ ‖Fk‖ +
|F Tk wk−1|
|wTk−1dk−1|

‖dk−1‖ +
|F Tk dk−1|
|wTk−1dk−1|

‖wk−1‖

≤ ‖Fk‖ +
2‖Fk‖ ‖wk−1‖ ‖dk−1‖
|wTk−1dk−1|

. (2.15)

Combining (2.10), (2.13), (2.14) and (2.15) with Lemma 2.3, we get

‖dk‖ ≤ M +
2M(2L‖sk−1‖ +Mαk−1‖dk−1‖)

εαk−1‖dk−1‖

≤ M +
2M
ε
(M + 2L).

LetM = M + 2M
ε
(M + 2L). We obtain

‖dk‖ ≤ M.

This together with Lemmas 2.1 and 2.4 and inequalities ‖dk‖ ≥ ε, ‖Fk‖ ≥ ε implies for all k sufficiently large,

αk‖dk‖ ≥ min
(
β,

δρ

L+ σ‖F(z ′k)‖
‖Fk‖2

‖dk‖2

)
‖dk‖

≥ min
(
βε,

δρε2

(L+Mσ)M

)
> 0.

The last inequality yields a contradiction with (2.9). Consequently, (2.11) holds. The proof is complete. �

The next theorem establishes the global convergence of the two term MHS based method.

Theorem 2.2. Let {xk} is generated by the two term MHS based method. Then, Eq. (2.11) holds.

Proof. Suppose on the contrary that (2.11) does not hold. Then, there is a constant ε > 0 such that ε ≤ ‖Fk‖ ≤ M . We also
have by (2.5) that

‖dk‖ ≤ ‖Fk‖ + |βMHSk |

∥∥∥∥(I − FkF Tk‖Fk‖2
)
dk−1

∥∥∥∥
≤ ‖Fk‖ +

|F Tk wk−1|
|wTk−1dk−1|

‖dk−1‖

≤ ‖Fk‖ +
‖Fk‖ ‖wk−1‖ ‖dk−1‖
|wTk−1dk−1|

.

In a way similar to the proof of Theorem 2.1, we can derive a contradiction. Consequently, (2.11) holds. �
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Table 4.1
Test results for Problem 1.

Initial Dim MHS TMHS
IT NF T IT NF T

x0 100 9 19 0.00000E+00 9 19 0.00000E+00
x1 100 8 23 0.00000E+00 8 23 0.00000E+00
x2 100 11 21 0.00000E+00 10 19 0.00000E+00
x3 100 10 30 0.00000E+00 10 30 0.00000E+00
x4 100 9 17 0.00000E+00 7 13 0.00000E+00
x5 100 4 7 0.00000E+00 2 3 0.00000E+00
x6 100 9 17 0.00000E+00 7 13 0.00000E+00
x7 100 11 21 0.00000E+00 10 19 0.00000E+00
x0 1000 9 19 0.00000E+00 9 19 0.00000E+00
x1 1000 8 23 0.00000E+00 8 23 0.00000E+00
x2 1000 11 21 0.15625E−01 11 21 0.00000E+00
x3 1000 10 30 0.15625E−01 10 30 0.00000E+00
x4 1000 8 15 0.15625E−01 7 13 0.00000E+00
x5 1000 4 7 0.00000E+00 3 5 0.15625E−01
x6 1000 8 15 0.00000E+00 7 13 0.00000E+00
x7 1000 11 21 0.00000E+00 11 21 0.00000E+00
x0 3000 9 19 0.15625E−01 9 19 0.15625E−01
x1 3000 8 23 0.15625E−01 8 23 0.15625E−01
x2 3000 11 21 0.15625E−01 11 21 0.15625E−01
x3 3000 10 30 0.31250E−01 10 30 0.15625E−01
x4 3000 7 13 0.15625E−01 7 13 0.15625E−01
x5 3000 4 7 0.00000E+00 4 7 0.15625E−01
x6 3000 7 13 0.00000E+00 7 13 0.15625E−01
x7 3000 11 21 0.15625E−01 11 21 0.31250E−01

3. Numerical experiments

In this section, we report some numerical results with the proposed method. We test the performance of Algorithm 2.1
on the following four problems with various sizes.

Problem 1. The elements of function F are given by

Fi(x) = 2xi − sin |xi|, i = 1, . . . , n.

Problem 2. The elements of function F are given by

Fi(x) = xi −
1
n
x2i +

1
n

n∑
i=1

xi + i, i = 1, . . . , n.

Problem 3. The elements of function F are given by F1(x) = 1
3x
3
1 +

1
2x
2
2,

Fi(x) = −0.5x2i +
i
3
x3i +

1
2
x2i+1, i = 2, . . . , n− 1,

and Fn = − 12x
2
n +

n
3x
3
n.

Problem 4. The elements of function F are given by F1(x) = x1 − e
cos
(
x1+x2
n+1

)
,

Fi(x) = xi − e
cos
( xi−1+xi+xi+1

n+1

)
, i = 2, . . . , n− 1,

and Fn(x) = xn − e
cos
( xn−1+xn

n+1

)
.

Problem 1 comes from [9] with a slight modification. Problems 3 and 4 come from [14]. Problem 2 was constructed by
us.
It is not difficult to see that all the functions F in these problems are monotone.
We implemented Algorithm 2.1 with the following parameter. We set ρ = 0.6 and σ = 10−4 in the line search step, i.e.

Step 2 of Algorithm 2.1. We choose β in Step 2 of the algorithm to vary with k. Specifically, we let

β =
sTk sk
sTkyk

,

where sk = xk+1 − xk and yk = F(xk+1) − F(xk). Such choice of β was used in [14] and was called the spectral coefficient.
From the monotonicity and the Lipschitz continuity of F , it is not difficult to show that

0 ≤ yTk sk ≤ Ls
T
k sk,
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Table 4.2
Test results for Problem 2.

Initial Dim MHS TMHS
IT NF T IT NF T

x0 100 11 36 0.00000E+00 5 16 0.00000E+00
x1 100 11 41 0.00000E+00 4 15 0.00000E+00
x2 100 38 349 0.31250E−01 5 17 0.15625E−01
x3 100 26 176 0.15625E−01 5 17 0.00000E+00
x4 100 34 328 0.31250E−01 5 17 0.00000E+00
x5 100 18 95 0.15625E−01 5 17 0.00000E+00
x6 100 18 90 0.00000E+00 5 17 0.00000E+00
x7 100 32 283 0.15625E−01 5 17 0.15625E−01
x0 1000 18 87 0.57812E+00 14 67 0.45312E+00
x1 1000 21 115 0.76562E+00 12 54 0.34375E+00
x2 1000 22 115 0.76562E+00 13 55 0.35938E+00
x3 1000 19 92 0.60938E+00 14 68 0.45312E+00
x4 1000 21 113 0.75000E+00 13 57 0.37500E+00
x5 1000 22 117 0.76562E+00 14 62 0.39062E+00
x6 1000 22 113 0.73438E+00 13 54 0.35938E+00
x7 1000 22 110 0.71875E+00 13 55 0.35938E+00
x0 3000 18 85 0.49531E+01 21 110 0.64062E+01
x1 3000 22 103 0.60000E+01 23 118 0.68438E+01
x2 3000 23 108 0.62812E+01 17 78 0.45312E+01
x3 3000 22 110 0.64062E+01 17 72 0.42031E+01
x4 3000 17 70 0.40625E+01 15 61 0.35469E+01
x5 3000 22 104 0.60625E+01 17 75 0.43594E+01
x6 3000 17 70 0.40781E+01 17 71 0.41250E+01
x7 3000 23 115 0.67031E+01 17 78 0.45469E+01

Table 4.3
Test results for Problem 3.

Initial Dim MHS TMHS
IT NF T IT NF T

x0 100 30 222 0.15625E−01 42 379 0.15625E−01
x1 100 30 227 0.00000E+00 25 164 0.00000E+00
x2 100 26 169 0.00000E+00 7 47 0.00000E+00
x3 100 31 250 0.00000E+00 7 46 0.00000E+00
x4 100 9 17 0.00000E+00 2 6 0.00000E+00
x5 100 – – – 2 6 0.00000E+00
x6 100 7 20 0.00000E+00 1 8 0.00000E+00
x7 100 31 216 0.00000E+00 13 95 0.00000E+00
x0 1000 97 1057 0.93750E−01 51 360 0.31250E−01
x1 1000 118 1399 0.12500E+00 57 500 0.46875E−01
x2 1000 58 514 0.46875E−01 34 217 0.31250E−01
x3 1000 58 572 0.62500E−01 63 645 0.62500E−01
x4 1000 8 15 0.00000E+00 1 2 0.00000E+00
x5 1000 556 6380 0.53125E+00 1 3 0.00000E+00
x6 1000 8 27 0.00000E+00 3 17 0.00000E+00
x7 1000 44 343 0.15625E−01 48 383 0.46875E−01
x0 3000 184 2225 0.54688E+00 98 857 0.25000E+00
x1 3000 182 2233 0.53125E+00 99 808 0.23438E+00
x2 3000 98 1006 0.26562E+00 101 900 0.26562E+00
x3 3000 145 1744 0.42188E+00 110 880 0.23438E+00
x4 3000 8 15 0.15625E−01 8 15 0.00000E+00
x5 3000 73 802 0.20312E+00 500 5749 0.15625E+01
x6 3000 8 29 0.15625E−01 8 29 0.15625E−01
x7 3000 100 1051 0.28125E+00 83 662 0.18750E+00

where L is Lipschitz constant. If β 6∈ [σmin, σmax], we replace β by

β =


1 if ‖F(xk)‖ > 1,
‖F(xk)‖−1 if 10−5 ≤ ‖F(xk)‖ ≤ 1,
105 if ‖F(xk)‖ < 10−5,

where σmin = 10−10 and σmax = 1010. We stop the iteration if the inequality
‖F(xk)‖
√
n
≤ ea + er

‖F(x0)‖
√
n

is satisfied, where ea = 10−5 and er = 10−4. This stopping criterion comes from [14].
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Table 4.4
Test results for Problem 4.

Initial Dim MHS TMHS
IT NF T IT NF T

x0 100 9 26 0.00000E+00 15 72 0.15625E−01
x1 100 9 26 0.00000E+00 13 54 0.00000E+00
x2 100 10 30 0.00000E+00 9 27 0.00000E+00
x3 100 11 33 0.00000E+00 9 27 0.15625E−01
x4 100 11 33 0.00000E+00 9 27 0.00000E+00
x5 100 11 33 0.00000E+00 9 27 0.00000E+00
x6 100 11 33 0.00000E+00 9 27 0.00000E+00
x7 100 10 30 0.00000E+00 9 27 0.00000E+00
x0 1000 2 5 0.00000E+00 2 5 0.00000E+00
x1 1000 1 2 0.00000E+00 1 2 0.00000E+00
x2 1000 10 30 0.15625E−01 10 30 0.15625E−01
x3 1000 11 33 0.15625E−01 10 30 0.15625E−01
x4 1000 11 33 0.15625E−01 10 30 0.00000E+00
x5 1000 11 33 0.15625E−01 10 30 0.15625E−01
x6 1000 11 33 0.15625E−01 10 30 0.15625E−01
x7 1000 10 30 0.15625E−01 10 30 0.15625E−01
x0 3000 2 5 0.00000E+00 2 5 0.15625E−01
x1 3000 1 2 0.00000E+00 1 2 0.00000E+00
x2 3000 10 30 0.31250E−01 10 30 0.31250E−01
x3 3000 11 33 0.46875E−01 11 33 0.46875E−01
x4 3000 11 33 0.46875E−01 11 33 0.46875E−01
x5 3000 11 33 0.46875E−01 11 33 0.46875E−01
x6 3000 11 33 0.46875E−01 11 33 0.31250E−01
x7 3000 11 33 0.46875E−01 10 30 0.46875E−01

The codes were written in FORTRAN 90 in double precision arithmetic and run on a PC (CPU 1.6 GHz, 256 MB
memory) with Windows operating system.
The results are listed in Tables 4.1–4.4, where x0 = (10, 10, . . . , 10)T , x1 = (−10,−10, . . . ,−10)T , x2 = (1, 1, . . . , 1)T ,

x3 = (−1,−1, . . . ,−1)T , x4 =
(
1, 12 ,

1
3 , . . . ,

1
n

)T
, x5 = (0.1, 0.1, . . . , 0.1)T , x6 =

( 1
n ,
2
n , . . . , 1

)T
and x7 =(

1− 1
n , 1−

2
n , . . . , 0

)T
. In Tables 4.1–4.4, we report the dimension of the problem (Dim), the number of iterations (IT), the

number of function evaluations (including the additional functional evaluations that Algorithm 2.1 uses for approximating
initial steplength σk) (NF) and the CPU time in seconds (T). We use the symbol ‘−’ to specify either of the following two
cases:

(a) the number of iterations is greater than 1000; or
(b) the number of backtracking iterations at some line search step is greater than 50.

In the tables, MHS and TMHS denote the MHS based method and the two term MHS based method, respectively.
Tables 4.1–4.4 show that the proposed algorithm provides an efficient method for large-scale nonlinear systems of

equations. We also see from Tables 4.1–4.4 that the TMHS method performs better than the MHS method.
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