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a b s t r a c t

We investigate the linear well-posedness for a class of three-phase boundary motion
problems and perform some numerical simulations. In a typical model, three-phase
boundaries evolve under certain evolution laws with specified normal velocities. The
boundaries meet at a triple junction with appropriate conditions applied. A system of
partial differential equations and algebraic equations (PDAE) is proposed to describe the
problems. With reasonable assumptions, all problems are shown to be well-posed if all
three boundaries evolve under the same evolution law. For problems involving two ormore
evolution laws, we show the well-posedness case by case for some examples. Numerical
simulations are performed for some examples.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider a class of three-phase boundary motion problems in two dimensions as shown in Fig. 1. There are
three phases in this model, denoted by I, II and III respectively. Their interfaces Γ1, Γ2 and Γ3 evolve with parabolic
normal velocities given by curvature or its even order derivatives with respect to arc length. They meet at a triple
junction with prescribed angles θ1, θ2 and θ3. Extra junction conditions may be necessary depending on the motion of the
interfaces.

We first consider the simplest case for which the normal velocity of the interface Γi is proportional to its curvature. This
is the well known curvature motion which models the evolution of grain boundaries in materials science. In this model, the
normal velocity of Γi is given by

Vi = Aiκi (1)

where Vi represents the normal velocity of Γi and κi is curvature. The coefficient Ai = aiγi is a physical constant where ai
and γi are the mobility and the surface energy of the grain boundary Γi respectively. This motion has been studied in, for
example, [1–7]. A comprehensive introduction with physical background is available in [8].

The phase boundaries in this model can be described by parametrized curves Xi(σ , t) with parameter σ ∈ [0, ∞) with
σ = 0 corresponding to the junction. Here, X denotes a quantity with two components (x, y) in 2D. With this formulation,
curves that are not single valued functions can be described. An additional numerical advantage of this parametrized curve
formulation is that the junction is a fixed boundary condition, not a free boundary one. For general parametrized curves in
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Fig. 1. A three-phase geometry.

2D, the tangent T and normal N vectors and the curvature κ can be described as follows

T =
∂σX
|∂σX |

,

N = T⊥, (2)

κ =
∂2
σX · N
|∂σX |2

.

The expected normal motion is achieved when the following equation is satisfied,

∂tXi · Ni = κi (3)

for i = 1, 2, 3, where κi and Ni can be replaced by the expressions in Eq. (2). Notice that the tangential velocity away from
the junction can be chosen arbitrarily which leads to different parametrization for the curves. An additional condition to
specify the parametrization with good numerical properties was proposed in [7] and independently in [9], which is given as

∂σXi · ∂2
σXi = 0. (4)

This enforces that the parametrization remains a scaled arc length, although the scaling can change in time for finite length
curves. This is seen by rewriting the condition above as

1
2
∂σ |∂σXi|

2
= 0.

The grain boundary motion with three phases can then be described by

∂tXi · Ni = Aiκi, i = 1, 2, 3,

∂σXi · ∂2
σXi = 0, i = 1, 2, 3 (5)

where constant Ai = aiγi depends on the type of the material. This system involves both time dependent partial differential
equations (PDE) and elliptic equations. When discretized, the elliptic equations become algebraic equations (AE) and
therefore, it is referred to as a PDAE formulation. More details about the idea of using algebraic equations to impose uniform
grid spacing are discussed in [7].

The junction conditions for the parametrized formulation above are

X1(0, t) = X2(0, t) = X3(0, t),
∂σX1(0, t)
|∂σX1(0, t)|

·
∂σX2(0, t)
|∂σX2(0, t)|

= cos θ3, (6)

∂σX1(0, t)
|∂σX1(0, t)|

·
∂σX3(0, t)
|∂σX3(0, t)|

= cos θ2

where the first identity guarantees that the triple junction does not pull apart and the two angle conditions come from
Young’s law indicating the balance of surface tensions. The values of θi are given. For the convenience of discussion, we will



3162 Z. Pan, B. Wetton / Journal of Computational and Applied Mathematics 236 (2012) 3160–3173

also use the arc parameter s in addition to the scaled arc length parameter σ . For example, the junction conditions above
can be simply expressed as

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3, (7)
∂sX1(0, t) · ∂sX3(0, t) = cos θ2.

We remark that the value of angle θi depends on the surface energy γi and the two angle conditions are equivalent to:

γ1∂sX1 + γ2∂sX2 + γ3∂sX3 = 0. (8)

There are other formulations that can describe this grain boundary motion problem, for example, the parabolic
formulation discussed in [1,2]. A linearization of the system shows that it is parabolic in both components and therefore
it is convenient for theoretic analysis. In [1], the short time existence and uniqueness of the problem with Ai = 1 were
investigated based on the parabolic formulation. One may also use a Cartesian formulation when all interfaces can be
represented by single-valued functions. However, the extension of these formulations to higher order problems is difficult,
or even impossible.

Amore complicated three-phase boundarymotion problem is discussed in [10,11]. Instead of the second order curvature
motion, the three curves evolve by surface diffusionwith normal velocity being proportional to the surface Laplacian ofmean
curvature. In two dimensions, the normal velocity is reduced to the negative second derivative of curvature with respect to
arc length, i.e.

Vi = −Bi∂
2
s κi, (9)

where Bi = biγi is a physical constant with a similar meaning as Ai.
Applying the same idea as for the curvature motion, one has the following PDAE formulation for the motion by surface

diffusion:

∂tXi · Ni = −Bi∂
2
s κi, i = 1, 2, 3,

∂σXi · ∂2
σXi = 0, i = 1, 2, 3. (10)

Here we point out that the system is always given in terms of σ . However, we frequently use the arc length parameter s to
simplify the expressions. For example, when the normal velocity ∂2

s κ is denoted in terms of σ , it becomes

∂2
s κ =

∂2
σ κ

|∂σX |2
,

noticing the property that σ is scaled arc length.
This system requires nine junction conditions at σ = 0 which are given as follows:

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3,

∂sX1(0, t) · ∂sX3(0, t) = cos θ2, (11)
b1γ1κ1 + b2γ2κ2 + b3γ3κ3 = 0,
γ1∂sκ1 = γ2∂sκ2 = γ3∂sκ3,

where the fourth equation comes from the continuity of chemical potentials and the last equation represents the balance of
mass flux.

A parabolic formulation also exists for this problem as discussed in [11,12]. Using a similar technique as in [1], the authors
proved the well-posedness of the fourth order system in [11].

Another model is a mixed order problem which is called coupled surface and grain boundary motion. In this model, one
of the interface follows curvaturemotion and the other two interfaces followmotion by surface diffusion. This models some
physical details of grain growth in the annealing process when the grain boundary is attached to a free surface. It was first
considered by Mullins in [13] where he analyzed the mechanism and formulated the equation to describe the problem. As
an important phenomenon controlling the grain growth in material processing and synthesis, the coupled surface and grain
boundary motion has been widely studied both experimentally and numerically [9,14–19,13,20,7,21–23].

A PDAE formulation is proposed in [7] for this coupled problem. We assume Γ1 is the grain boundary and Γ2, Γ3 are
the two free surfaces. In the literature, it is also assumed that phase II and phase III are of the same material and therefore
γ2 = γ3. The formulation is then given by

∂tX1 · N1 = Aκ1,

∂tXi · Ni = −B∂2
s κi, i = 2, 3, (12)

∂σXi · ∂2
σXi = 0, i = 1, 2, 3.
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The eight junction conditions are
X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3,

∂sX1(0, t) · ∂sX3(0, t) = cos θ2, (13)
κ2 + κ3 = 0,
∂sκ2 = ∂sκ3.

The well-posedness for this mixed order problem was discussed in [7]. Due to the presence of mixed order equations,
the approach used in [1,11] for equal order problems is not applicable. Instead, the analysis for the mixed order system
is implemented by linearizing around fixed straight line solutions which gives a system that has the same highest order
behavior as the original problem near the triple junction. The linear system is then investigated and gives an indication
about the original problem. This is also the approach that will be used in the current paper.

A parabolic formulation is also available for this coupled problem. A detailed discussion can be found in [12].
The goal of this paper is to generalize the three problems discussed above to a class of three-phase boundary motion

problems. We propose a general formulation to describe the problems in this class. The well-posedness of these problems
are investigated in a reduced, linear setting with some simplifications. All problems in our class are shown to be well-posed
if all three boundaries evolve under the same evolution law. For problems involving two or more types of motion we show
the well-posedness case by case for some examples. Numerical simulations for some higher order problems in this class are
also performed.

Many approaches have been developed to simulate the evolution of these three-phase problems, e.g., front-tracking
methods, level set methods, threshold dynamics algorithms and phase field methods.

The front-tracking methods (e.g., [2,7,24]) use a set of particles to describe the interface and the location of the interface
is determined by tracking the motion of these particles. This approach is efficient and usually easy to apply since it
explicitly approximates the motion of the interfaces. The computational cost is relatively low as it is implemented over
a lower dimensional space compared to other methods. However, it is usually impossible, or difficult, to track topological
changes. The authors in [2] managed to track the topological changes for curve networks moving with curvature motion
and reasonable results were achieved. In that case, all possible topological changes were discussed and handled separately
which is usually not possible for more complicated problems. The numerical method discussed in this paper is basically a
front-tracking method as the location of the phase boundaries is tracked explicitly.

The level set methods developed in [25,26] can naturally capture the topological changes of the interface which is
embedded as the zero level set of a signed distance function. Attempts to extend the level set methods to three-phase
or multi-phase problems have been studied in, for example, [4,27,28]. For multi-phase problems, each phase is represented
by a separate level set function and therefore level set methods suffer from establishing appropriate constraints to couple
all functions at the junction, especially for mixed order problems.

The threshold dynamics algorithms, also called MBO algorithms, is introduced in [29,4], and studied later in [30–32]. It
uses a 1(inside)–0(outside) characteristic function to describe regions separated by the interface. The characteristic function
is evolved by diffusion and the resulting function is thresholded to locate the new position of the interface. These methods
experience the same difficulty for multiple-phase problems as the level set methods do.

The phase field methods model a phase boundary by a diffusive interfacial layer. To be more precise, the multi-phase
structure is described by continuous functions which have nearly constant values in each phase and vary gradually in a
narrow region around the phase boundaries. The governing equations are derived based on thermodynamic and kinetic
principles which contain a parameter representing the width of the interfacial layer. The position of the interfaces is
implicitly given by the zero level set of the evolutionary functions. A similar discussion can also be applied to the mixed
order problem as studied in [33–35]. Numerical simulations were also discussed based on these phase field models for both
the equal order problems [36,37] and the mixed order problem [38] using either finite difference discretization or finite
element methods. The disadvantage of this approach is that the construction of the system depends on the motion type of
the phase boundaries.

The paper is organized as follows. In Sections 2 and 3, we propose a general formulation to describe the problems and
investigate the linearwell-posedness for all equal order problems and somemixed order problems, respectively. In Section 4,
we demonstrate numerical simulations for some examples. A conclusion is given in Section 5.

2. Equal order problems

In this section, we consider equal order problems when all three phase boundaries evolve under the same evolution law.

2.1. Mathematical formulation

We generalize the problems discussed in Section 1 as the following three-phase boundary motion problem:

∂tXi · Ni = (−1)miAi∂
2mi
s κi, i = 1, 2, 3, (14)

∂σXi · ∂2
σXi = 0, i = 1, 2, 3,
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where Ai are constants coefficients andmi are non-negative integers satisfying,

0 ≤ m1 ≤ m2 ≤ m3. (15)

In this section, we consider the equal order case, that is whenm1 = m2 = m3 = m. The mixed order case will be discussed
in the following section.

To propose appropriate junction conditions for these higher order problems, we first assume all phases are of the same
material and therefore A1 = A2 = A3. For convenience, we take Ai = 1 since appropriate spatial scaling can make them
unity. Later in this section, we shall also consider examples that Ai are not the same.

We summarize and follow the pattern in the junction conditions for the lower order problems introduced before to
propose the following junction conditions:

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3,

∂sX1(0, t) · ∂sX3(0, t) = cos θ2,

∂2i−2
s κ1 + ∂2i−2

s κ2 + ∂2i−2
s κ3 = 0, i = 1, . . . ,m,

∂2i−1
s κ1 = ∂2i−1

s κ2 = ∂2i−1
s κ3, i = 1, . . . ,m,

(16)

where θ2 = θ3 = 2π/3 since we assume A1 = A2 = A3 = 1. We first notice that each equal order problem requires 3m+ 6
junction conditions. We then construct conditions using the derivatives of curvature from order 0 to order 2m − 1. Among
the two conditions with the highest derivatives,

∂2m−1
s κ1 = ∂2m−1

s κ2 = ∂2m−1
s κ3 (17)

reflects the balance of mass flux noticing that the normal velocity is given by V = (−1)m∂2m
s κ and

∂2m−2
s κ1 + ∂2m−2

s κ2 + ∂2m−2
s κ3 = 0 (18)

reflects the continuity of a sort of potential that produces the mass flow along the interface.
For m = 0, 1 these junction conditions match those physical conditions in (25) for the curvature motion and those in

(11) for the surface diffusion motion.

2.2. Linear well-posedness

We use the approach discussed in [7] to show the well-posedness of the generalized equal order problems described
above.

The basic approach is to linearize the problems around fixed straight line solutions at the junction and investigate the
resulting linear system.

We consider linearizing curve Xi(σ , t) around the tangential direction at the triple junction. One has

Xi(σ , t) = diσ + ϵX̄i(σ , t) + O(ϵ2), i = 1, 2, 3,

where di is a constant vector that represents the unit tangential direction for curveXi at the triple junction. The term ϵX̄i(σ , t)
represents a small perturbation to the tangential direction. Substituting the expressions above into system (14) and keeping
only the leading order terms (O(ϵ)) yield a linear system about X̄i:

∂t X̄i · d⊥

i = (−1)m∂2m+2
σ X̄i · d⊥

i , i = 1, 2, 3,

di · ∂2
σ X̄i = 0, i = 1, 2, 3.

(19)

The junction conditions can be linearized analogously to obtain

X̄1(0, t) = X̄2(0, t) = X̄3(0, t),
d1 · ∂σ X̄2 + d2 · ∂σ X̄1 − (d1 · d2)(d1 · ∂σ X̄1 + d2 · ∂σ X̄2) = 0,

d1 · ∂σ X̄3 + d3 · ∂σ X̄1 − (d1 · d3)(d1 · ∂σ X̄1 + d3 · ∂σ X̄3) = 0, (20)
∂2i
σ X̄1 · d⊥

1 + ∂2i
σ X̄2 · d⊥

2 + ∂2i
σ X̄3 · d⊥

3 = 0, i = 1, . . . ,m,

∂2i+1
σ X̄1 · d⊥

1 = ∂2i+1
σ X̄2 · d⊥

2 = ∂2i+1
σ X̄3 · d⊥

3 , i = 1, . . . ,m.

Without loss of generality, we specify one of the tangential directions, for example, d1 = (0, −1)T . With the equal angle
condition, one has

d1 =


0

−1


, d2 =

−

√
3
2
1
2

 , d3 =


√
3
2
1
2

 .
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We shall solve the linearized system (19) exactly using the Laplace transform. We start with the second equation in (19)
which is a fixed second order to derive a relation between the two components of X̄i and substitute it back to the first
equation and then solve by the Laplace transform. Let X̃i = (ũi, ṽi) represent the Laplace transform of X̄i = (ūi, v̄i) and the
transformed system has solutions in the form

ũ1 =

m+1
j=1

C1jeλjσ ,

ṽ1 = C1,m+2,

ũi =

m+1
j=1

Cijeλjσ + Ci,m+2, i = 2, 3,

ṽi = −ki


m+1
j=1

Cijeλjσ


+

1
ki
Ci,m+2, i = 2, 3,

(21)

where ki represents the ratio of the two components of di. The notation λj are roots of equation λ2m+2
= (−1)ms satisfying

π

2
< arg(λj) <

3π
2

. (22)

Here s stands for the Laplace transform variable. We consider values of s in the right half plane:

| arg(s)| <
π

2
. (23)

Thus both s and the roots of s have positive real part.
To show the well-posedness for the original problem we only need to prove that there is a unique solution for the

coefficients Cij introduced in (21). Substitute the solutions (21) into the linearized boundary conditions (20) to obtain a
linear system about Cij with the coefficient matrixM of size 3m + 6 which is given as below:

1 · · · 1 0 −1 · · · −1 −1 0 · · · 0 0

0 · · · 0 1 −
√
3 · · · −

√
3

√
3
3

0 · · · 0 0
1 · · · 1 0 0 · · · 0 0 −1 · · · −1 −1

0 · · · 0 1 0 · · · 0 0
√
3 · · ·

√
3 −

√
3
3

λ1 · · · λm+1 0 2λ1 · · · 2λm+1 0 0 · · · 0 0
λ1 · · · λm+1 0 0 · · · 0 0 2λ1 · · · 2λm+1 0
λ1

2
· · · λm+1

2 0 −2λ1
2

· · · −2λm+1
2 0 −2λ1

2
· · · −2λm+1

2 0
λ1

3
· · · λm+1

3 0 2λ1
3

· · · 2λm+1
3 0 0 · · · 0 0

λ1
3

· · · λm+1
3 0 0 · · · 0 0 2λ1

3
· · · 2λm+1

3 0
...

...
...

...
...

...
...

...
...

...
...

λ1
2m

· · · λm+1
2m 0 −2λ1

2m
· · · −2λm+1

2m 0 −2λ1
2m

· · · −2λm+1
2m 0

λ1
2m+1

· · · λm+1
2m+1 0 2λ1

2m+1
· · · 2λm+1

2m+1 0 0 · · · 0 0
λ1

2m+1
· · · λm+1

2m+1 0 0 · · · 0 0 2λ1
2m+1

· · · 2λm+1
2m+1 0



.

Note that the fifth and sixth row have been multiplied through by −2
√
3/3 and 2

√
3/3, respectively.

Appropriate manipulation gives the following recursive formula for the determinant of matrixM:

M0 = −8
√
3λ2

1

Mm = 12λ2
m+1

m
i=1

(λ2
m+1 − λ2

i )
3
· Mm−1,

where Mi represents the determinant of M for m = i. Recall that λj are non-repeated roots of (−1)ms with arguments in
(π/2, 3π/2). Therefore, λi ≠ 0 and λi ≠ ±λj for i ≠ j. This guarantees that the determinant ofM is not zero for any value of
m and therefore the coefficients Cij are unique. Thus all equal order problems are well-posed with at most algebraic growth
in time if θi = 2π/3.

The discussion above has assumed that A1 = A2 = A3. We may also consider more general case with arbitrary Ai and
consequently, different angle θi. However, no general determinant formula was found for these cases. Thus each case has to
be considered separately. For example, whenm = 0, the problem is described by system

∂tXi · Ni = Aiκi, i = 1, 2, 3, (24)
∂σXi · ∂2

σXi = 0, i = 1, 2, 3.
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The junction conditions are

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3, (25)
∂sX1(0, t) · ∂sX3(0, t) = cos θ2,

where θ2, θ3 now depend on Ai. A similar discussion can be applied to this curvature motion to obtain the determinant of
the coefficient matrixM:

|M| =
ωζ sin(θ2 + θ3) − λζ sin θ3 − λω sin θ2

sin θ3 sin θ2 cos θ2 cos θ3
, (26)

where λ, ω, ζ are given by

λ = −


s
A1

, ω = −


s
A2

, ζ = −


s
A3

, (27)

with s temporarily being the Laplace transform variable.
We remark that, physically θi cannot be equal to or greater than π (this corresponds to zero or negative surface energy).

Therefore, we only need to consider 0 < θi < π and consequently we conclude that the determinant is not zero. For the
case that one of the angles, for example θ2 = π/2, the determinant becomes undefined since cos θ2 = 0. However, one may
rotate the system such that Γ2 points in the direction (0, −1)T . Hence the above discussion still applies and the problem is
well-posed if 0 < θ1, θ3 < π . In summary, the problem of curvature motion is well-posed provided that 0 < θi < π for
i = 1, 2, 3.

A similar procedure can be applied to the fourth order surface diffusion problem discussed in Section 1 and the problem
is well-posed provided 0 < θi < π .

The well-posedness of the above two cases has been discussed in [1,11], respectively with fully parabolic formulations.
The approach in both studies is to linearize around the initial data and show the existence of the solution for the resulting
linear system using the fundamental theory for parabolic system discussed in, e.g. [39]. The existence for the full nonlinear
problem is then obtained by means of a fixed-point argument. The discussion in [1] has taken Ai = 1, though it is trivial
to extend to arbitrary Ai. Note that artificial junction conditions are required in [11] for the surface diffusion problem. Our
analysis gives the same result as in [1,11].

3. Mixed order problems

In this section, we consider somemixed order problems in which the phase boundaries may undergo different evolution
laws. The system of equations has been proposed in the previous section as given in (14), i.e.

∂tXi · Ni = (−1)miAi∂
2mi
s κi, i = 1, 2, 3, (28)

∂σXi · ∂2
σXi = 0, i = 1, 2, 3,

where 0 ≤ m1 ≤ m2 ≤ m3.
We again first assume Ai = 1 and impose the following junction conditions

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1 · ∂sX2 = cos θ3,

∂sX1 · ∂sX3 = cos θ2,

∂2i−2
s κ1 + ∂2i−2

s κ2 + ∂2i−2
s κ3 = 0, i = 1, . . . ,m1,

∂2i−1
s κ1 = ∂2i−1

s κ2 = ∂2i−1
s κ3, i = 1, . . . ,m1,

∂2i−2
s κ2 + ∂2i−2

s κ3 = 0, i = m1 + 1, . . . ,m2,

∂2i−1
s κ2 = ∂2i−1

s κ3, i = m1 + 1, . . . ,m2,

∂2i−1
s κ3 = 0, i = m2 + 1, . . . ,m3.

(29)

Whenm1 = 0,m2 = m3 = 1, these conditions reduce to the junction conditions in (13) for the mixed order problem.
To discuss the well-posedness of the above system, the same approach as in Section 2.2 can be applied. However, no

general determinant formula is found for this case. We can still verify case by case that all tested problems are well-posed.
For example, ifm1 = 1,m2 = m3 = 2 and θi = 2π/3, the determinant of the associated coefficients matrixM is given by

|M| ≈ −2660.4 i

1.4 + 2.0 s1/12 + 5.7 s2/12 + 12.0 s3/12 + 2.8 s4/12


s39/12.

Since both s and the roots of s have positive real part, one can easily verify that the determinant of M is not zero and the
corresponding problem is well-posed with at most algebraic growth in time.
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Similarly, whenm1 = m2 = 1,m3 = 3, the determinant of the resulting matrix is given by
|M| ≈ (4369.6 + 18 918.6 s1/8 + 8739.3 s2/8 + 2854.6 s3/8 + 1809.9 s4/8)s27/8.

One can show that the determinant is not zero for any s satisfying the conditions (22) and (23) and therefore the
corresponding problem is well-posed.

As the last example, we consider arbitrary Ai form1 = 0,m2 = 1,m3 = 2. The formulation for this problem is given by
∂tX1 · N1 = A1κ1,

∂tX2 · N2 = −A2∂
2
s κ2,

∂tX3 · N3 = A3∂
4
s κ3, (30)

∂σXi · ∂2
σXi = 0, i = 1, 2, 3,

with the following conditions at the junction:

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3,

∂sX1(0, t) · ∂sX3(0, t) = cos θ2,

γ2κ2 + γ3κ3 = 0,

A2∂
2
s κ2 = A3∂

2
s κ3,

∂3
s κ3 = 0.

(31)

Note that Ai and γi are present in these conditions.
One can again verify that the determinant for the associated coefficient matrix M is not zero and the problem is well-

posed provided 0 < θi < π .
Similar results can be obtained for some other mixed order examples. They are all well-posed, with at most algebraic

growth in time.

4. Numerical simulation

In this section, we consider numerical simulations for some of the high order problems including both the equal order
case and the mixed order case. As the physical coefficients Ai impose no extra difficulty for numerical simulations, we take
Ai = 1 for all examples in this section.

4.1. Simulation for equal order problems

For the equal order case, we consider an example that all curves are enclosed in a unit circle (see Fig. 3) and the normal
velocity of each curve is equal to ∂4

s κ . The system is described by

∂tXi · Ni = ∂4
s κi, i = 1, 2, 3,

∂σXi · ∂2
σXi = 0, i = 1, 2, 3. (32)

This is a sixth-order problem withm = 2 which requires twelve junction conditions as given below:

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1 · ∂sX2 = cos θ3,

∂sX1 · ∂sX3 = cos θ2,

κ1 + κ2 + κ3 = 0,
∂sκ1 = ∂sκ2 = ∂sκ3,

∂2
s κ1 + ∂2

s κ2 + ∂2
s κ3 = 0,

∂3
s κ1 = ∂3

s κ2 = ∂3
s κ3,

(33)

where θ2 = θ3 = 2π/3.
As this is a problem with a finite domain, we may specify a finite range for the parameter σ , e.g., [0, 1]. At the domain

boundary where σ = 1, the following conditions are applied to each curve:
|Xi(1, t)| = 1,
∂sXi(1, t) · T (Xi(1, t)) = 0,
∂2
s κi = 0,

∂3
s κi = 0. (34)

The term T (X(1)) represents the tangential direction of the unit circle at point X(1) and the first two conditions guarantee
that the end of each curve is always attached perpendicularly to the circle.
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Fig. 2. Sketch of the ghost values at the triple junction for the discretization of the sixth order problem with m = 2. Two ghost points (X0 and X−1) and
one ghost value (κ−1) are introduced for each curve.

Before discussing the numerical discretization, we introduce an interesting property of this normal direction motion. Let
V represent the normal velocity and c be the circumference of each phase. The normal velocity is either V = ∂4

s κ along the
phase boundary or V = 0 along the domain boundary. Thus simple manipulation gives

c
Vds = 0, (35)

by noticing the facts that ∂3
s κ1 = ∂3

s κ2 = ∂3
s κ3 at the junction and ∂3

s κi = 0 at the domain boundary. This indicates that the
area for each phase is preserved and this property can be also be used to test the performance of numerical methods.

The system can be discretized using standard finite difference schemes. The basic approach is to use a staggered grid in σ
which is in the fixed interval [0,1] with σ = 0 at the junction and σ = 1 at the boundary of the computational domain. We
shall denote the approximations by capital letters with subscripts, i.e., Xj(t) ≃ X(( j− 1/2)h, t) = (u(( j− 1/2)h, t), v(( j−
1/2)h, t)) where h is grid spacing and N = 1/h is the number of interior grid points for σ ∈ [0, 1]. Here we use subscripts
to represent the node index and we shall use superscripts to represent the curve index when necessary in the rest of this
section.

We introduce some additional finite difference notations. Let Dk denote the second order centered approximation of the
kth derivative, i.e.,

D1Xj = (Xj+1 − Xj−1)/2h,

D2Xj = (Xj+1 + Xj−1 − 2Xj)/h2.

The curvature is then approximated by

κj =
D2Xj

|D1Xj|
2

· (D1Xj)
⊥. (36)

Noticing the fact that σ is scaled arc length, the higher order derivatives of curvature can be approximated by

(∂2
s κ)j =

D2κj

|D1Xj|
2
, (37)

and

(∂4
s κ)j =

D2(∂
2
s κ)j

|D1Xj|
2

. (38)

The formulation maintains a strict equi-distributed grid which leads to a much simpler expression for the approximation of
velocity ∂4

s κ .
The discretization at the triple junction is subtle. When discretize using finite difference schemes with Neumann

boundary conditions, a sixth order problem usually requires three ghost points and extra tangential conditions should be
introduced at the junction. However, because of the lower order of the constraint equations in our formulation, it is possible
to reduce the number of ghost points and avoid the use of artificial tangential conditions. For this sixth order problem, two
ghost points X0, X−1 and one ghost value κ−1 are introduced for each curve to approximate the conditions at the junction
(see Fig. 2). The ghost value κ−1 denotes the curvature of the ghost point X−1 and it is used whenever the curvature of this
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Fig. 3. Simulation of equal order problem withm = 2 (sixth order). Angles between curves at the triple junction are 2π/3.

Table 1
Estimated errors and convergence rates for the equal order problemwithm = 2 (sixth order).
Errors are evaluated at t = 1.2e−4.

dt h ∥eh∥2 ρ ∥eh∥∞ ρ

0.2 3.6804e−3 7.7141e−3
dt = 0.001h2 0.1 1.0309e−3 1.8360 2.0637e−3 1.9023

0.05 2.9301e−4 1.8149 5.4136e−4 1.9306

point is required in an approximation. For more details, we refer to [7] where a similar discussion is available for a lower
order problem.

To avoid the excessively small time steps due to the stiffness of the problem,we use implicit time-stepping. For simplicity
we use the backward Eulermethod. It is found computationally that spatial errors dominate temporal errors. Since the three
curves are strongly coupled by the junction, we solve for interior and ghost points simultaneously. The nonlinear system is
solved by Newton’s method.

The numerical results are shown in Fig. 3. As discussed before the area of each phase is preserved during the evolution.
For example, the numerical result indicates that the area change for the top phase is less than 0.1%. To demonstrate the
performance more quantitatively, we study the convergence rate of this method. Since the exact solution is not known we
compare solution values to those at finer grids to estimate the error eh:

eh := ∥Xh − Xh/2∥ (39)

where the subscript on X denotes the grid spacing used to compute the approximation and the norm ∥ · ∥ is the discrete
norm. Note that interpolationmust be used to compare the pointwise values of approximations at different grids. Successive
error estimates can be used to estimate the convergence rate ρ as follows:

ρ ≈ ρh := log2
e2h
eh

. (40)

Estimates of the error and convergence rate at t = 1.2e−4 are given in Table 1. The convergence rates are close to
two.
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4.2. Simulation for mixed order problems

The second numerical example is a mixed order problem withm1 = 0,m2 = m3 = 2 which is described by

∂tX1 · N1 = κ1,

∂tXi · Ni = ∂4
s κi, i = 2, 3, (41)

∂σXi · ∂2
σXi = 0, i = 1, 2, 3.

For this problem, we propose a domain and initial settings as those in the coupled surface and grain boundary motion
discussed in [7] (refer to Fig. 4).

This system requires ten junction conditions which are given by

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3,

∂sX1(0, t) · ∂sX3(0, t) = cos θ2,

κ2 + κ3 = 0,
∂sκ2 = ∂sκ3,

∂2
s κ2 + ∂2

s κ3 = 0,

∂3
s κ2 = ∂3

s κ3,

(42)

with values of θ2, θ3 prescribed.
It is known that the coupled surface and grain boundarymotion,which is a lowermixed order problem, admits a traveling

wave solution. The solution was given by Kanel et al. in [16] and we start our simulation with that solution. The reason we
start with such a solution is that, the traveling wave solution to this higher order problem, if there is any, will stay close to
that of the lower order problem so it can be converged to in a relatively short time. To maintain the curves flat at the far
field domain boundary, we impose the following conditions:

Xi(1, t) = const, i = 1, 2, 3,
∂sκi = 0, i = 2, 3,

∂2
s κi = 0, i = 2, 3, (43)

∂3
s κi = 0, i = 2, 3

where the const depends on the domain size.
The discretization of the junction and boundary conditions again requires some ghost points and ghost values which can

be introduced analogously. The numerical results are shown in Fig. 4. The simulation shows that the shape of the curves
stabilizes after a while and thenmoves to the right at a constant speed. The speed of the triple junction versus time is drawn
in Fig. 5 and it clearly converges to a constant speed. This result indicates the possible existence of traveling wave solutions.

We remark that all curvature dependent motions discussed in this paper that are fourth-order or higher are area
preserving. Therefore, no traveling wave solution is possible if mi ≥ 1 for all three curves. The following problem is an
example that does not have traveling wave solution.

We consider a mixed order problem withm1 = 1,m2 = m3 = 2. This problem is described by the following system:

∂tX1 · N1 = −∂2
s κ1,

∂tXi · Ni = ∂4
s κi, i = 2, 3, (44)

∂σXi · ∂2
σXi = 0, i = 1, 2, 3.

The corresponding junction conditions are given by

X1(0, t) = X2(0, t) = X3(0, t),
∂sX1(0, t) · ∂sX2(0, t) = cos θ3,

∂sX1(0, t) · ∂sX3(0, t) = cos θ2,

κ1 + κ2 + κ3 = 0,
∂sκ1 = ∂sκ2 = ∂sκ3,

∂2
s κ2 + ∂2

s κ3 = 0,

∂3
s κ2 = ∂3

s κ3,

(45)

with values of θ2, θ3 prescribed.
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Fig. 4. Simulation of mixed order problem withm1 = 0,m2 = m3 = 2.
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Fig. 5. Plot of the junction speed versus time for the mixed order problem withm1 = 0,m2 = m3 = 2.

We again start the simulation with the traveling wave solution for the coupled surface and grain boundary motion. The
following conditions are imposed at the domain boundary:

Xi(1, t) = const, i = 1, 2, 3,
∂sκi = 0, i = 1, 2, 3,

∂2
s κi = 0, i = 2, 3, (46)

∂3
s κi = 0, i = 2, 3.

The discretization of this system is similar to previous examples. The numerical results are shown in Fig. 6. We do not
expect any traveling wave solutions for this problem due to the reason stated before. A perturbation appears on the bottom
phase boundary during the evolution and it seems to grow unboundedly.

5. Conclusions

In this paper, we discuss a class of high order three-phase boundary motion problems. Formulations that automatically
maintain an uniform grid spacing when discretized are proposed to describe the problems in this class. All problems are



3172 Z. Pan, B. Wetton / Journal of Computational and Applied Mathematics 236 (2012) 3160–3173

–10 –5 0 5 10 15 20 25
–2

–1.5

–1

–0.5

0

0.5

x

y

time = 0

–10 –5 0 5 10 15 20 25
–2

–1.5

–1

–0.5

0

0.5

x

y

time = 1

–10 –5 0 5 10 15 20 25
–2

–1.5

–1

0.5

0

0.5

x

y

time = 10

–10 –5 0 5 10 15 20 25
–2

–1.5

–1

0.5

0

0.5

x

y

time = 14

Fig. 6. Simulation of mixed order problem withm1 = 1,m2 = m3 = 2.

shown to be well-posed when all three curves evolve under the same evolution law. When two or more types of motion are
involved, we investigate the well-posedness case by case. All cases that we considered are well-posed.

Numerical simulations are performed for some examples including both equal order problems andmixed order problems
using finite difference schemes on a staggered grid. Convergence rate of the numerical method is also studied by estimating
errors with approximations over different grids and the convergence rate is close to two. The numerical results also suggest
the possible existence of traveling wave solutions for some mixed order problems. In future work, we could investigate
these waves analytically if possible.
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