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a b s t r a c t

In this paper we propose a modified regularized Newton method for convex minimization
problems whose Hessian matrices may be singular. The proposed method is proved to
converge globally if the gradient and Hessian of the objective function are Lipschitz
continuous. Under the local error bound condition, we first show that the method
converges quadratically, which implies that ∥xk − x∗

∥ is equivalent to dist(xk, X), where
X is the solution set and xk → x∗

∈ X . Then we in turn prove the cubic convergence of
the proposed method under the same local error bound condition, which is weaker than
nonsingularity.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider the unconstrained optimization problem

min f (x), x ∈ Rn, (1.1)

where f : Rn
→ R is convex and twice continuously differentiable, whose gradient ∇f (x) and Hessian ∇

2f (x) are denoted
by g(x) and G(x), respectively. Throughout the paper, we suppose that the solution set X of (1.1) is nonempty, and in all
cases ∥ · ∥ stands for the 2-norm. It is clear that X is a closed convex set.

It is well-known that f (x) is convex if and only if G(x) is positive semidefinite for all x ∈ Rn. Moreover, if f is convex, then
x ∈ X if and only if x is a solution of the nonlinear equations

g(x) = 0. (1.2)

There are many efficient methods [1–4] for solving the problem (1.1) or (1.2). The Newton method is one of the best known
methods. At each iteration, the Newton method computes the trial step

dNk = −G−1
k gk,

where gk = g(xk) and Gk = G(xk). An attractive feature of the Newton method is that it possesses quadratic convergence
rate if G(x∗) is nonsingular at a solution x∗, which implies that the solution is locally isolated.

However, the condition on the nonsingularity of the Hessian is too strong since many problems have singular
solutions [5–7], which may contain some inverse problems and ill-posed problems [8]. To obtain reasonable solutions for
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this kind of problems, different regularization techniques are often used. Recently, under the local error bound condition,
which is weaker than nonsingularity, Li et al. [6] proposed a regularized Newtonmethodwith quadratic convergence, where
the trial step is the solution of the linear equations

(Gk + λkI)d = −gk with λk = C∥gk∥

for some positive constant C , where I is the identity matrix. More details on the local error bound condition for nonlinear
equations can be found in [5,7,9–12].

In this paper we propose a modified regularized Newton method for (1.1), which is mainly motivated in [9], where
a modified Levenberg–Marquardt method was proposed for nonlinear equations with cubic convergence under the local
error bound condition.

The main scheme of the modified regularized Newton method is given as follows. At each iteration, it solves the linear
equations

(Gk + λkI)d = −gk (1.3)

to obtain the Newton step dk, where λk is a suitable regularized parameter, and then solves the linear equations

(Gk + λkI)d = −g(yk) with yk = xk + dk (1.4)

to obtain the approximate Newton step d̂k.
The purpose of this paper is to investigate whether the proposed method has cubic convergence as the modified

Levenberg–Marquardt method [9] under the local error bound condition.
The paper is organized as follows. In Section 2, we present the complete modified regularized Newton method carefully.

In Section 3, we prove the global convergence of the proposed method. Quadratic convergence and cubic convergence of
the proposed method are obtained in Section 4.

2. The algorithm

Let dk and d̂k be given by (1.3) and (1.4), respectively. Since the matrix Gk + λkI is symmetric and positive definite, dk is
a descent direction of f (x) at xk, but dk + d̂k may not be. Hence we use a trust region technique to globalize the proposed
method.

Let

Aredk = f (xk) − f (xk + dk + d̂k), (2.1)

which is called the actual reduction of f (x) at the k-th iteration.
Note that the Newton step dk is the minimizer of the convex problem:

min
d∈Rn

ϕk,1(d) =
1
2
dTGkd + gT

k d +
1
2
λk∥d∥2. (2.2)

If we let

∆k,1 = ∥dk∥ = ∥ − (Gk + λkI)−1gk∥,

then it can be verified [2, Theorem 6.1.2] that dk is also a solution of the trust region problem:

min
d∈Rn

1
2
dTGkd + gT

k d, s.t. ∥d∥ ≤ ∆k,1.

By the famous result given by Powell in [13] (also see [2, Lemma 6.1.3]), we know that

ϕk,1(0) − ϕk,1(dk) ≥
1
2
∥gk∥min


∥dk∥,

∥gk∥
∥Gk∥


. (2.3)

Similar to dk, d̂k is not only the minimizer of the problem:

min
d∈Rn

ϕk,2(d) =
1
2
dTGkd + g(yk)Td +

1
2
λk∥d∥2, (2.4)

but also the solution of the following trust region problem:

min
d∈Rn

1
2
dTGkd + g(yk)Td, s.t. ∥d∥ ≤ ∆k,2,

where

∆k,2 = ∥d̂k∥ = ∥ − (Gk + λkI)−1g(yk)∥.
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Therefore we also have

ϕk,2(0) − ϕk,2(d̂k) ≥
1
2
∥g(yk)∥min


∥d̂k∥,

∥g(yk)∥
∥Gk∥


. (2.5)

Then we define prediction reduction as

Predk = ϕk,1(0) − ϕk,1(dk) + ϕk,2(0) − ϕk,2(d̂k), (2.6)

which satisfies

Predk ≥
1
2
∥gk∥min


∥dk∥,

∥gk∥
∥Gk∥


+

1
2
∥g(yk)∥min


∥d̂k∥,

∥g(yk)∥
∥Gk∥


, (2.7)

and it is always nonnegative.
Define the ratio

rk =
Aredk

Predk
, (2.8)

which measures the agreement between the model functions and the objective function. Moreover this ratio plays an
important role in selecting new iterate xk+1 and updating the regularized parameter.

The following is the modified regularized Newton method.

Algorithm 2.1 (Modified Regularized Newton Algorithm).

Step 1. Given a starting point x1 ∈ Rn and several scalars µ1 > m > 0, 0 < p0 ≤ p1 ≤ p2 < 1. Let k := 1.
Step 2. If ∥gk∥ = 0, then stop. Compute dk by solving the following linear equations

(Gk + λkI)d = −gk with λk = µk∥gk∥. (2.9)

Set

yk = xk + dk. (2.10)

Solve

(Gk + λkI)d = −g(yk) (2.11)

to obtain d̂k and set

sk = dk + d̂k. (2.12)

Step 3. Compute rk =
Aredk
Predk

. Set

xk+1 =


xk + sk, if rk ≥ p0,
xk, otherwise. (2.13)

Step 4. Update µk+1 as

µk+1 =


4µk, if rk < p1,
µk, if rk ∈ [p1, p2],
max

µk

4
,m


, if rk > p2.
(2.14)

Set k := k + 1 and go to Step 2.

3. Global convergence

In this section, we study the global convergence of Algorithm 2.1. We first give the following assumption.

Assumption 1. g(x) and G(x) are both Lipschitz continuous, that is, there exists a constant L > 0 such that

∥g(x) − g(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn (3.1)

and

∥G(x) − G(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn. (3.2)
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It follows from (3.2) that

∥g(y) − g(x) − G(x)(y − x)∥ ≤ L∥y − x∥2, ∀x, y ∈ Rn. (3.3)

Theorem 3.1. Let Assumption 1 hold. If f is bounded below, then Algorithm 2.1 terminates in finite iterations or satisfies

lim inf
k→∞

∥gk∥ = 0. (3.4)

Proof. The proof is similar to that of [9]. We prove the theorem by contradiction. Suppose it is not true, then there exists an
integer k̂ such that

∥gk∥ ≥ τ , ∀k ≥ k̂. (3.5)

Without loss of generality, we can suppose k̂ = 1. Set T = {k| xk ≠ xk+1}. Then

{1, 2, . . .} = T ∪ {k| xk = xk+1}.

Now we consider the following two cases.
Case (i). T is finite. Then there exists an integer k1 such that

xk1 = xk1+1 = xk1+2 = · · · .

By Step 3 of Algorithm 2.1, we deduce

rk < p0, ∀k ≥ k1.

Therefore by Step 4 of Algorithm 2.1 and (3.5), we have

µk → ∞, λk → ∞. (3.6)

Since xk+1 = xk, ∀k ≥ k1, we get from (2.9) and (3.6) that

∥dk∥ = ∥ − (Gk + λkI)−1gk∥ ≤ λ−1
k ∥gk∥ → 0. (3.7)

From (2.11), we obtain

∥d̂k∥ = ∥ − (Gk + λkI)−1g(yk)∥
≤ ∥(Gk + λkI)−1(g(yk) − gk − Gkdk)∥ + ∥(Gk + λkI)−1gk∥ + ∥(Gk + λkI)−1Gkdk∥
≤ Lλ−1

k ∥dk∥2
+ 2∥dk∥

≤ C1∥dk∥ (3.8)

for some positive constant C1, where we use (3.3), (2.9) and ∥(Gk + λkI)−1Gk∥ ≤ 1 in the second inequality, and the last
inequality follows from (3.6) and (3.7).

It follows from (2.1) and (2.6) that

|Aredk − Predk| =

f (xk) − f (xk + dk + d̂k) −

ϕk,1(0) − ϕk,1(dk) + ϕk,2(0) − ϕk,2(d̂k)


≤

f (yk + d̂k) − f (yk) −
1
2
d̂TkGkd̂k − g(yk)T d̂k

+ f (yk) − f (xk) −
1
2
dTkGkdk − gT

k dk


= o(∥dk∥2) + o(∥d̂k∥2), (3.9)

where the last equality uses Taylor’s formula, (3.2), (3.7) and (3.8).
Moreover, from (2.7), (3.5), (3.1) and (3.7), we have

Predk ≥
1
2
τ min


∥dk∥,

τ

L


≥

1
2
τ∥dk∥ (3.10)

for sufficiently large k.
Then the above two inequalities yield

|rk − 1| =
|Aredk − Predk|

Predk

=
o(∥dk∥2) + o(∥d̂k∥2)

∥dk∥
→ 0, (3.11)
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which implies that rk → 1. Therefore from the parameter updating rule of Step 4 in Algorithm 2.1, there exists a positive
constant C2 such that

µk ≤ C2,

which contradicts to (3.6).
Case (ii). T is infinite. Then we have from (2.7) and (3.5) that

∞ > f (x1) − lim inf
k→∞

f (xk) ≥

∞
i=1

f (xi) − f (xi+1)

=


k∈T

f (xk) − f (xk+1) ≥


k∈T

p0Predk

≥


k∈T

p0


1
2
∥gk∥min


∥dk∥,

∥gk∥
∥Gk∥


+

1
2
∥g(yk)∥min


∥d̂k∥,

∥g(yk)∥
∥Gk∥


,

≥


k∈T

p0
τ

2
min


∥dk∥,

τ

L


, (3.12)

which implies that

lim
k→∞,k∈T

dk = 0. (3.13)

The above equality together with the updating rule of Step 4 in Algorithm 2.1 means

λk → ∞. (3.14)

Similar to (3.8), it follows from (3.13) and (3.14) that

∥d̂k∥ ≤ C3∥dk∥, ∀k ∈ T (3.15)

for some constant C3. Then we have

∥sk∥ = ∥dk + d̂k∥ ≤ (1 + C3)∥dk∥, ∀k ∈ T . (3.16)

This equality together with (3.12) yields
k∈T

∥sk∥ < ∞, (3.17)

which implies that

xk → x∗. (3.18)

It follows from (2.9), (3.18), (3.14) and (3.8) that

dk → 0, d̂k → 0. (3.19)

Since (Gk + µk∥gk∥I)dk = −gk from (2.9), we have from (3.5), (3.1) and (3.19) that

µk∥dk∥ = ∥gk + Gkdk∥ ≥ ∥gk∥ − ∥Gk∥ ∥dk∥ ≥ τ − L∥dk∥,

which means

µk ≥
τ

∥dk∥
− L → ∞. (3.20)

By the same analysis as (3.11) we know that

rk → 1,

which implies that there exists a constant C4 such that

µk ≤ C4,

which leads to a contradiction to (3.20).
Based on the above analysis, we know that (3.4) holds. This finishes the proof. �



184 W. Zhou, X. Chen / Journal of Computational and Applied Mathematics 239 (2013) 179–188

4. Local convergence

In this section, we suppose that {xk} converges to x∗
∈ X and lies in some neighbourhood of x∗. We also give the following

assumptions for local convergence analysis.

Assumption 2. (i) ∥g(x)∥ provides a local error bound on some neighbourhood of x∗, i.e., there exist two positive constants
c1 and b1 such that

∥g(x)∥ ≥ c1dist(x, X), ∀x ∈ N(x∗, b1) = {x| ∥x − x∗
∥ ≤ b1}. (4.1)

(ii) The Hessian G(x) is Lipschitz continuous on N(x∗, b1), that is, there exists a constant L such that

∥G(y) − G(x)∥ ≤ L∥y − x∥, ∀x, y ∈ N(x∗, b1). (4.2)

It is clear that ifG(x) is nonsingular at a solution, then ∥g(x)∥ provides a local error bound on its neighbourhood. However,
the converse is not necessarily true [6,7], which shows that the local error bound condition is weaker than nonsingularity.

By Assumption 2, we have

∥g(y) − g(x)∥ ≤ L∥y − x∥, ∀x, y ∈ N(x∗, b1) (4.3)

and

∥g(y) − g(x) − G(x)(y − x)∥ ≤ L∥y − x∥2, ∀x, y ∈ N(x∗, b1). (4.4)

In the later part of the paper, we denote x̄ ∈ X which satisfies

∥x̄ − x∥ = dist(x, X) = inf
y∈X

∥y − x∥.

Since G(x∗) is symmetric and positive semidefinite, there is an orthogonal matrix (U∗

1 ,U∗

2 ) such that

G(x∗) = (U∗

1 ,U∗

2 )


Σ∗

1 0
0 0


U∗

1
T

U∗

2
T


= U∗

1Σ∗

1U
∗

1
T
, (4.5)

where Σ∗

1 is a positive diagonal matrix.
Moreover, we can suppose that G(x) has the following decomposition

G(x) = (U1,U2)


Σ1 0
0 Σ2


U1

T

U2
T


= U1Σ1UT

1 + U2Σ2UT
2 , (4.6)

where Rank(Σ1) = Rank(Σ∗

1 ) and Σ2 converges to zero as x → x∗. In the following, for clearness, we also neglect the
subscription k in the decomposition of G(xk), and still write G(xk) as same as (4.6).

In this section, we first prove the quadratic convergence of Algorithm 2.1, which implies that ∥xk − x∗
∥ is equivalent to

dist(xk, X). Then we in turn show the cubic convergence of the proposed method.

4.1. Quadratic convergence

In this subsection, we first study the properties of ∥dk∥, ∥d̂∥ and ∥sk∥.

Lemma 4.1. Let Assumption 2 hold. Then we have

∥dk∥ = O(∥x̄k − xk∥),

∥d̂k∥ = O(∥x̄k − xk∥), (4.7)
∥sk∥ = O(∥x̄k − xk∥).

Proof. Since xk → x∗
∈ X , we have

∥x̄k − xk∥ = dist(xk, X) ≤ ∥xk − x∗
∥ → 0.

Moreover, the local error bound condition yields

λk = µk∥gk∥ ≥ mc1dist(xk, X) = mc1∥x̄k − xk∥. (4.8)

From (2.9), we get

∥dk∥ = ∥(Gk + λkI)−1gk∥
≤ ∥(Gk + λkI)−1(gk − g(x̄k) + Gk(x̄k − xk))∥ + ∥(Gk + λkI)−1Gk(x̄k − xk)∥
≤ Lλ−1

k ∥x̄k − xk∥2
+ ∥x̄k − xk∥

= O(∥x̄k − xk∥), (4.9)
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where we use the fact g(x̄k) = 0 in the first inequality and (4.4) in the second inequality, and the last equality follows
from (4.8).

Since yk = xk + dk, then yk → x∗, which means yk ∈ N(x∗, b1) for sufficiently large k. From (2.11), we obtain

∥d̂k∥ = ∥(Gk + λkI)−1g(yk)∥
≤ ∥(Gk + λkI)−1(g(yk) − gk − Gkdk)∥ + ∥(Gk + λkI)−1gk∥ + ∥(Gk + λkI)−1Gkdk∥
≤ Lλ−1

k ∥dk∥2
+ 2∥dk∥

= O(∥x̄k − xk∥),

where we use (4.4), (2.9), (4.8) and (4.9).
Thus we deduce from the above estimations of ∥dk∥ and ∥d̂k∥ that

∥sk∥ = ∥dk + d̂k∥ = O(∥x̄k − xk∥). �

The following lemma shows that {µk} is bounded above.

Lemma 4.2. Let Assumption 2 hold. There exists a constant c2 such that

µk ≤ c2.

Proof. From (2.3), (4.1) and (4.3), we have

ϕk,1(0) − ϕk,1(dk) ≥
1
2
∥gk∥min


∥dk∥,

∥gk∥
∥Gk∥



≥
1
2
c1∥x̄k − xk∥min


∥dk∥,

c1
L

∥x̄k − xk∥


≥ c̄2∥x̄k − xk∥min


∥dk∥, ∥x̄k − xk∥


, (4.10)

for some constant c̄2.
Then from (3.9), (2.7), (4.10) and Lemma 4.1, we get

|rk − 1| =

Aredk − Predk

Predk


=

o(∥dk∥2) + o(∥d̂k∥2)

∥x̄k − xk∥min{∥dk∥, ∥x̄k − xk∥}
→ 0, (4.11)

which implies that rk → 1. Hence we deduce from the updating rule of Step 4 in Algorithm 2.1 that there exists a constant
c2 such that µk ≤ c2. �

Then we deduce that there exist constants c3 and c4 such that

c3∥x̄k − xk∥ ≤ λk = µk∥gk∥ = µk∥gk − g(x̄k)∥ ≤ c4∥x̄k − xk∥, (4.12)

which shows that ∥x̄k − xk∥ is equivalent to λk.
The following lemma means that {xk} converges to X quadratically.

Lemma 4.3. Let Assumption 2 hold. Then we have

dist(xk+1, X) = O(dist(xk, X)2).

Proof. From the local error bound condition, (4.4), (2.11) and (4.2), we have

c1∥x̄k+1 − xk+1∥ ≤ ∥F(xk+1)∥

= ∥F(yk + d̂k)∥

≤ ∥F(yk + d̂k) − F(yk) − G(yk)d̂k∥ + ∥F(yk) + G(yk)d̂k∥

≤ L∥d̂k∥2
+ ∥F(yk) + Gkd̂k∥ + ∥(G(yk) − Gk)d̂k∥

≤ L∥d̂k∥2
+ λk∥d̂k∥ + L∥dk∥ ∥d̂k∥

= O(∥x̄k − xk∥2), (4.13)

where the last equality follows from Lemma 4.1 and (4.12). �
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The following theorem shows that {xk} converges to x∗ quadratically, which is stronger than that of Lemma 4.3.

Theorem 4.1. Let Assumption 2 hold. Then we have

∥sk+1∥ = O(∥sk∥2), ∥xk+1 − x∗
∥ = O(∥xk − x∗

∥
2).

Proof. From Lemma 4.3, it is clear for sufficiently large k that

∥x̄k − xk∥ ≤ ∥x̄k+1 − xk+1 + xk+1 − xk∥ ≤ ∥x̄k+1 − xk+1∥ + ∥sk∥ ≤ 2∥sk∥. (4.14)

This inequality together with Lemmas 4.1 and 4.3 yields

∥sk+1∥ = O(∥sk∥2), (4.15)

which implies that

∥xk+1 − x∗
∥ = O(∥xk − x∗

∥
2). �

4.2. Cubic convergence

To obtain faster convergence of the proposed method, we need to estimate ∥d̂k∥ more accurately. The following lemma
shows that ∥sk∥ is equivalent to ∥xk − x∗

∥ if xk converges to x∗ superlinearly, where sk = xk+1 − xk.

Lemma 4.4 ([2, Theorem 1.5.2]). If the sequence {xk} converges superlinearly to x∗, then

lim
k→∞

∥xk+1 − xk∥
∥xk − x∗∥

= 1.

Therefore we have from Lemma 4.4, Theorem 4.1 and Lemma 4.1 that there exist two positive constants c5 and c6 such
that

∥xk − x∗
∥ ≤ c5∥sk∥ ≤ c6∥x̄k − xk∥ ≤ c6∥xk − x∗

∥, (4.16)

which means that ∥xk − x∗
∥ is equivalent to ∥x̄k − xk∥.

By the theory of matrix perturbation [14] and (4.2), we have

∥Σ1 − Σ∗

1 ∥ + ∥Σ2∥ ≤ ∥Gk − G(x∗)∥ ≤ L∥xk − x∗
∥.

This inequality together with (4.16) yields

∥Σ1 − Σ∗

1 ∥ ≤ L∥x̄k − xk∥, ∥Σ2∥ ≤ L∥x̄k − xk∥. (4.17)

Lemma 4.5. Let Assumption 2 hold. Then we have

∥g(yk)∥ = O(∥x̄k − xk∥2),

∥U2UT
2 g(yk)∥ = O(∥x̄k − xk∥3). (4.18)

Proof. From (2.9), (4.12) and Lemma 4.1, we have

∥gk + Gkdk∥ = λk∥dk∥ = O(∥x̄k − xk∥2). (4.19)

Similarly, we know

∥g(yk) + Gkd̂k∥ = λk∥d̂k∥ = O(∥x̄k − xk∥2). (4.20)

Then we get from (4.4), (4.19) and Lemma 4.1 that

∥g(yk)∥ = ∥g(xk + dk) − gk − Gkdk∥ + ∥gk + Gkdk∥

= O(∥x̄k − xk∥2). (4.21)

From the local error bound condition and (4.21), we have

∥ȳk − yk∥ ≤ c−1
1 ∥g(yk)∥ = O(∥x̄k − xk∥2). (4.22)

Set G̃k = U1Σ1UT
1 and d̃k = −G̃+

k g(yk), then d̃k is the least square solution of

min ∥g(yk) + G̃kd∥.
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Therefore we have

∥U2UT
2 g(yk)∥ = ∥g(yk) + G̃kd̃k∥ ≤ ∥g(yk) + G̃k(ȳk − yk)∥

≤ ∥g(yk) + G(yk)(ȳk − yk)∥ + ∥(G(yk) − Gk)(ȳk − yk) + ∥(Gk − G̃k)(ȳk − yk) ∥

≤ L∥ȳk − yk∥2
+ L∥dk∥ ∥ȳk − yk∥ + ∥Σ2∥ ∥ȳk − yk∥

= O(∥x̄k − xk∥3),

where we use the fact g(ȳk) = 0, (4.4) and (4.2) in the third inequality, and the last equality follows from (4.22), (4.17) and
Lemma 4.1. �

Lemma 4.6. Let Assumption 2 hold. Then we have

∥d̂k∥ = O(∥x̄k − xk∥2). (4.23)

Proof. From (2.11), we have

d̂k = −(Gk + λkI)−1g(yk)

= −U1(Σ1 + λkI)−1UT
1 g(yk) − U2(Σ2 + λkI)−1UT

2 g(yk). (4.24)

Since xk → x∗, then Σ1 → Σ∗

1 and hence Σ−1
1 is uniformly bounded, that is, there exists a constant c7 such that

∥Σ−1
1 ∥ ≤ c7. (4.25)

Then from (4.24), (4.25), (4.12) and Lemma 4.5, we obtain

∥d̂k∥ ≤ ∥Σ−1
1 ∥ ∥U1UT

1 g(yk)∥ + λ−1
k ∥U2UT

2 g(yk)∥

≤ c7∥g(yk)∥ + λ−1
k ∥U2UT

2 g(yk)∥

= O(∥x̄k − xk∥2). �

Now from the local error bound condition again, we get

c1∥x̄k+1 − xk+1∥ ≤ ∥g(xk+1)∥ = ∥g(yk + d̂k)∥

≤ ∥g(yk + d̂k) − g(yk) − G(yk)d̂k∥ + ∥G(yk)d̂k + g(yk)∥

≤ L∥d̂k∥2
+ ∥(G(yk) − Gk)d̂k∥ + ∥Gkd̂k + g(yk)∥

≤ L∥d̂k∥2
+ L∥dk∥ ∥d̂k∥ + λk∥d̂k∥

= O(∥x̄k − xk∥3), (4.26)

where we use (4.4), (4.2) and (2.11) in the fourth inequality, and the last equality follows from Lemmas 4.6 and 4.1 and
(4.12).

From Lemma 4.1, (4.14) and (4.26), we have

∥sk+1∥ = O(∥sk∥3),

which implies that {xk} converges to x∗ cubically. We summarize this main result as follows.

Theorem 4.2. Let Assumption 2 hold. Then the sequence {xk} generated by Algorithm 2.1 converges cubically, that is, ∥xk+1 −

x∗
∥ = O(∥xk − x∗

∥
3).
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