
Journal of Computational and Applied Mathematics 246 (2013) 206–214

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Micromechanical-based criteria for the calibration of cohesive
zone parameters
Nawfal Blal a,b,c, Loïc Daridon a,c, Yann Monerie b,c,∗, Stéphane Pagano a,c

a Laboratoire de Mécanique et Génie Civil (LMGC), Université Montpellier 2, CNRS, CC 048 Place Eugène Bataillon, 34095 Montpellier cedex, France
b Institut de Radioprotection et de Sûreté Nucléaire, Bat. 702, CE Cadarache, BP3-13115 St. Paul-lez-Durance Cedex, France
c Laboratoire de Micromécanique et d’Intégrité des Structures, MIST Laboratory, IRSN-CNRS-Université Montpellier 2, France

a r t i c l e i n f o

Article history:
Received 15 February 2012
Received in revised form 18 September
2012

Keywords:
Micromechanics
Damage
Cohesive zone model
Homogenization

a b s t r a c t

This paper presents a new micromechanical model for a collection of cohesive zone
models embedded between each mesh of a finite element-type discretization. It aims
to fully extend the previous linear results of Blal et al. (2012) [11] to the calibration
of damageable cohesive parameters (cohesive peak stress, critical opening displacement,
cohesive energy, etc). The main idea of the approach consists in replacing the underlying
cohesive-volumetric discretization by an equivalent ‘matrix-inclusions’ composite. The
overall behavior of this equivalent composite is estimated using homogenization schemes
(Hashin–Shtrikman estimate and the modified secant method) and is given in a closed-
form as function of both cohesive and bulk properties and the mesh density. In the
particular case of a bilinear cohesive lawamicromechanical damagemodel for quasi-brittle
materials is derived. The corresponding local-to-global relationships are obtained for any
overall triaxiality loading ratio.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cohesive approaches have emerged as one of the most efficient methods in computational fracture mechanics. However
these approaches exhibit strong mesh sensitivity [1,2] and an accurate calibration of the cohesive parameters to extract
physically-based macroscopic properties has been until now a cumbersome task [3].

Various (semi-) empirical criteria have been proposed in the last ten years in order to avoid these difficulties (among
others, see [4,5]). To fix the idea, a cohesive zone model can be seen as a traction-separation law involving two main
parameters: a peak stressRcoh

max and a cohesive energyGcoh.Whatever the shape of the traction-separation law a characteristic
length is thus invoked, e.g. Gcoh/Rcoh

max. The computational challenge is to obtain rigorous criteria linking these characteristic
length to the surrounding bulk properties and to the size and the type of the underlying spatial discretization. Previous
criteria developed in the literature are mainly limited to unidimensional loadings and no theoretical result is available at
any triaxiality loading ratio in three dimensions.

Following a micromechanical-based approach initially proposed by [6], [7] have recently obtained such rigorous criteria
for a linear elastic cohesive zone model (no surface damage). We extend here these criteria to any damageable intrinsic
cohesive zone model. The main idea is to consider each face of a three dimensional mesh with embedded cohesive zone
models as a penny shaped damageable inclusion (Fig. 1). A cohesive-volumetric finite element (CVFE) scheme is thus
replaced by a matrix-inclusion composite, and the spatial distribution of inclusions corresponds to the mesh morphology.
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Fig. 1. Principle of the approach: from a cohesive-volumetric discretization to a ‘matrix-inclusions’ composite; (left) 2-D illustration, (right) 3-D
illustration.

Using a variational approach [8,9] and a linear lower bound [10], a rigorous theoretical estimate of the overall strain potential
of this composite is obtained.

Theoretical criteria on cohesive parameters are thus derived from this estimate. The elastic criterion of [7] is recalled
(Eq. (21)) and new damageable criteria are proposed. In particular, considering a bilinear cohesive law, closed-form
relationships (Eqs. (25)–(30)) between the microscopic cohesive parameters and the macroscopic fracture properties are
exhibited through an inverse analysis.

2. Embedding cohesive zone models in bulk media

The proposed micromechanical model is based on a cohesive-volumetric finite element (CVFE) scheme. The overall
behavior results in the coupling of the volumetric behavior of bulk elements and the smeared out cohesive surfaces
incorporating all softening processes. We focus our attention to elastic bulk behaviors and intrinsic cohesive zone models,
i.e. cohesive law with initial stiffness.

2.1. Bulk behavior

We consider the case of linear isotropic elastic media whose behavior is characterized by the constitutive relationships:

σ = CM
: ε with CM

= 3kMJ + 2µMK, (1)
where σ (resp. ε) is the stress (resp. strain) field, CM is a fourth order stiffness tensor, kM and µM are the bulk and the shear
modulus respectively. The symmetric tensors J and K define the generic basis of the fourth order isotropic and symmetric
tensors:

3J = i ⊗ i and K = I − J with 2Iijkl = (iikijl + iilijk) (2)
where i is the second order identity tensor.

2.2. Cohesive zone model

Without loss of generality, any intrinsic cohesive law can be given as a three-dimensional traction-separation law linking
the cohesive stress vector Rcoh to the opening displacement vector [[u]] = u+

−u−, where u+ (resp. u−) is the displacement
of the upper (resp. lower) part of the cohesive zone. In a local normal-tangent frame oriented by the normal vector n, the
opening displacement vector can be decomposed into a normal, uN, and a tangential, uT, component: [[u]] = uNn + uT. A
generic cohesive constitutive relation reads:

Rcoh
= K · [[u]] with K = β̄ × (CNn ⊗ n + CT (i − n ⊗ n)) , (3)

where CN (resp. CT) is the normal (resp. tangential) initial ‘stiffness’ of the cohesive law and β̄ is a surface damage parameter
(β̄ = 1 the cohesive zone is undamaged, 0 < β̄ < 1 cohesive zone is partially damaged and β̄ = 0 the cohesive zone is
fully damaged). Following [2], we assume that the damage parameter β̄ introduced in (3) depends on the Euclidian norm of
the opening displacement vector [[u]], i.e. β̄ = β(∥[[u]]∥) with β a damage function.

3. Micromechanical model

3.1. The cohesive-volumetric finite element scheme as a matrix-inclusion composite

In order to accurately estimate the overall behavior resulting from a CVFE discretization, the procedure proposed
in [7] is considered. The idea consists in introducing a continuous equivalent matrix-inclusion composite as a convenient
representation of the underlying cohesive-volumetric discretization (Fig. 1). The continuous matrix has the same behavior
as the bulk finite element behavior (Eq. (1)) whereas the inclusions behavior should represent the cohesive zone model
(Eq. (3)). Associating to the inclusions a fictitious thickness e that should tend to zero, and with the help of the strain
definition across the cohesive zones:

εcoh
=

1
2

[[u]] ⊗ n + n ⊗ [[u]]

e
, (4)
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a damageable fourth order stiffness tensor Ccoh is defined for the cohesive inclusions following [6,7]:

σcoh
= Ccoh


∥[[u]]∥


: εcoh with Ccoh


∥[[u]]∥


= eβ


∥[[u]]∥


CNEl + CTKl


(5)

where σcoh is the cohesive stress field and the tensors El and Kl are two components of the fourth order symmetric and
transversely isotropic tensors generic frame:

El = n ⊗ n ⊗ n ⊗ n, Kl = 2(js ⊗ js + jt ⊗ jt)
where js = n⊗s s and jt = n⊗s t with s and t being two orthogonal vectors defining the transversal plane; (n, t, s) define
the local orthogonal basis of the cohesive inclusion. We underline that combining (5) and (4), the cohesive stress vector
Rcoh

= σcoh
· n satisfies the constitutive relationship (3).

The cohesive inclusions are distributed according to the spatial distribution of the underlying cohesive-volumetric mesh
morphology. Their density, denoted by Z , corresponds to the specific cohesive surface: Z = A/S where A is the total edge
length (resp. area) in 2-D (resp. in 3-D) and S is the total area (resp. volume) of the 2-D (resp. 3-D) meshed body. For a
discretization characterized by a mesh size Lmesh, A is proportional to Lq−1

mesh and S is proportional to Lqmesh where q is the
considered dimension. The density Z is thus inversely proportional to the mesh size and can be expressed as:

Z =
γ

Lmesh
,

where the parameter γ depends on the spatial distribution of the considered mesh [11]. In particular, in the case of a
statistical isotropic mesh, e.g. a Delaunay-type mesh, the inclusions are randomly distributed in space and in orientation.

Moreover we assume that the cohesive inclusions have a penny-shaped form (Fig. 1). This geometric assumption has no
consequence for planar meshes where the edges are replaced by zero thickness whiskers. For 3-D meshes, we suppose that
the polygonal edges are replaced by flat disks. We admit that these situations are close to each other but are different in full
rigour.

3.2. Overall elastic stiffness

As a first step, the results obtained in [7] for the elastic behaviors are briefly recalled. In this section, the cohesive
inclusions behavior is assumed to be linear, i.e. β̄ = 1. The overall behavior of the matrix-inclusion composite is estimated
using theHashin–Shtrikman scheme [10,12] and a lower bound of the overall elasticmoduli is derived under the assumption
ofmacroscopic isotropy, i.e. isotropic bulk behavior and isotropic distribution of inclusions (e.g. Delaunay-typemeshes). This
bound is obtained by considering the inclusions as the reference medium, and the corresponding overall stiffness tensor
reads after the passage to limit e → 0 [7]:

Chom
= 3khomJ + 2µhomK, (6)

where the overall bulk and shear moduli are respectively given by:
khom

kM
=

ξ k

ξ k + 1
with ξ k

=
CN

ZkM
,

µhom

µM
=

ξµ

ξµ + 1
with ξµ

=
15

4(1 + 3CN/CT)
×

CN

ZµM
.

(7)

The overall Young’s modulus and Poisson ratio associated to this bound read:

Ehom

EM
=

ξ E

1 + ξ E
where ξ E

=
5

1 + (4/3)(CN/CT)
×

CN

EMZ
, (8)

νhom

νM
=

15CNνM
+ (2CN/CT − 1)EMZ

15CNνM + (4CN/CT + 3)EMZνM
. (9)

It is worth noting that Eqs. (7) and (8) show respectively that a cohesive-volumetric formulation with vanishing tangential
cohesive stiffness (CT → 0) leads to a macroscopic no shear (µhom

→ 0) and no tension (Ehom
→ 0) material.

3.3. Overall quasi-brittle damage

In this section, the case of non linear damageable cohesive zone models is considered (0 ≤ β̄ < 1). The macroscopic
stress6 associated to the softening part is obtained via the constitutive law:6 = Chom

: E,where the homogeneous stiffness
tensor Chom is estimated using the modified secant method [9], which is equivalent to the Ponte Castañeda variational
approach [13]. The non linear stiffness of the inclusions is approached by a secant modulus:

Ccoh
sct = Ccoh


∥[[u]]∥2


I


, (10)
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where ⟨.⟩I denotes the mean value over the cohesive inclusions. This secant stiffness Ccoh
sct replaces the cohesive tensor Ccoh

in the Hashin–Shtrikman estimate.
With the help of definition (4), the opening displacement norm ∥[[u]]∥ can be linked to the fourth order tensor › =

(1/2)ε ⊗ ε as:

∥[[u]]∥
2

= 2e2(−J + 2K) :: ›. (11)
Moreover, the generalized Hill lemma allows to derive the secondmoment of the strain in the inclusion phase ⟨›⟩I from the
overall elastic energy [14]:

⟨›⟩I =
1

2eZ
∂(E : Chom

: E)
∂Ccoh

sct
. (12)

Hence, substituting (12) into (11), the mean square root of the opening displacement norm reads:
∥[[u]]∥2


I =


e
Z

(−J + 2K) ::
∂(E : Chom : E)

∂Ccoh
sct

. (13)

Involving the hydrostatic part of the strain loading Em = (1/3)tr(E) and the equivalent part Eeq =
√

(2/3)Edev : Edev (with
Edev being the deviatoric strain tensor: Edev = E − Emi), this last relation is rewritten as:

∥[[u]]∥2

I =


AE2

m + BE2
eq (14)

where A and B requires to calculate the derivatives ∂(E : Chom
: E)/∂Ccoh

sct . Due to the specific form of the chosen homoge-
nization scheme, these derivatives can be determined analytically here. In more complicated cases, a numerical derivation
can be used as proposed in [15].

Moreover, incorporating an intermediate result of [7] linking the normal-to-tangential cohesive stiffness ratio CN/CT to
the Poisson ratio:

CN

CT
=

1
2
1 + 3νM

1 − 2νM
, (15)

the coefficients A and B are reduced to:

A = 2
2 + νM

1 − 2νM


3EM

EMZ + 3β̄CN(1 − 2νM)

2

(16)

B =
23 + (63 + 82νM)νM

10(1 + νM)2


3EM

EMZ + 3β̄CN(1 − 2νM)

2

. (17)

Finally, the expression of the secant modulus is given by:

Ccoh
sct = e × β̄ × (CNEl + CTKl), with β̄ = β


AE2

m + BE2
eq


. (18)

The cohesive secant stiffness tensor Ccoh
sct is thus obtained solving the non linear problem (18)-right in which A and B

depend on the damage parameter β̄ (see Eqs. (16) and (17)). For any damage function β — i.e. for any shape of the cohesive
law — the solution β̄ of this non linear problem requires generally a numerical method as fixed point schemes. The overall
secant behavior is thus derived using the Hashin–Shtrikman bound (6) and (7) and the Eq. (15):

6 = Chom
sct : E with Chom

sct = 3khomsct (E)J + 2µhom
sct (E)K, (19)

where
khomsct

kM
=

ξ k
sct

ξ k
sct + 1

with ξ k
sct =

β̄CN

ZkM
,

µhom
sct

µM
=

ξ
µ
sct

ξ
µ
sct + 1

with ξ
µ
sct =

3(1 − 2νM)

2(1 + νM)
×

β̄CN

ZµM
.

(20)

This overall behavior defines a micromechanical damage model whatever the triaxiality loading ratio and the cohesive law
type. In Section 4.2, the case of a bilinear cohesive law is discussed: the non linear problem (18)-right can be solved in a
closed-form.

4. Inverse identification and practical criteria on cohesive parameters

4.1. Cohesive stiffness

Using cohesive zone models induces an inherent additional compliance that should be controlled. This problem arises
naturally for cohesive laws with initial stiffness (intrinsic models) but also for cohesive laws with an initial infinite slope
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RN

Rmax
N

CN CN

uN

Rmax
T

RT

CT CT

uT

Fig. 2. A bilinear cohesive law: pure opening, uT = 0, (left) and pure shear separation, uN = 0, (right).

(extrinsic models) when dealing with unloading–reloading behaviors. Moreover, the elastic cohesive stiffness is known to
be mesh-dependent as illustrated in [1,2].

To overcome these difficulties, some semi-empirical criteria have been proposed in the literature and can be summarized
as follows: if Lmesh denotes the mesh size of a cohesive-volumetric discretization, the effective elastic stiffness of an elastic
medium with embedded cohesive zone model is not significantly disturbed if the condition

CNLmesh

EM
≥ α

is satisfied, where the real α has to be much more larger than 1, e.g. [4,5,2].
Recently, the rigorous micromechanical-based criterion proposed by [11,7]:

CNLmesh

EM
≥ γ

R
1 − R

1
3 − 6νM

and
CT

CN
= 2

1 − 2νM

1 + 3νM
(21)

has shown the dependency of α on the bulk Poisson ratio νM, on the spatial distribution of the underlyingmesh (through
γ ) and on the apparent stiffness reduction tolerated by the user: R = Ehom/EM.

4.2. Cohesive peak stress and critical opening displacement

Focusing on the case of quasi-brittle elastic materials, we attempt in what follows to derive micromechanical based
criteria for the calibration of softening cohesive parameters. For the sake of simplicity, and without any loss of generality,
the cases of a bilinear cohesive law (Fig. 2) and of overall pure deviatoric loadings (J : E = 0 and J : 6 = 0) are
first considered. A procedure is proposed to calibrate the cohesive parameters as a function of: (1) the overall material
properties (e.g. experimental data), (2) the shape of the cohesive law, (3) the spatial cohesive-volumetric discretization
(mesh morphology and mesh size). These detailed results are then given for the case of overall pure hydrostatic loadings on
a crude form.

4.2.1. Overall pure deviatoric loadings
For the case of a bilinear cohesive law, the damage function β reads:

β (∥[[u]]∥) = D[0,δa] (∥[[u]]∥) + D[δa,δc ] (∥[[u]]∥)
δa

δa − δc


1 −

δc

∥[[u]]∥


(22)

where D[a,b] (x) is the door function equal to 1 if x ∈ [a, b] and 0 otherwise, δa is the opening displacement at the peak
cohesive stress for pure normal or tangent loadings, i.e. Rmax

N = CNδa and ∥Rmax
T ∥ = CTδa, and δc is the critical opening

displacement where the complete local failure occurs (∥Rcoh
∥ = 0 when ∥[[u]]∥ = δc).

For this bilinear cohesive law, the non linear problem (18) can be solved analytically for the case of pure deviatoric
loadings (Em = 0). In particular, an overall damage initiation strain E0

eq can be defined when the cohesive peak stress is
reached:

E0
eq =

√
2(1 + νM)(1 − 2νM)(1 + 3νM)

1 − 2νM + 5(νM)2
 

23 + 63νM + 82(νM)2
 Rcoh

max

EMR
, (23)

where Rcoh
max =


(Rmax

N )2 + ∥Rmax
T ∥2 is the maximal cohesive strength. This macroscopic failure initiation depends on the

matrix properties EM and νM, on themaximal cohesive strength Rcoh
max and on the apparent stiffness reduction R, but does not

depend on the morphology γ or the density Z of the mesh. In the same way, the overall critical failure strain Ec
eq is reached

when the cohesive resistance vanishes (Z = γ /Lmesh):

Ec
eq =

√
10(1 + νM)

3

23 + 63νM + 82(νM)2

γ δc

Lmesh
. (24)
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This critical failure strain does not depend on the Young’s modulus of the matrix EM or on the apparent stiffness reduction
R, but increases linearly with respect to the critical opening displacement δc and decreases with respect to the mesh size
Lmesh.

Based on these definitions, three main results can be derived. First, in order to avoid a complete failure occurring before
the local surface damage begins, i.e. to satisfy the condition Ec

eq ≥ E0
eq, the critical opening displacement has to respect the

condition

δc ≥
3

√
5

(1 − 2νM)

1 + 3νM


1 − 2νM + 5(νM)2

Lmesh

γ R
Rcoh
max

EM
. (25)

Hence, we assume in the sequel that the critical opening displacement is linearly proportional to the right part of the
inequality (25) through a multiplier coefficient larger than one.

Second, the overall deviatoric strain, Eeq, leading to the overall deviatoric peak stress Σeq, satisfies the equation:

∂Σeq

∂Eeq
|Eeq = 0 with


Σeq =


(3/2)6 : K : 6

Eeq =


(2/3)E : K : E,
(26)

which, once solved, leads to the cohesive-to-overall peak stress relationship:

Rcoh
maxΣeq

=

√
2


1 − 2νM + 5(νM)2
 

23 + 63νM + 82(νM)2


3 (1 − 2νM) (1 + 3νM)
. (27)

This last ratio can be understood as a stress concentration factor that tends to infinitywhen the Poisson ratio νM of thematrix
tends to 1/2. For practical purposes, this stress concentration factor increases from about 2.7 to 5.4 for νM ranging between
0.2 and 0.35. These values have to be compared to 3, corresponding to a circular void in an isotropic and infinite elastic plate
subjected to remote loadings. The proposed micromechanical model has thus to be viewed as an effective brittle damage
model rather than a model dealing with a single crack propagation.

Third, the overall failure energyWc under pure deviatoric loading (the area under the overall stress–strain curveΣeq−Eeq)
is given after integrating (19) from sound material (β̄ = 1) to fully damaged material (β̄ = 0):

Wc =


6 : dE.

This gives a relationship between the critical opening δc and the overall failure energy Wc :

δc

Lmesh
=

3
γ


2
5


23 + 63νM + 82(νM)2

1 + νM

WcΣeq

. (28)

Based on these three main results and if we are in position to determine, experimentally for example, the macroscopic
maximal stress Σeq and the overall energy failure Wc , then the cohesive parameters Rcoh

max and δc can be conveniently
calibrated as:

Rcoh
max =

√
2


1 − 2νM + 5(νM)2
 

23 + 63νM + 82(νM)2


3 (1 − 2νM) (1 + 3νM)
Σeq, (29)

and

δc = 3


2
5


23 + 63νM + 82(νM)2

1 + νM

WcΣeq

Lmesh

γ
. (30)

It is clearly shown that the cohesive peak stress depends only on thematerial Poisson ratiowhereas the critical opening is
given in terms both ofmaterial properties and themesh quantities Lmesh and γ . The criteria resulting from Eqs. (21), (29) and
(30) define practical rules to suitably calibrate the cohesive law parameters, namely: (1) the cohesive stiffnesses CN and CT,
(2) the maximal cohesive stress Rcoh

max and (3) the critical separation δc (equivalently the cohesive energy) as functions of the
overall material properties (EM , νM) for a given mesh size Lmesh and a user-defined elastic reduction R = Ehom/EM (Fig. 3).

Although these results exhibit a mesh dependence of the local cohesive parameters (except Rcoh
max as shown in

Fig. 3-left), the proposed approach leads to a mesh-independent overall behavior since the macroscopic behavior remains
invariant regardless of themesh size (Fig. 3-right). Indeed, taking into account the previous relationships, the evolution of the
macroscopic secant moduli khomsct and µhom

sct is given as function only of the material properties and the applied macroscopic
strain E (cf Eqs. (6), (8) and (21) and here Em = 0):

khomsct (E)
kM

=
µhom

sct (E)
µM

=
RΣeqΣeq

2
− 6RWcµM

Σeq − 2
Wc

Eeq


. (31)

Another key point when dealing with cohesive zonemodels, is the so-called internal cohesive length lcoh. Following [16],
this characteristic length lcoh can be defined as the ratio between the toughness of the material Gcoh (the area under the
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Fig. 3. Cohesive zone model with no mesh sensitivity. Right: the overall material behavior (Eq. (19)) obtained using the bilinear cohesive law (Eq. (22)).
Left: The proposed criteria (Eqs. (21)–(30)) for the selection of the cohesive parameters (Table 1): the case of a shear loading for a mesh set of parameters
and a user tolerated elastic loss of 5%, i.e. R = 0.95 (the material properties are given in Table 1).

Table 1
Mechanical parameters used in Fig. 3. Top:material properties. Bottom: cohesive parameters
calibrated using criteria (21), (29) and (30).

EM (MPa) νM Σeq (MPa) Wc (MPa)
100 1/7 200 100

Mesh CN = CT (GPa) Rcoh
max (MPa) δc (mm)

(a) 2.6 342.54 1.62
(b) 5.2 342.54 0.81

cohesive stress-opening curve) and the cohesive peak stress, Rcoh
max

lcoh =
Gcoh

Rcoh
max

. (32)

It should be noticed that this characteristic length must not be confused with the cohesive length scale over which the
cohesive bonds act at the crack tip (process zone), but corresponds to an internal length for the cohesive zone model. For
sake of simplicity, defining Gcoh for mixed modes as:

Gcoh
= Gcoh

N + Gcoh
T with Gcoh

N =
1
2
CNδaδc and Gcoh

T =
1
2
CTδaδc, (33)

our approach leads to (see Eqs. (21), (29), (30) and (33)):

lcoh

Lmesh
=

3

5
√
2γ

3 − νM

1 + νM


23 + 63νM + 82(νM)2

1 − 2νM + 5(νM)2

WcΣeq

. (34)

It is worth noting that the characteristic cohesive length does not only depend on physical properties, but also on the mesh
morphology, on the mesh size and on the loading rate.

4.2.2. Overall pure hydrostatic loadings
For the case of pure hydrostatic loadings (Eeq = 0), the same procedure gives after some algebra a set of relationships

for the calibration of cohesive parameters:

Rcoh
max =

√
10

1 + 3νM


(2 + νM)


1 − 2νM + 5(νM)2


1 − 2νM

Σm (35)

and

δc = 6
√
2


2 + νM

1 − 2νM

WcΣm

Lmesh

γ
. (36)

The combination of (6), (35) and (36) leads to the following equations for the evolution of the macroscopic secant moduli
khomsct and µhom

sct with no mesh-dependency:

khomsct (E)
kM

=
µhom

sct (E)
µM

=
RΣmΣm

2
− 6RWckM

Σm − 2
Wc

Em


. (37)

This last relationship is similar to the previous one obtained for pure deviatoric loadings (see Eq. (31)).
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Fig. 4. Illustration of the mesh-independency of the overall behavior: (a) the unit cell with ‘‘crossed-triangle quadrilateral’’ meshes, (b) the cohesive law
(39) calibrated with respect to the obtained micromechanical criteria for two given mesh sizes, (c) the overall deviatoric behavior Σxy vs Exy and (d) the
overall mesh-independent failure energy corresponding to the mesh-dependent local cohesive law.

Moreover, using Eqs. (33), (21), (35) and (36), the cohesive length reads:

lcoh

Lmesh
=

3
√
2

√
5γ

(3 − νM)


2 + νM

(1 − 2νM)

1 − 2νM + 5(νM)2

 WcΣm

. (38)

Again, the same form is obtained as in the deviatoric case (see Eq. (34)) but with a different pre factor depending on the
material Poisson ratio. For practical purposes, the cohesive length is about two times larger for pure hydrostatic loadings
than for a pure deviatoric one.

5. Numerical validation

The accuracy of the proposed criteria is illustrated in a numerical analysis. In particular, these criteria concern the
cohesive parameters but are a priori related to the bilinear shape of the cohesive law. The proposed numerical simulations
aim to extend the validity of these criteria to an other shape for the cohesive law. Following [17], a specific form of the
cohesive law proposed by [18] is used in this section:

β (∥[[u]]∥) = D[0,δa] (∥[[u]]∥) + D[δa,δc ] (∥[[u]]∥)
δc − ∥[[u]]∥

δc/3 + ∥[[u]]∥
(39)

with

δc = 3


w

9 − 4ln4


1
CN

+
1
CT


where w is a reference surface fracture energy and ln the natural logarithm (Fig. 4-(b)).

The simulations concern the case of a unit square cell under a pure shearing loading and considering 2-D plane-strain
conditions. The cell is meshed using triangular elements arranged in a ‘‘crossed-triangle’’ quadrilateral pattern (Fig. 4-(a)).
The bulk behavior is supposed to be elastic brittle (EM

= 1 MPa, νM
= 1/7, Σeq = 6 × 103 Pa). The software Xper [19] is

used for the cohesive-volumetric finite element simulations.
As shown in Fig. 4, the numerical results confirm that, even if, the local cohesive parameters are mesh-dependent, the

overall fracture properties are mesh-independent: the difference between the critical separation of the cohesive law for the
two meshes is about 15%; Fig. 4-(b), while the difference between the critical overall strain and failure energy for the two
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meshes is about 0%; Fig. 4-(c) and (d). This mesh-independency is obtained since:

1. the finite element calculus convergence is reached,
2. the cohesive parameters are suitably calibrated for the given mesh type and size.

These results are consistent with previous remarks obtained in the literature (Tijssens et al. [20] for instance).

6. Conclusion

Practical criteria for the calibration of cohesive zoneparameters are obtained through anewmicromechanicalmodel. This
model is based on the study of the overall constitutive behavior of an equivalent ‘matrix-inclusions’ composite introduced
as a representation of a cohesive-volumetric finite element scheme. The approach can be applied whatever themacroscopic
triaxiality loading rate and the shape of the cohesive law, extending thus previous partial results from the literature. The
case of a bilinear cohesive zone model leads to an overall damage model for quasi-brittle materials. This closed-formmodel
allows to link, through an inverse analysis, all local cohesive parameters to the overall material properties at any givenmesh
size. The accuracy of the proposed approach and its wide ability to deal with various cohesive laws have been illustrated in
a numerical analysis.
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