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1. Introduction

The study of characterizations of solution sets of mathematical programming problems is a topic which has attracted
several authors for years. For programs that have multiple solutions, based on understanding characterizations of solution
sets, solution methods can be developed. Mangasarian firstly presented characterizations of solution sets for convex prob-
lems by using subdifferentials of convex functions [1]. Since the appearance of the paper, there were several results on
characterizations of solution sets of convex/nonconvex optimization problems published such as [2–12]. The method above
was developed to give characterizations of solution sets of cone-constrained convex problems [7] and of convex infinite
problems [10]. This method was also used to give characterizations of solution sets of nonconvex problems such as [13,14]
with generalized convex functions involved.

Our aim is to present an approach to establish characterizations of solution sets of a class of nonconvex programs via dual
problems. We also show that characterizations of solution sets of some class of convex/nonconvex optimization problems
given in several papers before can be obtained by this approach.

Let us consider the following problem

(P) Minimize f (x)
subject to ft(x) ≤ 0, t ∈ T ,

x ∈ C,

where the functions f , ft : X → R, t ∈ T , are locally Lipschitz on a Banach space X, T is an arbitrary (possibly infinite) index
set, and C is a closed convex subset of X . Problems with an infinite number of constraints have been considered recently in
several papers with various requirements on the functions f , ft , t ∈ T , and the space X [10,15–20].
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It is well known that generalized convexity plays crucial role in nonconvex optimization. In this paper we use a concept
of generalized convexity, named pseudoconvexity, in case nondifferentiable functions proposed by Hiriart-Urruty [21] for
the functions involved. Note that the concept of pseudoconvex function for differentiable functions was firstly introduced
by Mangasarian [22]. The reader is referred to [23], where the properties of generalized convexity are surveyed. Theory of
nonsmooth optimization used in this paper is based on the well known books of Clarke [24,25].

To give characterizations of solution sets of inequality constrained convex/nonconvex programming problems, it usually
needs at least one given solutionwhich satisfies some optimality condition. Then Lagrange functions, corresponding to some
Lagrange multipliers given by optimality conditions, are proved to be constant on the solution sets of the problems [7–9,14,
13,10]. Based on these conditions, characterizations of solution sets of the problems are established. In our approach, to give
characterizations of the solution set of (P), we formulate a dual problem of (P) in amixed type ofWolfe type andMond–Weir
type. Then characterizations of the solution set will be established upon the assumptions that there exists a given solution
of the dual problem of (P) and the two problems are of equal optimal value.

We now describe the results. The first part is devoted to present some new properties of Lagrange function. Note that
the Lagrange function associated to (P) is also the objective function of its dual problem in Wolfe type. We show that the
Lagrange function (corresponding to some Lagrange multiplier) can be constant on a subset of X which is wider than the
solution set of (P). Moreover, with a given solution of (P), the Lagrange function is constant on the set of all corresponding
Lagrange multipliers. In the second part, we establish several characterizations of the solution set via the dual problems
of (P). We also show that, by using similar approaches, several results on characterizations of solution sets of optimization
problems studied before can be found.

The paper is organized as follows. The next section is devoted to preliminaries. Our main results are in Section 3. They
are included in two part. In the first one, some new properties of Lagrange function are presented. The last one is devoted
to give the characterizations of solution set of (P). Some examples are given.

2. Preliminaries

Let us denote by R(T ) the linear space of generalized finite sequences λ = (λ)t∈T such that λt ∈ R for all t ∈ T but only
finitely many λt ≠ 0 (see [26]),

R(T )
:= {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt ≠ 0}.

For each λ ∈ R(T ), the supporting set corresponding to λ is T (λ) := {t ∈ T | λt ≠ 0}. It is a finite subset of T . We denote
R(T )

+ := {λ = (λt)t∈T ∈ R(T )
| λt ≥ 0, t ∈ T }. It is a nonnegative cone of R(T ). For λ ∈ R(T ) and {zt}t∈T ⊂ Z, Z being a real

linear space, we understand that
t∈T

λtzt =



t∈T (λ)

λtzt if T (λ) ≠ ∅,

0 if T (λ) = ∅.

Throughout this paper X is a Banach space, C is a nonempty closed convex subset of X, T is a compact topological space,
f : X → R is a locally Lipschitz function, and ft : X → R, t ∈ T , are locally Lipschitz with respect to x uniformly in t , i.e.,

∀x ∈ X, ∃U(x), ∃K > 0, |ft(u) − ft(v)| ≤ K∥u − v∥, ∀u, v ∈ U(x), ∀t ∈ T .

The following concepts can be found in the Clarke’s books [24,25]. Let D be a nonempty closed convex subset of X . The
normal cone to D at a point z ∈ D coincides with the normal cone in the sense of convex analysis and given by

N(D, z) :=

v ∈ X∗

| v(x − z) ≤ 0, ∀x ∈ D

.

Let g : X → R be a locally Lipschitz function. The directional derivative of g at z ∈ X in direction d ∈ X , is

g ′(z; d) = lim
t→0+

g(z + td) − g(z)
t

if the limit exists. The Clarke generalized directional derivative of g at z ∈ X in direction d ∈ X is

gc(z; d) := lim sup
y→z
t→0+

g(y + td) − g(y)
t

.

The Clarke subdifferential of g at z ∈ X , denoted by ∂cg(z), is defined by

∂cg(z) :=

v ∈ X∗

| v(d) ≤ gc(z; d), ∀d ∈ X

.

A locally Lipschitz function g is said to be regular (in the sense of Clarke) at z ∈ X if g ′(z; d) exists and

gc(z; d) = g ′(z; d), ∀d ∈ X .

The following definition is due to Hiriart-Urruty [21].

Definition 2.1. A locally Lipschitz function f : X → R is said to be pseudoconvex if for all x, y ∈ X ,

f c(x; y − x) ≥ 0 H⇒ f (y) ≥ f (x).
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Definition 2.2. A locally Lipschitz function f : X → R is said to be quasiconvex if for all x, y ∈ X ,

f (y) ≤ f (x) H⇒ f c(x; y − x) ≤ 0.

We need the following lemmas.

Lemma 2.1. Let f : X → R be a locally Lipschitz pseudoconvex function. If there exists u ∈ ∂c f (x) such that u(y−x) ≥ 0, y, x ∈

X, then f (y) ≥ f (x).

Lemma 2.2. Let f : X → R be a locally Lipschitz function. If f is pseudoconvex then f is quasiconvex.

3. Main results

Let us denote by A the feasible set of (P) and denote by Sol(P) the solution set of (P),

Sol(P) = {z ∈ A | f (z) ≤ f (x), ∀x ∈ A}.

We suppose that Sol(P) ≠ ∅. Suppose further that, under some constraint qualification condition, if z ∈ Sol(P) then there
exists λ ∈ R(T )

+ such that the following condition holds (see [14,19]),

0 ∈ ∂c f (z) +


t∈T

λt∂
c ft(z) + N(C, z), λt ft(z) = 0, ∀t ∈ T . (1)

The Lagrange function associated to (P) is formulated by

L(x, λ) =

f (x) +


t∈T

λt ft(x), (x, λ) ∈ C × R(T )
+

+∞, otherwise.

For every λ ∈ R(T )
+ , the function L(·, λ) is locally Lipschitz on X .

The dual problem of (P) in a mixed type of Wolfe type and in Mond–Weir type is formulated by

(D) Maximize L(y, λ) := f (y) +


t∈T

λt ft(y)

s.t. 0 ∈ ∂c f (y) +


t∈T

(λt + µt)∂
c ft(y) + N(C, y),

µt ft(y) ≥ 0, t ∈ T ,

(y, λ, µ) ∈ C × R(T )
+ × R(T )

+ .

Let us denote by G the feasible set of (D). The optimal values of the problems (P) and (D) are denoted by V (P) and V (D),
respectively.

It is obvious that, for µ = 0, the problem (D) is equivalent to the dual problem of (P) in Wolfe type, denoted by (DW),

(DW) Maximize L(y, λ) := f (y) +


t∈T

λt ft(y)

s.t. 0 ∈ ∂c f (y) +


t∈T

λt∂
c ft(y) + N(C, y),

(y, λ) ∈ C × R(T )
+ .

For λ = 0, the problem (D) is equivalent to the dual problem of (P) in Mond–Weir type, denoted by (DM),

(DM) Maximize f (y)
s.t. 0 ∈ ∂c f (y) +


t∈T

µt∂
c ft(y) + N(C, y),

µt ft(y) ≥ 0, t ∈ T ,

(y, µ) ∈ C × R(T )
+ .

From now on, we suppose that the function L(·, λ) is pseudoconvex on X for every λ ∈ R(T )
+ , and f , ft , t ∈ T , are regular

on X .

Lemma 3.1. If z is a solution of (P) and there exists λ̄ ∈ R(T )
+ such that the condition (1) holds for (z, λ̄), then (z, λ̄, 0) and

(z, 0, λ̄) are solutions of (D) and V (P) = V (D).

Proof. If z is a solution of (P) and there exists λ̄ such that the condition (1) holds for (z, λ̄), then (z, λ̄, 0) and (z, 0, λ̄) are
feasible solutions of (D). Firstly, we prove that L(z, λ̄) ≥ L(x, λ) for all (x, λ, µ) ∈ G. Indeed, since (z, λ̄) satisfies (1), we
have that λ̄t ft(z) = 0 for all t ∈ T . Then,

L(z, λ̄) − L(x, λ) = f (z) − L(x, λ). (2)
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On the other hand, since (x, λ, µ) ∈ G, there exist u ∈ ∂c f (x), ut ∈ ∂c ft(x), t ∈ T and w ∈ N(C, x) such that µt ft(x) ≥ 0
for all t ∈ T and

u +


t∈T

(λt + µt)ut + w = 0.

Hence,
u +


t∈T

(λt + µt)ut


(y − x) = −w(y − x) ≥ 0, ∀y ∈ C .

Since the function L(·, λ) is pseudoconvex on X for every λ ∈ R(T )
+ , and f , ft , t ∈ T , are regular on X , it is easy to deduce that

L(y, λ + µ) − L(x, λ + µ) ≥ 0, ∀y ∈ C .

Since z ∈ A and µt ft(x) ≥ 0 for all t ∈ T , we get

f (z) ≥ L(z, λ + µ) ≥ L(x, λ + µ) ≥ L(x, λ).

This and (2) implies that L(z, λ̄) ≥ L(x, λ) for all (x, λ, µ) ∈ G. We conclude that (z, λ̄, 0) is a solution of (D).
For the feasible point (z, 0, λ̄), we need to prove that L(z, 0) ≥ L(x, λ) for all (x, λ, µ) ∈ G. Indeed, note that L(z, 0) −

L(x, λ) = f (z)− L(x, λ). Using an argument as above, we obtain f (z) ≥ L(x, λ) for all (x, λ, µ) ∈ G. This shows that (z, 0, λ̄)
is a solution of (D). �

The following corollary can be deduced directly from Lemma 3.1. The proof is omitted.

Lemma 3.2. If z is a solution of (P) and there exists λ̄ ∈ R(T )
+ such that (1) holds for (z, λ̄), then (z, λ̄) is a solution of (DW) and

(DM), and V (P) = V (DW) = V (DM).

3.1. Some properties of Lagrange function

It is well known that, in mathematical programming, Lagrange function plays a key role to find maxima and minima
of problems which have constraint functions. In this part we will introduce some new properties of the Lagrange function
associated to (P) which relate to its dual problems.

Proposition 3.1. Suppose that (y∗, λ∗, µ∗) is a solution of (D).
(i) It holds L(y, λ∗

+ µ∗) = V (D) for all y ∈ G1 := {y ∈ C | (y, λ∗, µ∗) ∈ G} and µ∗
t ft(y

∗) = 0 for all t ∈ T .
(ii) Furthermore, if V (D) = V (P) then L(y, λ∗

+ µ∗) = V (D) for all y ∈ Sol(P) and (λ∗
t + µ∗

t )ft(y) = 0 for all t ∈ T .

Proof. (i) Let (y∗, λ∗, µ∗) be a solution of (D). We obtain (y∗, λ∗, µ∗) ∈ C × R(T )
+ × R(T )

+ such that

0 ∈ ∂c f (y∗) +


t∈T

(λ∗

t + µ∗

t )∂
c ft(y∗) + N(C, y∗), µ∗

t ft(y
∗) ≥ 0, t ∈ T .

Thus, there exist u ∈ ∂c f (y∗), ut ∈ ∂c ft(y∗), t ∈ T , w ∈ N(C, y∗) such that

u +


t∈T

(λ∗

t + µ∗

t )ut + w = 0. (3)

Since L(·, λ) is pseudoconvex on X for every λ ∈ R(T )
+ , and f , ft , t ∈ T , are regular on X , using an argument as in the proof of

Lemma 3.1, from (3) we deduce

L(y∗, λ∗
+ µ∗) ≤ L(y, λ∗

+ µ∗), ∀y ∈ C . (4)

Hence,

L(y∗, λ∗) ≤ L(y∗, λ∗
+ µ∗) ≤ L(y, λ∗

+ µ∗), ∀y ∈ G1.

So,

L(y∗, λ∗) ≤ inf
G1

L(y, λ∗
+ µ∗). (5)

On the other hand, for λ∗ and µ∗ above,

inf
G1

L(y, λ∗
+ µ∗) ≤ sup

G1
L(y, λ∗

+ µ∗) ≤ sup
(y,λ,µ)∈G

L(y, λ) = L(y∗, λ∗).

Combining this and (5) we get

L(y, λ∗
+ µ∗) = L(y∗, λ∗) = V (D), ∀y ∈ G1.

In addition, by taking y = y∗ in the left hand side of the equality L(y, λ∗
+µ∗) = L(y∗, λ∗) we get µ∗

t ft(y
∗) = 0 for all t ∈ T .
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(ii) If V (D) = V (P) then by (4), we get

V (P) = L(y∗, λ∗
+ µ∗) ≤ L(y, λ∗

+ µ∗) ≤ f (y) = V (P), ∀y ∈ Sol(P),

i.e., L(y, λ∗
+ µ∗) = V (D) for all y ∈ Sol(P). This implies that f (y) +


t∈T (λ

∗
t + µ∗

t )ft(y) = f (y) for all y ∈ Sol(P). Hence,
(λ∗

t + µ∗
t )ft(y) = 0 for all t ∈ T . �

Corollary 3.1. Suppose that z is a solution of (P) and there exists λ̄ such that the condition (1) holds for (z, λ̄). Then

L(y, λ̄) = f (z), ∀y ∈ G1 := {y ∈ C | (y, λ̄, 0) ∈ G}, (6)

and λ̄t ft(y) = 0 for all y ∈ Sol(P).

Proof. Let z ∈ Sol(P) and λ̄ ∈ R(T )
+ be such that the condition (1) holds for (z, λ̄). By Lemma 3.1, (z, λ̄, 0) is a solution of

(D) and strong duality holds. Hence, by (i) of Proposition 3.1, the conclusion (6) holds and by (ii) of Proposition 3.1, we get
λ̄t ft(y) = 0 for all y ∈ Sol(P). �

Remark 3.1. (1) From the corollary above, we can see that the Lagrange function of (P) can be constant on a subset of X
wider than the solution set of (P) and Corollary 3.1 covers Lemma 1 in [18].

(2) If the involved functions of (P) are convex, Corollary 3.1 covers Lemma 3.1 in [10].
(3) Using the same method, we can establish the results which cover Theorem 2.1 in [7] and Theorem 3.2 in [13].

Let Ḡ and ¯̄G be the feasible sets of (DW) and (DM), respectively. We deduce some more corollaries as follows.

Corollary 3.2. Suppose that (y∗, λ∗) is a solution of (DW).
(i) It holds L(y, λ∗) = V (DW) for all y ∈ Ḡ1, where Ḡ1 = {y ∈ C | (y, λ∗) ∈ Ḡ}.
(ii) Furthermore, if V (DW) = V (P) then L(y, λ∗) = V (DW) for all y ∈ Sol(P) and λ∗

t ft(y) = 0 for all t ∈ T .

Proof. The conclusions of the corollary follow if the problem (D) is considered in the special case µ = 0. In this case the
fact that (y∗, λ∗) is a solution of (DW) is equivalent to (y∗, λ∗, 0) is a solution of (D). �

Corollary 3.3. Suppose that (y∗, µ∗) is a solution of (DM).

(i) It holds L(y, µ∗) = V (DM), ∀y ∈
¯̄G1 where ¯̄G1 = {y ∈ C | (y, µ∗) ∈

¯̄G}.
(ii) Furthermore, if V (DM) = V (P) then L(y, µ∗) = V (DM) for all y ∈ Sol(P) and µ∗

t ft(y) = 0 for all t ∈ T .

Proof. The conclusions of the corollary follow if the problem (D) is considered in the special case λ = 0. �

We now present another property of Lagrange function.

Proposition 3.2. Suppose that (y∗, λ∗, µ∗) is a solution of (D). If f (y∗) ≥ V (P) then

L(y∗, λ) = V (P), ∀λ ∈ G2 := {λ ∈ R(T )
+ | (y∗, λ, µ) ∈ G, λt ft(y∗) ≥ 0, t ∈ T }.

Proof. Since (y∗, λ∗, µ∗) is a solution of (D) and f (y∗) ≥ V (P),

L(y∗, λ∗) ≥ L(y∗, λ) ≥ f (y∗) ≥ V (P), ∀λ ∈ G2. (7)

On the other hand, since (y∗, λ∗, µ∗) ∈ G, using an argument as in the proof of Proposition 3.1, we get L(y∗, λ∗) ≤ L(y∗, λ∗
+

µ∗) ≤ L(y, λ∗
+ µ∗) for all y ∈ C . Hence, L(y∗, λ∗) ≤ L(y, λ∗

+ µ∗) ≤ f (y) for all y ∈ A. This implies that L(y∗, λ∗) ≤ V (P).
Combining this and (7), we obtain the desired result. �

Corollary 3.4. If y∗ is a solution of (P) then the function L(y∗, ·) is constant on G2.

Proof. Suppose that y∗ is a solution of (P). There exists λ∗ such that (1) holds. By Lemma 3.1, (y∗, λ∗, 0) is a solution of (D).
By Proposition 3.2, we have that L(y∗, ·) is constant on G2. �

Corresponding to (DW) we have the following corollary.

Corollary 3.5. Let (y∗, λ∗) be a solution of (DW). If f (y∗) ≥ V (P) then

L(y∗, λ) = V (P), ∀λ ∈ Ḡ2 = {λ ∈ R(T )
+ | (y∗, λ) ∈ Ḡ, λt ft(y) ≥ 0, t ∈ T }.

Proof. Let (y∗, λ∗) be a solution of (DW). It is equivalent to (y∗, λ∗, 0) is a solution of the problem (D) with µ = 0. Applying
Proposition 3.2, we deduce the function L(y∗, ·) is constant on Ḡ2. �

Example.

(Q1) Minimize x − y + (x − y)3

s.t. y − x ≤ 0,
x2 − y ≤ 0.
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A simple computation gives that Sol(Q1) = {(x, y) | 0 ≤ x ≤ 1, x = y}. The dual problem of (Q1) in Wolfe type is
formulated by

(Q∗

1) Maximize L(z, λ) = x − y + (x − y)3 + λ1(y − x) + λ2(x2 − y)
s.t. (0, 0) =


1 + 3(x − y)2 − λ1 + 2λ2x, −1 − 3(x − y)2 + λ1 − λ2


,

(x, y) ∈ R2, λ1, λ2 ≥ 0.

We can check that z̄ = (0, 0) is a solution of (Q1) and (z̄, λ̄) is a solution of (Q∗

1) where λ̄ = (1, 0). Note that L(·, λ̄) is
a pseudoconvex function. We will show that L(·, λ̄) is constant on a subset of X wider than solution set of (Q1). Indeed, we
can check that the set Ḡ1 corresponding to λ̄ = (1, 0) is {(x, y) | x − y = 0}. Obviously, the function L(·, λ̄) equals to 0 on
Ḡ1 and the range of x is out of [0, 1].

Let z be a solution of (Q1). From the feasible set of (Q∗

1)we can check that Ḡ2 = {(λ1, λ2) | λ1 > 0, λ2 = 0}. The function
L(z, ·) is constant on Ḡ2.

3.2. Characterizations of solution set of (P)

In this part, based on the results on properties of the Lagrange function established above, we will give characterizations
of solution set of (P) via its dual problems. Then characterizations of solution sets of some aforesaid problems can be covered.

Theorem 3.1. Suppose that (z, λ̄, µ̄) is a solution of (D). If V (P) = V (D) then Sol(P) = S = S1 where

S = {y ∈ C | ∃u ∈ ∂cL(y, λ̄ + µ̄), u(z − y) = 0, ft(y) = 0, t ∈ T (λ̄ + µ̄); ft(y) ≤ 0, t ∈ T \ T (λ̄ + µ̄)},

S1 = {y ∈ C | ∃u ∈ ∂cL(y, λ̄ + µ̄) ∩ ∂cL(z, λ̄ + µ̄), u(z − y) = 0, ft(y) = 0,
t ∈ T (λ̄ + µ̄); ft(y) ≤ 0, t ∈ T \ T (λ̄ + µ̄)}.

Proof. Since S1 ⊂ S, it needs to prove that Sol(P) ⊂ S1 and S ⊂ Sol(P).
(i) S ⊂ Sol(P): Let y ∈ S. Then y ∈ C and there exists u ∈ ∂cL(y, λ̄ + µ̄) such that u(z − y) = 0 and ft(y) = 0, t ∈

T (λ̄ + µ̄); ft(y) ≤ 0, t ∈ T \ T (λ̄ + µ̄), i.e., y ∈ A. Since the function L(·, λ̄ + µ̄) is pseudoconvex on X , by Lemma 2.1, it
deduces that L(z, λ̄ + µ̄) ≥ L(y, λ̄ + µ̄), i.e.,

f (z) +


t∈T

(λ̄t + µ̄t)ft(z) ≥ f (y) +


t∈T

(λ̄t + µ̄t)ft(y).

By Proposition 3.1, we have µ̄t ft(z) = 0 for all t ∈ T . Combining this and ft(y) = 0, t ∈ T (λ̄+ µ̄), from the inequality above
we get

V (D) = f (z) +


t∈T

λ̄t ft(z) ≥ f (y).

Since V (P) = V (D) and y ∈ A, V (P) ≥ f (y). Thus, y ∈ Sol(P).
(ii) Sol(P) ⊂ S1: Let y ∈ Sol(P). By Proposition 3.1, we have L(z, λ̄ + µ̄) = L(y, λ̄ + µ̄) and ft(y) = 0 for all t ∈ T (λ̄ + µ̄).

Since L(z, λ̄+ µ̄) = L(y, λ̄+ µ̄), by Lemma 2.2 and Definition 2.2, we can deduce that u(y− z) ≤ 0 for all u ∈ ∂cL(z, λ̄+ µ̄).
Since (z, λ̄, µ̄) ∈ G, there exist v ∈ ∂c f (z), ut ∈ ∂c ft(z), t ∈ T , and w ∈ N(C, z) such that

v +


t∈T

(λ̄t + µ̄t)ut + w = 0 (8)

and µ̄t ft(z) ≥ 0 for all t ∈ T . Set u = v +


t∈T (λ̄t + µ̄t)ut . It is easy to see that u ∈ ∂cL(·, λ̄ + µ̄)(z) and u(x − z) ≥ 0
for all x ∈ C . Hence, there exists u ∈ ∂cL(·, λ̄ + µ̄)(z) such that u(y − z) = 0. To complete the proof, it needs to prove that
u ∈ ∂cL(·, λ̄ + µ̄)(y). We claim that if u(d) ≤ L◦(·, λ̄ + µ̄)(z; d) then u(d) ≤ L◦(·, λ̄ + µ̄)(y; d). Indeed, suppose to contrary
that u(d) > L◦(·, λ̄+ µ̄)(y; d). Then L◦(·, λ̄+ µ̄)(z; d)−L◦(·, λ̄+ µ̄)(y; d) > 0. Since f , ft , t ∈ T are regular on X, L(·, λ̄+ µ̄)
are regular on X . There exist α > 0 and t > 0 small is enough such that

lim
t→0

L(z + td, λ̄ + µ̄) − L(z, λ̄ + µ̄)

t
−

L(y + td, λ̄ + µ̄) − L(y, λ̄ + µ̄)

t
> α > 0.

This implies that L(z + td, λ̄ + µ̄) − L(y + td, λ̄ + µ̄) > 0. We get L(z, λ̄ + µ̄) > L(y, λ̄ + µ̄), a contradiction. Hence,
u ∈ ∂cL(z, λ̄ + µ̄) implies u ∈ ∂cL(y, λ̄ + µ̄). �

Corollary 3.6. Suppose that z is a solution of (P) and there exists λ̄ such that the condition (1) is satisfied. Then Sol(P) = S ′
= S ′

1
where

S ′
= {y ∈ C | ∃u ∈ ∂cL(y, λ̄), u(z − y) = 0, ft(y) = 0, t ∈ T (λ̄); ft(y) ≤ 0, t ∈ T \ T (λ̄)},

S ′

1 = {y ∈ C | ∃u ∈ ∂cL(y, λ̄) ∩ ∂cL(z, λ̄), u(z − y) = 0, ft(y) = 0, t ∈ T (λ̄); ft(y) ≤ 0, t ∈ T \ T (λ̄)}.
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Proof. If z is a solution of (P) and there exists λ̄ such that the condition (1) is satisfied then, by Lemma 3.1, (z, λ̄, 0) is a
solution of (D). Applying Theorem 3.1, we get the desired results. �

Note that as µ = 0, the problem (D) reduces to (DW) and as λ = 0 it reduces to (DM). In the following corollary we show
that characterizations of solution set of (P) can be established via (DW). It is derived directly from Theorem 3.1.

Corollary 3.7. Suppose that (z, λ̄) is a solution of (DW). If V (P) = V (DW) then Sol(P) = S ′
= S ′

1.

Proof. Let (z, λ̄) be a solution of (DW). It is equivalent to (z, λ̄, 0) is a solution of (D) in the case µ = 0. By applying
Theorem 3.1 we can deduce the desired result. �

Remark 3.2. Note that if z is a solution of (P) and the condition (1) is satisfied then, by Lemma 3.1, there exists λ̄ such that
(z, λ̄) is solution of (DW) and V(P) = V(DW). This shows that Corollary 3.6 can be deduced from Corollary 3.7.

Next, we deal with characterizations of solution set (P) by using the dual problem of (P) in Mond–Weir type.

Corollary 3.8. Suppose that (z, λ̄) is a solution of (DM). If V (P) = V (DM) then Sol(P) = S ′
= S ′

1.

Proof. Let (z, λ̄) be a solution of (DM). It is equivalent to (z, 0, λ̄) is a solution of (D). By applying Theorem 3.1we can deduce
the desired result. �

Remark 3.3. We also note that if z is a solution of (P) and the condition (1) is satisfied then, by Lemma 3.1, there exists λ̄
such that (z, λ̄) is solution of (DM) and V(P) = V(DM). This shows that Corollary 3.6 can be deduced from Corollary 3.8.

We now give the other characterizations of solution set of (P).

Theorem 3.2. Suppose that (z, µ̄), is a solution of (DM), the function f is pseudoconvex on X, and the functions ft , t ∈ T (µ̄) are
quasiconvex on X. If V (P) = V (DM) then Sol(P) = S2 = S3 where

S2 = {y ∈ C | ∃u ∈ ∂c f (y), u(z − y) = 0, ft(y) = 0, t ∈ T (µ̄); ft(y) ≤ 0, t ∈ T \ T (µ̄)},

S3 = {y ∈ C | ∃u ∈ ∂c f (y) ∩ ∂c f (z), u(z − y) = 0, ft(y) = 0, t ∈ T (µ̄); ft(y) ≤ 0, t ∈ T \ T (µ̄)}.

Proof. Since S3 ⊂ S2, it needs to prove that S2 ⊂ Sol(P) and Sol(P) ⊂ S3.
(i) Let y ∈ S2. Then y ∈ A and there exists u ∈ ∂c f (y) such that u(z − y) = 0 and ft(y) = 0, t ∈ T (µ̄); ft(y) ≤ 0, t ∈

T \T (µ̄). Since the function f is pseudoconvex onX , from u(z−y) = 0,we get f (z) ≥ f (y). SinceV (P) = V (DM), V (P) ≥ f (y).
Hence, y ∈ Sol(P).

(ii) Let y ∈ Sol(P). We will prove that y ∈ S3. Since V (P) = V (DM), f (z) = f (y). Combining this and the property of
pseudoconvex f , by Lemma 2.2, we get u(y − z) ≤ 0 for all u ∈ ∂c f (z). In addition, since (z, µ̄) ∈

¯̄G, there exist u ∈ ∂c f (z),
ut ∈ ∂c ft(z), t ∈ T , w ∈ N(C, z), and µ̄t ft(z) ≥ 0 for all t ∈ T such that

u +


t∈T

µ̄tut + w = 0. (9)

Since ft , t ∈ T (µ̄), are quasiconvex on X and ft(z) ≥ 0 for all t ∈ T (µ̄), f ◦
t (z; y − z) ≤ 0 for y ∈ A. Hence,

ut(y − z) ≤ 0, ut ∈ ∂c ft(z), t ∈ T (µ̄).

This and (9) imply u(y− z) ≥ 0. Thus u(y− z) = 0.We now prove that ft(y) = 0 for all t ∈ T (µ̄). Note that, by Corollary 3.3,
we get µ̄t ft(y) = 0 for all t ∈ T , i.e., ft(y) = 0 for all t ∈ T (µ̄). To complete the proof we need to show that u ∈ ∂c f (y), but
this conclusion is satisfied by using an argument similar to the one in the last part of the proof of Theorem 3.1. �

Corollary 3.9. Suppose that z is a solution of (P) and there exists µ̄ ∈ R(T )
+ such that the condition (1) holds. Suppose further

that f is pseudoconvex on X and the functions and ft , t ∈ T (µ̄), are quasiconvex on X. Then Sol(P) = S2 = S3.

Proof. From Theorem 3.2 and based on Lemma 3.1, we can deduce the desired results. �

Remark 3.4. The conclusion of the corollary above coincides with Theorem 3.2 in [14]. In case the involved functions are
convex we can find back the results established in [10].

In the theorem above, if the feasible set of (P) is a convex subset of X then, by using an argument similarly to the one
in [14, Theorem 3.2], we can prove that ut(y − z) ≤ 0 for x ∈ A, ut ∈ ∂c ft(z), t ∈ T , without assuming that ft , t ∈ T , are
quasiconvex functions. We obtain the following theorem and corollary with the proofs omitted.

Theorem 3.3. Suppose that (z, µ̄) is a solution of (DM) and the function f is pseudoconvex over X. If V (P) = V (DM) and the
feasible set of (P) is a convex subset of X then Sol(P) = S2 = S3.
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Corollary 3.10. Suppose that z is a solution of (P) and there exists µ̄ ∈ R(T )
+ such that the condition (1) holds. If the function f

is pseudoconvex over X and the feasible set of (P) is a convex subset of X then Sol(P) = S2 = S3.

Example.

(Q2) Minimize f (x, y) = (x − y) + (x − y)3

subject to ft(x, y) ≤ 0, t ∈ T ,

(x, y) ∈ C := {(x, y) | x2 + y2 ≤ 1, x ≥ 0}

where ft(x, y) =


sin(ty − x), t ∈ (0, 1]
x3 − y, t = 0 and T = [0, 1]. For (x, y) ∈ C , we can check that ty − x ∈ [−

√
2,

√
2] ⊂ [−π/2, π/2]

for all t ∈ (0, 1]. Hence,

sin(ty − x) ≤ 0 ⇔ ty − x ≤ 0, t ∈ (0, 1].

The feasible set of (Q2) is {(x, y) | 0 ≤ x ≤ 1, y ≤ x, y ≥ x3}. We can see that the objective function of the problem is
pseudoconvex and the feasible set is a convex subset in R2. Let λ be such that λ1 = 1 and λt = 0 for all t ∈ T \ {1}. We can
check that (0, 0) is a solution of (Q2) and it satisfies the optimality condition (1) corresponding to λ. In this case we obtain
T (λ) = {1}. By using the formulation S2, the solution set of (Q2) can be determined by

Sol(Q2) = {(x, y) ∈ C | (1 + 3(x − y)2)(y − x) = 0, f1(x, y) = 0, ft(x, y) ≤ 0, t ∈ T \ {1}}.

A simple computation gives that Sol(Q2) = {(x, y) | 0 ≤ x ≤ 1, y = x}.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology (no. 2010-0012780) and was supported by the National
Foundation for Science and Technology Development (NAFOSTED) Vietnam.

References

[1] O.L. Mangasarian, A simple characterization of solution sets of convex programs, Oper. Res. Lett. 7 (1998) 21–26.
[2] J.V. Burke, M. Ferris, Characterization of solution sets of convex programs, Oper. Res. Lett. 10 (1991) 57–60.
[3] V. Jeyakumar, X.Q. Yang, Characterizing the solution sets of pseudolinear programs, J. Optim. Theory Appl. 87 (1995) 747–755.
[4] S. Deng, Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization, J. Optim. Theory Appl. 96 (1998)

123–131.
[5] V.I. Ivanov, First order characterizations of pseudoconvex functions, Serdica Math. J. 27 (2001) 203–218.
[6] J.P. Penot, Characterization of solution sets of quasiconvex programs, J. Optim. Theory Appl. 117 (2003) 627–636.
[7] V. Jeyakumar, G.M. Lee, N. Dinh, Lagrange multiplier conditions characterizing the optimal solution sets of cone-constrained convex programs,

J. Optim. Theory Appl. 123 (2004) 83–103.
[8] V. Jeyakumar, G.M. Lee, N. Dinh, Characterizations of solution sets of convex vector minimization problems, European J. Oper. Res. 174 (2006)

1380–1395.
[9] N. Dinh, V. Jeyakumar, G.M. Lee, Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems,

Optimization 55 (2006) 241–250.
[10] T.Q. Son, N. Dinh, Characterizations of optimal solution sets of convex infinite programs, TOP 16 (2008) 147–163.
[11] X.M. Yang, On characterizing the solution sets of pseudoinvex extremum problems, J. Optim. Theory Appl. 140 (2009) 537–542.
[12] C. Liu, X.M. Yang, H. Lee, Characterizations the of solution sets of pseudoinvex programs and variational inequalities, J. Inequal. Appl. 2011 (2011) 32.
[13] C.S. Lalitha,M.Mehta, Characterizations of solution sets ofmathematical programs in terms of Lagrangemultipliers, Optimization 58 (2009) 995–1007.
[14] D.S. Kim, T.Q. Son, Characterizations of solution sets of a class of nonconvex semi-infinite programming problems, J. Nonlinear Convex Anal. 12 (2011)

429–440.
[15] N. Dinh, M.A. Goberna, M.A. Lopez, From linear to convex systems: consistency, Farkas lemma and applications, J. Convex Anal. 13 (2006) 113–133.
[16] N. Dinh, M.A. Goberna, M.A. Lopez, T.Q. Son, New Farkas-type constraint qualifications in convex infinite programming, ESAIM Control Optim. Calc.

Var. 13 (2007) 580–597.
[17] N. Dinh, B.S. Mordukhovich, T.T.A. Nghia, Subdifferentials of value functions and optimality conditions for some classes of DC and bilevel infinite and

semi-infinite programs, Math. Program. 123 (2009) 101–138.
[18] D.S. Kim, T.Q. Son, ε-Optimality conditions for nonconvex semi-infinite programs involving support functions, Fixed Point Theory Appl. (2011)

http://dx.doi.org/10.1155/2011/175327.
[19] T.Q. Son, J.J. Strodiot, V.H. Nguyen, ε-Optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of

constraints, J. Optim. Theory Appl. 141 (2009) 389–409.
[20] T.Q. Son, D.S. Kim, N.N. Tam, Weak stability and strong duality of a class of nonconvex infinite programs via augmented Lagrangian, J. Global Optim.

53 (2012) 165–184.
[21] J.B. Hiriart-Urruty, New Concept in nondifferrentiable programming, Bull. Soc. Math. France, Mém. 60 (1979) 57–85.
[22] O.L. Mangasarian, Pseudo-convex functions, J. SIAM Control, Ser. A 3 (1965) 281–290.
[23] R. Pini, C. Singh, A survey of recent [1985–1995] in generalized convexity with applications to duality theory and optimality conditions, Optimization

39 (1990) 311–360.
[24] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[25] F.H. Clarke, Yu.S. Ledyaev, J.S. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, Berlin, 1998.
[26] M.A. Goberna, M.A. López, Linear Semi-Infinite Optimization, J. Wiley & Sons, Chichester, 1998.

http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref1
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref2
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref3
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref4
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref5
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref6
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref7
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref8
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref9
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref10
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref11
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref12
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref13
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref14
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref15
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref16
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref17
http://dx.doi.org/doi:10.1155/2011/175327
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref19
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref20
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref21
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref22
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref23
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref24
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref25
http://refhub.elsevier.com/S0377-0427(13)00623-7/sbref26

	A new approach to characterize the solution set of a pseudoconvex programming problem
	Introduction
	Preliminaries
	Main results
	Some properties of Lagrange function
	Characterizations of solution set of (P)

	Acknowledgments
	References


