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1. Introduction

Integro-parabolic differential equations of Volterra type arise in the chemical, physical and engineering sciences (see [1]
for details). In this paper we give a numerical treatment for nonlinear integro-parabolic differential equations of Volterra
type. The parabolic problem under consideration is given in the form

ut − Lu + f (x, t, u)+

 t

0
g0(x, t, s, u(x, s))ds = 0, (x, t) ∈ ω × (0, T ], (1)

u(x, t) = h(x, t), (x, t) ∈ ∂ω × (0, T ],

u(x, 0) = ψ(x), x ∈ ω,

where ω is a connected bounded domain in Rκ (κ = 1, 2, . . .) with boundary ∂ω. The linear differential operator L is given
by

Lu =

κ
α=1

∂

∂xα


D(x, t)

∂u
∂xα


+

κ
α=1

vα(x, t)
∂u
∂xα

,

where the coefficients of the differential operators are smooth and D is positive in ω × [0, T ]. It is also assumed that the
functions f , g0, h and ψ are smooth in their respective domains.

In solving suchnonlinear problems by the finite difference or finite elementmethods, the corresponding discrete problem
on each discrete time level is usually formulated as a nonlinear system of algebraic equations. A basic mathematical concern
of this problem is whether the nonlinear system possesses a solution. This nonlinear system requires some iterativemethod
for the computation of numerical solutions. This leads to the question of convergence of the sequence of iterations. The aim
of this paper is to investigate the above questions concerning the existence and uniqueness of a solution to the nonlinear
system, methods of iterations for the computation of the solution.
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Our iterative scheme is based on the method of upper and lower solutions and associated monotone iterates. By
using upper and lower solutions as two initial iterations, one can construct two monotone sequences which converge
monotonically from above and below, respectively, to a solution of the problem.

Monotone iterative schemes for solving nonlinear parabolic equations were used in [2–8]. In [9], a monotone iterative
method for solving nonlinear integro-parabolic equations of Fredholm type is presented. Here, the two important points
in investigating the monotone iterative method concerning a stopping criterion on each time level and estimates of
convergence rates, in the case of solving linear discrete systems on each time level inexactly, were not given. In this paper,
we investigate the monotone iterative method in the case when on each time level nonlinear difference schemes are solved
inexactly, and give an analysis of convergence rates of the monotone iterative method.

The structure of the paper as follows. In Section 2, we introduce a nonlinear difference scheme for the numerical solution
of (1). A monotone iterative method is presented in Section 3. Existence and uniqueness of the solution to the nonlinear
difference scheme are established. An analysis of convergence rates of themonotone iterativemethod is given. Convergence
of the nonlinear difference scheme to the nonlinear integro-parabolic problem (1) is established. Section 4 deals with
construction of initial upper and lower solutions. Section 5 presents results of numerical experiments.

2. The nonlinear difference scheme

On the domains ω and [0, T ], we introduce meshes ωh and ωτ , respectively. For solving (1), consider the nonlinear two-
level implicit difference scheme

LU(p, tk)+ f (p, tk,U)+ g(p, tk,U)− τ−1
k U(p, tk−1) = 0, (2)

(p, tk) ∈ ωh
× (ωτ \ {0}),

with the boundary and initial conditions

U(p, tk) = h(p, tk), (p, tk) ∈ ∂ωh
× (ωτ \ {0}),

U(p, 0) = ψ(p), p ∈ ωh,

where ∂ωh is the boundary of ωh and time steps τk = tk − tk−1, k ≥ 1, t0 = 0.
The difference operator L is defined by

LU(p, tk) = LhU(p, tk)+ τ−1
k U(p, tk),

LhU(p, tk) = d(p, tk)U(p, tk)−


p′∈σ ′(p)

a(p′, tk)U(p′, tk),

where σ ′(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an interior mesh point p ∈ ωh. We make the following
assumptions on the coefficients of the difference operator Lh:

d(p, tk) > 0, a(p′, tk) ≥ 0, p′
∈ σ ′(p), (3)

d(p, tk)−


p′∈σ ′(p)

a(p′, tk) ≥ 0, (p, tk) ∈ ωh
× (ωτ \ {0}).

The integral g in (1) is approximated by the finite sum g based on the Riemann sum (the rectangular rule)

g(p, tk,U) =

k
l=1

τlg0(p, tk, tl,U(p, tl)).

We also assume that the mesh ωh is connected. It means that for two interior mesh points p̃ and p̂, there exists a finite
set of interior mesh points {p1, p2, . . . , ps} such that

p1 ∈ σ ′(p̃), p2 ∈ σ ′(p1), . . . , ps ∈ σ ′(ps−1), p̂ ∈ σ ′(ps). (4)

On each time level tk, k ≥ 1, introduce the linear problem

(L + c)W (p, tk) = Ψ (p, tk), p ∈ ωh, (5)
c(p, tk) ≥ 0, W (p, tk) = h(p, tk), p ∈ ∂ωh.

We now formulate the maximum principle for the difference operator L + c and give an estimate to the solution to (5).

Lemma 1. Let the coefficients of the difference operator Lh satisfy (3) and the mesh ωh be connected.
(i) If a mesh function W (p, tk) satisfies the conditions

(L + c)W (p, tk) ≥ 0 (≤ 0), p ∈ ωh,

W (p, tk) ≥ 0 (≤ 0), p ∈ ∂ωh,

then W (p, tk) ≥ 0 (≤ 0) in ωh.
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(ii) The following estimate to the solution to (5) holds true

∥W (·, tk)∥ωh ≤ max


∥h(·, tk)∥∂ωh ,max

p∈ωh

|Ψ (p, tk)|

c(p, tk)+ τ−1
k


, (6)

where

∥W (·, tk)∥ωh = max
p∈ωh

|W (p, tk)|, ∥h(·, tk)∥∂ωh = max
p∈∂ωh

|h(p, tk)|.

The proof of the lemma can be found in [10].

3. The monotone iterative method

Two mesh functionsU(p, tk) andU(p, tk) are called ordered upper and lower solutions of (2), if they satisfy the relationU(p, tk) ≥ U(p, tk), (p, tk) ∈ ωh
× ωτ , and

LU(p, tk)+ f (p, tk,U)+ g(p, tk,U)− τ−1
k
U(p, tk−1) ≥ 0, (7)

LU(p, tk)+ f (p, tk,U)+ g(p, tk,U)− τ−1
k
U(p, tk−1) ≤ 0,

(p, tk) ∈ ωh
× (ωτ \ {0}),U(p, tk) ≤ h(p, tk) ≤ U(p, tk), p ∈ ∂ωh,U(p, 0) ≤ ψ(p) ≤ U(p, 0), p ∈ ωh.

For a given pair of ordered upper and lower solutionsU ,U and tk fixed, we define the sector

⟨U(tk),U(tk)⟩ = {U(p, tk) : U(p, tk) ≤ U(p, tk) ≤ U(p, tk), p ∈ ωh
}.

We assume that f and g0 satisfy the constraints

∂ f
∂u
(p, tk,U) ≤ c(p, tk) on ⟨U(tk),U(tk)⟩, (8)

0 ≤ −
∂g0
∂u
(p, tk, tl,U), 1 ≤ l ≤ k, on ⟨U(tl),U(tl)⟩,

where c(p, tk) is a nonnegative bounded function in ωh
× ωτ . The function g0 is said to be nondecreasing.

Remark 1. We say that g0 is a nonincreasing function if −∂g0/∂u ≤ 0. When the function g0 is nonincreasing, a transfor-
mation given by u → M − u for some constantM > 0 leads to a similar system where the function g0 is nondecreasing.

We now construct an iterative method for solving (2) in the following way. On each time level tk, k ≥ 1, we calculate
U (n)(p, tk) as follows:

(L + c)Z (n)(p, tk) = −R(p, tk,U (n−1)), p ∈ ωh, (9)
R(p, tk,U (n−1)) = LU (n−1)(p, tk)+ f (p, tk,U (n−1))+ g(p, tk,U (n−1))− τ−1

k U(p, tk−1),

Z (1)(p, tk) = h(p, tk)− U (0)(p, tk), Z (n)(p, tk) = 0, n ≥ 2, p ∈ ∂ωh,

U (n)(p, tk) = U (n−1)(p, tk)+ Z (n)(p, tk), p ∈ ωh,

U(p, tk) = U (n(tk))(p, tk), U(p, 0) = ψ(p), p ∈ ωh,

where R(p, tk,U (n−1)) is the residual of the difference scheme (2) on U (n−1), U(p, tk) is an approximation of the exact
solution on time level tk, n(tk) is a number of iterative steps on time level tk, and c(p, tk) is defined in (8).

3.1. Monotone convergence of the iterative method

We introduce the notation

F(p, tk,U) = c(p, tk)U(p, tk)− f (p, tk,U)− g(p, tk,U), (10)

and give a monotone property of F .

Lemma 2. Let U, V be two functions in ⟨U(tk),U(tk)⟩ such that U(p, tk) ≥ V (p, tk), and let (8) hold. Then

F(p, tk,U) ≥ F(p, tk, V ), p ∈ ωh. (11)
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Proof. From (10), we have

F(p, tk,U)− F(p, tk, V ) = c(p, tk)[U(p, tk)− V (p, tk)] − [f (p, tk,U)− f (p, tk, V )] − [g(p, tk,U)− g(p, tk, V )].

By the mean-value theorem, we have

[f (p, tk,U)− f (p, tk, V )] =
∂ f
∂u
(tk)(U(p, tk)− V (p, tk)), (12)

g(p, tk,U)− g(p, tk, V ) =

k
l=1

τl
∂g0
∂u
(tl)[U(p, tl)− V (p, tl)],

∂ f
∂u
(tk) ≡

∂ f
∂u
(p, tk, E), V (p, tk) ≤ E(p, tk) ≤ U(p, tk).

∂g0
∂u
(tl) ≡

∂g0
∂u
(p, tk, tl,Q ), V (p, tl) ≤ Q (p, tl) ≤ U(p, tl).

Thus, from here and the assumptions of the lemma, we conclude (11). �

In the following theorem we prove the monotone property of the iterative method (9).

Theorem 1. Let the coefficients of the difference operator L from (2) satisfy (3) and the computational mesh ωh be connected
(4). Assume that f (p, tk,U) and g0(p, tk, tl,U) satisfy the inequalities from (8), where U and U are ordered upper and lower
solutions (7) of the nonlinear difference scheme (2). Then the sequences {U (n)α }, α = 1,−1, generated by (9) with, respectively,
U (0)1 = U and U (0)

−1 = U, are ordered upper α = 1 and lower α = −1 solutions to (2) and on each time level tk, k ≥ 1, converge
monotonically

U (n−1)
−1 (p, tk) ≤ U (n)

−1 (p, tk) ≤ U (n)1 (p, tk) ≤ U (n−1)
1 (p, tk), p ∈ ωh, (13)

where n ≥ 1.

Proof. Since U (0)1 = U is an upper solution, then from (7) and (9) we conclude that

(L + c)Z (1)1 (p, t1) ≤ 0, p ∈ ωh, Z (1)1 (p, t1) ≤ 0, p ∈ ∂ωh,

where t1 = τ1. From Lemma 1, it follows that

Z (1)1 (p, t1) ≤ 0, p ∈ ωh. (14)

Similarly, for a lower solution U (0)
−1 = U , we conclude that

Z (1)
−1 (p, t1) ≥ 0, p ∈ ωh. (15)

We now prove that

U (1)
−1 (p, t1) ≤ U (1)1 (p, t1), p ∈ ωh. (16)

By (9),

(L + c)U (1)α (p, t1) = c(p, t1)U (0)α (p, t1)− f (p, t1,U (0)α )− g(p, t1,U (0)α )+ τ−1
1 Uα(p, 0), p ∈ ωh,

U (1)α (p, t1) = h(p, t1), p ∈ ∂ωh, α = 1,−1.

From here, taking into account that Uα(p, 0) = ψ(p), α = 1,−1, in the notationW (n)
= U (n)1 − U (n)

−1 , n ≥ 0, we have

(L + c)W (1)(p, t1) = F(p, t1,U
(0)
1 )− F(p, t1,U

(0)
−1 ), p ∈ ωh,

W (1)(p, t1) = 0, p ∈ ∂ωh,

where F is defined in (10). Since U (0)1 (p, t1) ≥ U (0)
−1 (p, t1), by Lemma 2, we conclude that the right hand side in the difference

equation is nonnegative. The positivity property in Lemma 1 impliesW (1)(p, t1) ≥ 0, and this leads to (16).
We now prove that U (1)1 (p, t1) and U (1)

−1 (p, t1) are upper and lower solutions (7), respectively. Let nα(tk) be numbers of
iterative steps implemented on time level tk, k ≥ 1 for the upper α = 1 and lower α = −1 sequences. Taking into account
that

g(·,U (n)α )− g(·,U (n−1)
α ) = τk[g0(·, tk,U (n)α )− g0(·, tk,U (n−1)

α )],
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where g(·,U) and g0(·, tk,U) stand for g(p, tk,U) and g0(p, tk, tk,U(p, tk)), respectively. From here, by the mean-value
theorem, we obtain

g(·,U (n)α )− g(·,U (n−1)
α ) = τk

∂g0
∂u
(tk)Z (n)α (p, tk),

∂g0
∂u
(tk) ≡

∂g0
∂u
(p, tk, tk,Q (n)

α ),

where Q (n)
α (p, tk) lies between U (n)α (p, tk) and U (n−1)

α (p, tk). From here, (9), by the mean-value theorem for f (p, t1,U
(1)
1 ), we

obtain

R(p, t1,U
(1)
1 ) = −


c −

∂ f
∂u
(p, t1, E

(1)
1 )


Z (1)1 (p, t1)+ τ1

∂g0
∂u
(t1)Z

(1)
1 (p, t1), (17)

where the partial derivatives are calculated at intermediate points E(1)1 and Q (1)
1 , which lie in the sector ⟨U (1)1 (t1),U

(0)
1 (t1)⟩.

From here, (14)–(16), it follows that the partial derivatives satisfy (8). From (8), (14) and (17), we conclude that

R(p, t1,U
(1)
1 ) ≥ 0, p ∈ ωh, U (1)1 (p, t1) = h(p, t1), p ∈ ∂ωh.

Thus, U (1)1 (p, t1) is an upper solution. Similarly, we can prove that U (1)
−1 (p, t1) is a lower solution, that is,

R(p, t1,U
(1)
−1 ) ≤ 0, p ∈ ωh, U (1)

−1 (p, t1) = h(p, t1), p ∈ ∂ωh.

By induction on n, we can prove that {U (n)1 (p, t1)} is a monotonically decreasing sequence of upper solutions and
{U (n)

−1 (p, t1)} is a monotonically increasing sequence of lower solutions, which satisfy (13) for t1.
From (13) with t1, it follows that

U(p, t1) ≤ U (n−1)
−1 (p, t1) ≤ U (n1)1 (p, t1) ≤ U(p, t1), p ∈ ωh. (18)

From here and by the assumption of the theorem thatU(p, t2) andU(p, t2) are, respectively, upper and lower solutions (7),
we conclude thatU(p, t2) andU(p, t2) are upper and lower solutions with respect to U (n1)1 (p, t1) and U (n−1)

−1 (p, t1), that is,

LU(p, t2)+ f (p, t2,U)+ g(p, t2,U)− τ−1
2 U (n1)1 (p, t1) ≥ 0, p ∈ ωh, (19)

LU(p, t2)+ f (p, t2,U)+ g(p, t2,U)− τ−1
2 U (n−1)

−1 (p, t1) ≤ 0, p ∈ ωh.

By (9) with t2, we have

(L + c)U (1)α (p, t2) = c(p, t2)U (0)α (p, t2)− f (p, t2,U (0)α )− g(p, t2,U (0)α )+ τ−1
2 U (nα)α (p, t1), p ∈ ωh,

U (1)α (p, t2) = h(p, t2), p ∈ ∂ωh, α = 1,−1.

From here, we conclude thatW (1)(p, t2) = U (1)1 (p, t2)− U (1)
−1 (p, t2) satisfies the difference problem

(L + c)W (1)(p, t2) = F(p, t2,U
(0)
1 )− F(p, t2,U

(0)
−1 )+ τ−1

2 [U (n1)1 (p, t1)− U (n−1)
−1 (p, t1)], p ∈ ωh,

W (1)(p, t2) = 0, p ∈ ∂ωh.

Since U (0)1 (p, t2) ≥ U (0)
−1 (p, t2) and taking into account (18), by Lemma 2, we conclude that the right hand side in the

difference equation is nonnegative. The positivity property in Lemma 1 impliesW (1)(p, t2) ≥ 0, and this leads to

U (1)
−1 (p, t2) ≤ U (1)1 (p, t2), p ∈ ωh.

The proof that U (1)1 (p, t2) and U (1)
−1 (p, t2) are, respectively, upper and lower solutions is similar to the proof of this result on

time level t1. By induction on n, we can prove that {U (n)1 (p, t2)} is a monotonically decreasing sequence of upper solutions
and {U (n)

−1 (p, t2)} is a monotonically increasing sequence of lower solutions, which satisfy (13) for t2.
By induction on k, k ≥ 1, we can prove that {U (n)1 (p, tk)} is a monotonically decreasing sequence of upper solutions and

{U (n)
−1 (p, tk)} is a monotonically increasing sequence of lower solutions, which satisfy (13). Thus, we prove the theorem. �

3.2. Existence and uniqueness of a solution to difference scheme (2)

Applying Theorem 1, we investigate existence and uniqueness of a solution to the nonlinear difference scheme (2).
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Lemma 3. Let the coefficients of the difference operator L from (2) satisfy (3) and the computational mesh ωh be connected (4).
Assume that f (p, tk,U) and g0(p, tk, tl,U) satisfy the inequalities from (8), where U and U are ordered upper and lower
solutions (7) of (2). Then a solution to the nonlinear difference scheme (2) exists.

Proof. From (13), it follows that limU (n)1 (p, t1) = V1(p, t1), p ∈ ωh as n → ∞ exists, and

V1(p, t1) ≤ U (n)1 (p, t1), lim
n→∞

Z (n)1 (p, t1) = 0, p ∈ ωh. (20)

Similar to (17), we can prove that

R(p, t1,U
(n)
1 ) = −


c −

∂ f
∂u
(p, t1, E

(n)
1 )


Z (n)1 (p, t1)+ τ1

∂g0
∂u
(t1)Z

(n)
1 (p, t1). (21)

From here and (20), we conclude that V1(p, t1) solves (2) at t1. By the assumption of the lemma that U(p, t2) is an upper
solution and from (20), it follows thatU(p, t2) is an upper solution with respect to V1(p, t1). Using a similar argument, we
can prove that the following limit

lim
n→∞

U (n)1 (p, t2) = V1(p, t2), p ∈ ωh,

exists and solves (2) at t2, where according to Theorem 1, {U (n)1 (p, t2)} is a sequence of upper solutions with respect to
V1(p, t1).

By induction on k, k ≥ 1, we can prove that

V1(p, tk) = lim
n→∞

U (n)1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (2). Similarly, we can prove that the mesh function V−1(p, tk) defined by

V−1(p, tk) = lim
n→∞

U (n)
−1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (2). �

We now impose the two-sided constraints on f and g0 (cf. (8)). We assume that f and g0 satisfy the constraints

c(p, tk) ≤
∂ f
∂u
(p, tk,U) ≤ c(p, tk), on ⟨U(tk),U(tk)⟩, (22)

0 ≤ −
∂g0
∂u
(p, tk, tl,U) ≤ q(p, tk, tl), 1 ≤ l ≤ k, on ⟨U(tl),U(tl)⟩, (23)

whereU ,U is a pair of ordered upper and lower solutions to (2), c(p, tk), c(p, tk) and q(p, tk, tl) are, respectively, nonnegative
bounded, bounded and positive bounded functions in ωh

× ωτ . We also assume that time step τk satisfies the inequality

τk <
|γk|

2ρk
+


|γk|

2ρk

2

+
1
ρk
, k ≥ 1, (24)

ck = min
p∈ωh

c(p, tk), γk = min(0, ck), ρk = max
1≤l≤k

{max
p∈ωh

[q(p, tk, tl)]}.

Wemention here that if c(p, tk) ≥ 0, then τk <
√
1/ρk.

Lemma 4. Let the coefficients of the difference operator L from (2) satisfy (3), the mesh ωh be connected (4) and the mesh
ωτ satisfy (24). Assume that f (p, tk,U) and g0(p, tk, tl,U) satisfy (22), (23), where U and U are ordered upper and lower
solutions (7) of (2). Then the nonlinear difference scheme (2) has a unique solution.

Proof. It suffices to show that

V1(p, tk) = V−1(p, tk), p ∈ ωh, k ≥ 1,

where V1(p, tk) and V−1(p, tk) are solutions to the difference scheme (2), which are defined in Lemma 3. From (13) and
Lemma 3, it follows that

U (n)
−1 (p, tk) ≤ V−1(p, tk) ≤ V1(p, tk) ≤ U (n)1 (p, tk), p ∈ ωh, k ≥ 1. (25)

LettingW (p, tk) = V1(p, tk)− V−1(p, tk), from (2), we have

LW (p, t1)+ [f (p, t1, V1)− f (p, t1, V−1)] + [g(p, t1, V1)− g(p, t1, V−1)] = 0, p ∈ ωh,

W (p, t1) = 0, p ∈ ∂ωh.
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Using the mean-value theorem, we obtain
L +

∂ f
∂u


W (p, t1) = −τ1

∂g0
∂u
(t1)W (p, t1), p ∈ ωh,

W (p, t1) = 0, p ∈ ∂ωh,

where the partial derivatives are calculated at intermediate points which lie in ⟨V−1(t1), V1(t1)⟩. From (25), it follows that
the partial derivatives satisfy (22), (23). From here, (22), (23) and (6) with c(p, tk) = 0, we obtain the estimate

w(t1) ≤
τ1ρ1

τ−1
1 + |γ1|

w(t1),

where ρ1 is defined in (24), and we use the notation

w(tk) ≡ ∥W (·, tk)∥ωh . (26)

By the assumption on τ1 in (24) andw(t1) ≥ 0, we conclude thatw(t1) = 0. From here, using the mean-value theorem, we
get 

L +
∂ f
∂u


W (p, t2) = −τ2

∂g0
∂u
(t2)W (p, t2), p ∈ ωh,

W (p, t2) = 0, p ∈ ∂ωh.

Similar to the proof that w(t1) = 0, we conclude that w(t2) = 0. Now by induction on k, k ≥ 1, we can prove that
w(tk) = 0, k ≥ 1. Thus, we prove the lemma. �

3.3. Convergence of the monotone iterative method to the solution of the nonlinear difference scheme

We now choose the stopping criterion of the iterative method (9) in the form

∥R(·, tk,U (n)α )∥ωh ≤ δ, α = 1,−1, (27)

where δ is a prescribed accuracy, and set up Uα(p, tk) = U (nα)(p, tk), p ∈ ωh, such that nα(tk) is minimal subject to (27).
We now assume that in (22)

c(p, tk) ≥ ck = const > 0, on ⟨U(tk),U(tk)⟩, k ≥ 1. (28)

Remark 2. We mention that the assumption ∂ f /∂u ≥ ck > 0 in (28) can always be obtained via a change of variables.
Indeed, introduce the following function z(x, t) = e−λtu(x, t), where λ is a constant. Now, z(x, t) satisfies (1) withf = λz + e−λt f (x, t, eλtz), g0 = e−λtg0(x, t, s, eλsz(x, s)),

instead of f and g0, and we have

∂f
∂z

= λ+
∂ f
∂u
, −

∂g0
∂z

= e−λ(t−s)


−
∂g0
∂u


.

Thus, if λ ≥ maxk≥1 |γk|, where γk is defined in (24), then from here and (22), we conclude that ∂f /∂z satisfies (28). Since
0 < e−λ(t−s)

≤ 1, λ > 0, then ∂g0/∂z still satisfies (23).

We assume that time step τk satisfies the inequality

τk < min


1
ρk
,
ck
ρk


, k ≥ 1, (29)

and prove the following convergence result for the iterative method (9), (27).

Theorem 2. Let the coefficients of the difference operator L from (2) satisfy (3), the mesh ωh be connected (4) and the mesh ωτ

satisfy (29). Assume that f (p, tk,U) and g0(p, tk, tl,U) satisfy (22), (23) and (28), whereU andU are ordered upper and lower
solutions (7) of (2). Then for the sequences {U (n)α }, α = 1,−1, generated by (9), (27) with, respectively, U (0)1 = U and U (0)

−1 = U,
the following estimate holds:

max
tk∈ωτ

∥Uα(·, tk)− U∗(·, tk)∥ωh ≤ Tδ, α = 1,−1, (30)

where U∗(p, tk) is the unique solution to (2). Furthermore, on each time level the sequences converge monotonically (13).
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Proof. The monotone convergence of the sequences {U (n)α (p, tk)}, α = 1,−1 follows from Theorem 1. The existence of the
solution to (2) has been proved in Lemma 3. By (28), we conclude that γk = 0, k ≥ 1 in (24), and, thus, from (29), τk satisfies
(24) as well. The uniqueness of the solution to (2) follows now from Lemma 4.

The difference problem for Uα(p, tk) = U (nα)(p, tk), k ≥ 1, can be represented in the form

LUα(p, tk)+ f (p, tk,Uα)+ g(p, tk,Uα)−
1
τk

Uα(p, tk−1) = R(p, tk,U (nα)α ),

p ∈ ωh, Uα(p, tk) = h(p, tk), p ∈ ∂ωh, α = 1,−1.

Fromhere, (2), by themean-value theorem, forWα(p, tk) = Uα(p, tk)−U∗(p, tk),α = 1,−1, we get the difference problems
L +

∂ f
∂u


Wα(p, tk) = R(p, tk,Uα)+

1
τk

Wα(p, tk−1)− τk
∂g0
∂u
(tk)Wα(p, tk), (31)

p ∈ ωh, Wα(p, tk) = 0, p ∈ ∂ωh, α = 1,−1,

where the partial derivatives are calculated at intermediate points, which lie between U∗(p, tk) and Uα(p, tk). Thus, the
partial derivatives satisfy (22), (23) and (28). From here, (22), (23), (28), using (6) and taking into account that according to
Theorem 1 the stopping criterion (27) can always be satisfied, in the notation (26), we obtain

wα(tk) ≤
1

τ−1
k + ck


δ + τ−1

k wα(tk−1)+ τkρkwα(tk)

, α = 1,−1.

From here and (29), it follows that

wα(tk) ≤ δτk + wα(tk−1), α = 1,−1.

Taking into account thatwα(t0) = 0, α = 1,−1, by induction on k, we conclude that

wα(tk) ≤ δ

k
l=1

τl ≤ Tδ, k ≥ 1, α = 1,−1.

Thus, we prove the theorem. �

3.4. Convergence of the nonlinear difference scheme (2) to the solution of problem (1)

In [11], the analysis of convergence of a nonlinear difference scheme to one dimensional nonlinear integro-parabolic
problem is based on the energy method, and in [12], the analysis for a linear integro-parabolic problem is based on the
discrete version of Gronwall’s inequality. In our analysis, we employ the approach, based on Gronwall’s inequality, so error
estimations are given in the maximum norms.

We now state Gronwall’s inequality from [12] in the following form.

Lemma 5. Let {wk} be a sequence on nonnegative real numbers satisfying

wk ≤ ak +

k
l=1

blwl, k ≥ 1,

where {ak} is a nondecreasing sequence of nonnegative numbers, and bl ≥ 0. Then

wk ≤ ak exp


k

l=1

bl


, k ≥ 1.

To simplify our analysis, we assume that τk = τ , k ≥ 1, and with the aid of this lemma, prove the following theorem.

Theorem 3. Let all the conditions in Theorem 2 be satisfied. Then the error in the nonlinear difference scheme (2) satisfies the
inequality

e(tk) ≤ C(T )ξ , ξ = max
k≥1

ξ(tk), (32)

E(p, tk) = U(p, tk)− u(p, tk), e(tk) = ∥E(·, tk)∥ωh , ξ(tk) = ∥Ξ(·, tk)∥ωh ,

where U(p, tk) and u(p, tk) are unique solutions to, respectively (2) and (1), and Ξ(p, tk) is the local truncation error of u(x, t)
on the nonlinear difference scheme (2).
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Proof. Under the assumptions of Theorem 2 on f and g0, the nonlinear integro-parabolic problem (1) has a unique solution
(see Theorem 6.1 on p. 73 in [1], for details). From (2), by the mean-value theorem, we get the difference problem for the
error E(p, tk)

L +
∂ f
∂u


E(p, tk) =

1
τ
E(p, tk−1)−

k
l=1

τ
∂g0
∂u
(tl)E(p, tl)− Ξ(p, tk), p ∈ ωh,

E(p, tk) = 0, p ∈ ∂ωh, E(p, 0) = 0, p ∈ ωh,

where the partial derivatives are calculated at intermediate points, which lie between U(p, tk) and u(p, tk). From here, (23),
(24) and (28), by using (6), we get

e(tk) ≤
1

τ + ck


τ−1e(tk−1)+

k
l=1

τρle(tl)+ ξ(tk)


.

From here and (29), in the notation maxk≥1 ρk = ρ, it follows that

e(tk) ≤ e(tk−1)+ τ 2ρ

k
l=1

e(tl)+ τξ .

From here and taking into account that e(t0) = 0, by induction on k, we prove the following inequality:

e(tk) ≤ kτξ + τ 2ρ


k

l=1

(k − l + 1)e(tl)


.

By Lemma 5 with ak = kτξ, k ≥ 1 and bl = τ 2ρ(k − l + 1), 1 ≤ l ≤ k, we get

e(tk) ≤ (kτξ) exp


τ 2ρ

k
l=1

l


.

From here and taking into account that
k

l=1 l ≤ k2/2, kτ ≤ T , we prove (32) with C(T ) = T exp(ρT 2/2). �

3.5. Convergence analysis of the monotone iterative method

We now establish convergence properties of the iterative method (9) on each time level tk, k ≥ 1.
We assume that time step τk satisfies the inequality

τk <


ck
2ρk

2

+
1
ρk

−
ck
2ρk

, ck = max
p∈ωh

c(p, tk), k ≥ 1, (33)

where ρk is defined in (24), and introduce the notation

z(n)α (tk) = ∥Z (n)α (·, tk)∥ωh . (34)

Lemma 6. Let the coefficients of the difference operator L in (2) satisfy (3), the mesh ωh be connected with (4) and the mesh ωτ

satisfy (33). Assume that f (p, tk,U) and g0(p, tk, tl,U) satisfy (22), (23) and (28), whereU andU be ordered upper and lower
solutions (7) of (2). Then for the sequences {U (n)α }, α = 1,−1, generated by (9) with U (0)1 = U and U (0)

−1 = U, the following
estimate holds:

z(n)α (tk) ≤ rn−1
k z(1)α (tk), rk = τk (ck + τkρk) < 1, α = 1,−1. (35)

Proof. Using (6), from (9), we have

z(n)α (tk) ≤ τk∥R(·, tk,U (n−1)
α )∥ωh , α = 1,−1. (36)

Similar to (17), we can prove that

R(p, tk,U (n)α ) = −


c −

∂ f
∂u
(p, tk, E

(n)
k )


Z (n)α (p, tk)+ τk

∂g0
∂u
(tk)Z (n)α (p, tk). (37)

From here, (22), (23) and (28), we conclude that

∥R(·, tk,U (n−1)
α )∥ωh ≤ (ck + τkρk) z(n−1)

α (tk), α = 1,−1.
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From here, (36), by using (6), we have

z(n)α (tk) ≤ τk (ck + τkρk) z(n−1)
α (tk),

and prove the lemma. �

Theorem 4. Let the coefficients of the difference operator L in (2) satisfy (3), the mesh ωh be connected with (4) and the mesh
ωτ satisfy (29) and (33). Assume that f (p, t,U) and g0(p, tk, tl,U) satisfy (22), (23) and (28), whereU andU be ordered upper
and lower solutions (7) of (2). Then for the sequences {U (n)α }, α = 1,−1 generated by (9) with U (0)1 = U and U (0)

−1 = U, the
following estimate holds:

max
tk∈ωτ

∥Uα(·, tk)− U∗(·, tk)∥ωh ≤ Crn
∗
α(tk)−1, (38)

r = max
1≤s≤k

rk < 1, n∗

α(tk) = min
1≤s≤k

nα(ts), α = 1,−1,

where U∗(p, tk) is the unique solution to (2), rk is defined in (35), constant C is independent of τk, and the number of iterative
steps on each time level nα(tk) ≥ 2. Furthermore, on each time level the sequences converge monotonically (13).

Proof. From (31) and (37), for k ≥ 1, p ∈ ωh, we conclude that

(L + fu)Wα(p, tk) = −(c − fu)Zα(p, tk)+
∂g0
∂u
(·, tk,Q1)Zα(p, tk)

−
∂g0
∂u
(·, tk,Q2)Wα(p, tk)+

1
τk

Wα(p, tk−1), (39)

Wα(p, tk) = Uα(p, tk)− U∗(p, tk), Zα(p, tk) = Z (nα(tk))α (p, tk), α = 1,−1,

where ∂g0(·, tk,Q )/∂u stands for ∂g0(p, tk, tk,Q )/∂u and fu ≡ ∂ f /∂u. Taking into account that Wα(p, t0) = 0, α = 1,−1,
from (22), (23) and (28), by using (6), in the notation of (26) and (34), we have

wα(t1) ≤
1

τ−1
1 + c1

[(c1 + τ1ρ1) zα(t1)+ τ1ρ1wα(t1)] , α = 1,−1, (40)

where ck, ρk and ck are defined in (24) and (33), respectively. From here, (29) and (35), we obtain the estimate

wα(t1) ≤ τ1 (c1 + τ1ρ1) r
nα(t1)−1
1 z(1)α (t1), α = 1,−1. (41)

From (9) by (6),

z(1)α (t1) ≤ τ1∥LU (0)α (·, t1)+ f (·, t1,U (0)α )+ g(·, t1,U (0)α )− τ−1
1 Uα(·, t0)∥ωh .

Since U (0)α (p, t1), Uα(p, t0) α = 1,−1, are independent of τ1, then for sufficiently small τ1, z(1)α (t1), α = 1,−1, are
independent of τ1, that is,

z(1)α (t1) ≤ A1, α = 1,−1,

where constant A1 is independent of τ1. Thus, from here and (41), we conclude that

wα(t1) ≤ B1τ1r
nα(t1)−1
1 , α = 1,−1, (42)

where constant B1 is independent of τ1.
Similar to (40), from (39) with k = 2, we get

wα(t2) ≤
1

τ−1
2 + c2


(c2 + τ2ρ2) zα(t2)+ τ2ρ2wα(t2)+ τ−1

2 wα(t1)

.

From here, (29) and (35), we get the estimate

wα(t2) ≤ τ2 (c2 + τ2ρ2) r
nα(t2)−1
2 z(1)α (t2)+ wα(t1), α = 1,−1. (43)

From (9) by (6), we obtain

z(1)α (t2) ≤ τ2∥LU (0)α (·, t2)+ f (·, t2,U (0)α )+ g(·, t2,U (0)α )− τ−1
2 Uα(t1)∥ωh .

Since U (0)α (p, t2), Uα(p, t1), α = 1,−1, are independent of τ2, then for sufficiently small τ2, z(1)α (t2), α = 1,−1, are
independent of τ2, that is,

z(1)α (t2) ≤ A2, α = 1,−1,
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where constant A2 is independent of τ2. Thus, from here, (42) and (43), we conclude that

wα(t2) ≤ B1τ1r
nα(t1)−1
1 + B2τ2r

nα(t2)−1
2 , α = 1,−1,

where constant B2 is independent of τ2.
By induction on k, we can prove

wk =

k
s=1

Bsτsrnα(ts)−1
s , α = 1,−1, k ≥ 1,

where constants Bs are independent of τs. Denoting

B = max
k≥1

Bk,

and taking into account that
k

s=1 τs ≤ T , we prove the estimate in the theorem with C = BT . �

Remark 3. The implicit two-level difference scheme (2) is of first order with respect to time steps. As follows from (35), if
ck = O(1) and ρk = O(1) k ≥ 1, then rk = O(τk). To guarantee the consistency of the global errors in the implicit difference
scheme and in the monotone iterative method (9), we can choose nα(tk) = 2, α = 1,−1, in (38). Thus, instead of using the
stopping criterion (27), we can implement only two iterative steps on each time level k ≥ 1.

4. Construction of initial upper and lower solutions

One of main ingredients in the implementation of the monotone iterative method (9) is the construction of initial upperU and lowerU solutions. Here, we give some conditions on functions f and g0, for the existence of upper and lower solutions,
which are used as the initial iterations in the monotone iterative method (9).

4.1. Bounded functions

Let functions f , g0, h and ψ from (1) satisfy the following conditions:

f (x, t, 0) ≤ 0, g0(x, t, s, 0) ≤ 0, h(x, t) ≥ 0, ψ(x) ≥ 0, (44)
f (x, t, u) ≥ −d1, g0(x, t, s, u) ≥ −d2, u ≥ 0,

where di, i = 1, 2, are positive constants.
From here and (7), it follows that the function

U(p, tk) =


ψ(p), k = 0,
0, k ≥ 1, p ∈ ωh, (45)

is a lower solution of (2).
Introduce the linear problem

L(p, tk)U(p, tk) = τ−1
k
U(p, tk−1)+ d1 + d2tk, p ∈ ωh, k ≥ 1, (46)U(p, tk) = h(p, tk), p ∈ ∂ωh, k ≥ 1, U(p, 0) = ψ(p), p ∈ ωh.

Lemma 7. Let conditions in (44) be satisfied. ThenU andU from, respectively, (45) and (46) are ordered lower and upper solutions
to (2), such that

0 ≤ U(p, tk) ≤ U(p, tk), p ∈ ωh, k ≥ 0. (47)

Proof. From (44) and (46), by the maximum principle in Lemma 1, we conclude (47) for k = 1U(p, t1) ≥ 0, p ∈ ωh.

By induction on k, we prove (47) for k ≥ 1. We now show thatU is an upper solution (7) to (2). From (7), (9), (44) and (46),
we have

R(p, tk,U) = L(p, tk)U(p, tk)+ f (p, tk,U)+ g(p, tk,U)− τ−1
k
U(p, tk−1)

= [d1 + f (p, tk,U)] + [d2tk + g(p, tk,U)] ≥ 0, p ∈ ωh.

SinceU satisfies the boundary–initial conditions,weprove thatU is an upper solution to (2). Fromhere and (47),we conclude
thatU andU from, respectively, (45) and (46), are ordered lower and upper solutions to (2). �
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4.2. Constant upper and lower solutions

Let functions f , g0, h and ψ from (1) satisfy the following conditions:

f (p, tk, 0)+

k
l=1

τlg0(p, tk, tl, 0) ≤ 0, 1 ≤ l ≤ k, h ≥ 0, ψ ≥ 0. (48)

It is clear that the function from (45) is a lower solution of (2). We assume that there exists a positive constantM , such that

f (p, tk,M)+

k
l=1

τlg0(p, tk, tl,M) ≥ 0, 1 ≤ l ≤ k, h ≤ M, ψ ≤ M, (49)

and introduce the function

U(p, tk) =


ψ(p), k = 0,
M, k ≥ 1, k ≥ 1, p ∈ ωh. (50)

Lemma 8. Let conditions (48) and (49) be satisfied. ThenU andU from, respectively, (45) and (50), are ordered lower and upper
solutions to (2) and satisfy (47).

Proof. The proof of the lemma repeats the proof of Lemma 7 with the following modification:

R(p, tk,U) = L(p, tk)U(p, tk)+ f (p, tk,U)+ g(p, tk,U)− τ−1
k
U(p, tk−1)

≥ f (p, tk,M)+ g(p, tk,M) ≥ 0, p ∈ ωh. �

5. Numerical experiments

In this section, we give applications of the monotone iterative method (9) for numerical solutions of two test problems.
For the first test problem, the true continuous solution is explicitly known and is used to compare to a numerical solution,
obtained by the monotone iterative method. In the case of the second test problem, the exact solution is unknown, and a
numerical solution, obtained by the monotone iterative method, is compared to a corresponding reference solution.

We choose the stopping criterion in the form (27) with δ = 10−5. In all numerical experiments, the monotone property
of upper and lower solutions is observed at every mesh point of the computational domain.

Example 1. We consider the test problem with an internal source q(x, t) in ω = {0 < x1 < 1, 0 < x2 < 1}. This is given
by

ut − ε(ux1x1 + ux2x2)+ au2
−

 t

0
u(x, s)ds = q(x, t), (x, t) ∈ ω × (0, T ],

u(x, t) = 0, (x, t) ∈ ∂ω × (0, T ], u(x, 0) = 0, x ∈ ω,

q(x, t) =


b + επ2(bt)+ a(bt)2ψ(x)−

bt2

2


ψ(x),

ψ(x) = sin(πx1) sin(πx2),

where a, b and ε are positive constants. It is easy to verify that the function

u(x, t) = (bt)ψ(x) (51)

is the exact solution of the test problem. We assume that f = au2
− q and g0 = −u, where

fu = 2au ≥ 0, u ≥ 0, −
∂g0
∂u

= 1 > 0.

To satisfy (48), we choose the parameters ε and T , such that q(x, t) ≤ 0, that is,

T ≤ 2επ2.

To guarantee (49), we assume thatM satisfies the inequality

aM2
− MT ≥ q∗, q∗

= b + επ2bT + ab2T 2
≥ max

x,t
q(x, t).

From here, we choose

M ≥ M∗, M∗
=

T
2a

+


T
2a

2

+
q∗

2
.
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Table 1
Numerical results for Example 1 with τ = h2 .

N 4 8 16 32 64

a = 1, b = 1, ε = 1, M = 1
Error 4.751e−2 1.149e−2 2.813e−3 6.932e−4 1.733e−4
Order 2.048 2.030 2.021 2.000
# of iterations 4 4 3 3 3

a = 10, b = 1, ε = 1, M = 5
Error 2.104e−2 4.951e−2 1.222e−3 3.053e−4 7.665e−5
Order 2.087 2.018 2.001 1.994
# of iterations 8 6 4 3 3

Table 2
Numerical results for Example 1 with τ = h.

N 32 64 128 256 512

a = 1, b = 1, k = 1, M = 1
Error 1.903e−3 8.069e−4 3.625e−4 1.704e−4 8.265e−5
Order 1.238 1.154 1.089 1.043
# of iterations 4 4 4 3 3

a = 10, b = 1, k = 1,M = 5
Error 8.593e−4 3.573e−4 1.603e−4 7.643e−5 3.683e−5
Order 1.266 1.156 1.069 1.053
# of iterations 7 6 5 4 4

By Lemma 8, we conclude thatU andU from, respectively, (45) and (50) are ordered lower and upper solutions and satisfy
(47). Thus,

0 ≤
∂ f
∂u
(p, tk,U) ≤ 2aM on ⟨U(tk),U(tk)⟩.

From here, we choose c = 2aM∗ in the monotone iterative method (9).

We discretize the differential problem by the finite difference approximation on a uniform spacemeshwith the step size
h1 = h2 = h (N = 1/h).

In Table 1, for the two sets of parameters a = 1, b = 1, ε = 1, M = 1 and a = 10, b = 1, ε = 1, M = 5, we present the
numerical error

error(h) = ∥U−1(·, T )− u(·, T )∥ωh , T = 1,

where u(x, t) is the exact solution (51), the order of the numerical error

order(h) = log2


error(h)

error(h/2)


,

and numbers of monotone iterations on each time level for different mesh sizes h and τ = h2. The data in the table show
that the numerical solution has the second-order accuracy in the space variables, and numbers of iterations decrease as N
increases.

In Table 2, for the same two sets of parameters as in Table 1, we present the numerical error, the order of the numerical
error and numbers ofmonotone iterations on each time level for differentmesh sizes h and τ = h. The data in the table show
that the numerical solution has the first-order accuracy in the time variable. Numbers of iterations decrease as N increases,
and for the second data set, numbers of iterations are approximately twice as many as for τ = h2 and the same values of N
(cf., Table 1).

Example 2. We consider a reaction–diffusion model with an unknown exact solution in ω = {0 < x1 < 1, 0 < x2 < 1}:

ut − ε(ux1x1 + ux2x2)+ au2
−

 t

0

bu(x, s)
1 + ςu(x, s)

ds = 0, (x, t) ∈ ω × (0, T ],

u(x, t) = 0, (x, t) ∈ ∂ω × (0, T ], u(x, 0) = ψ(x), x ∈ ω,

ψ(x) = sin(πx1) sin(πx2),

where a, b, ε and ς are positive constants.
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Table 3
Numerical results for Example 2 with τ = h2 , the case of constant lower and upper solutions.

N 4 8 16 32 64

a = 10, b = 1, ε = 1, ς = 1, M∗
= 1

Lower solutions
Error 1.706e−3 4.372e−4 1.109e−4 2.686e−5 4.832e−6
Order 1.964 1.979 2.046 2.474
# of iterations 4 3 3 3 2

Upper solutions
Error 1.790e−3 4.372e−4 1.101e−4 2.656e−5 5.048e−6
Order 2.034 1.990 2.052 2.396
# of iterations 7 5 4 4 3

a = 1, b = 10, ε = 1, ς = 1, M∗
= 2.702

Lower solutions
Error 2.403e−2 6.077e−3 1.514e−3 3.561e−4 7.201e−5
Order 1.983 2.005 2.088 2.300
# of iterations 7 5 4 3 3

Upper solutions
Error 2.405e−2 6.086e−3 1.523e−3 3.619e−4 7.693e−6
Order 1.983 1.999 2.073 2.234
# of iterations 8 6 4 4 3

The case of constant upper and lower solutions. Condition (48) holds true without any restrictions on the parameters
of the test problem. To guarantee (49), we assume thatM satisfies the inequalityM ≥ M∗, where

M∗
= max[ψ,M], ψ = ∥ψ(x)∥ωh , M = −

1
2ς

+


1
2ς

2

+
bT
aς
.

We now have

0 ≤ fu = 2au ≤ 2aM, −
∂g0
∂u

=
b

(1 + ςu)2
> 0, 0 ≤ u ≤ M.

By Lemma 8, we conclude thatU andU from, respectively, (45) and (50) are ordered lower and upper solutions and satisfy
(47). Thus,

0 ≤
∂ f
∂u
(p, tk,U) ≤ 2aM on ⟨U(tk),U(tk)⟩.

From here, we choose c = 2aM∗ in the monotone iterative method (9).
In Table 3, for the two sets of parameters a = 10, b = 1, ε = 1, ς = 1, M∗

= 1 and a = 1, b = 10, ε = 1, ς = 1,
M∗

= 2.702, we present the numerical error

error(h) = ∥Uα(·, T )− U ref
α (·, T )∥ωh , T = 1, α = 1,−1,

where U ref
α (p, tk), α = 1,−1, are reference solutions with N = 128, the order of the numerical error and numbers of

monotone iterations on each time level for different mesh sizes h and τ = h2. The data in the table indicate that the
numerical solution has the second-order accuracy in the space variables, and numbers of iterations decrease as N increases.
We mention here, that numerical experiments show that if in the reference solution N increases, then the order of the
numerical error tends to the second one.

In Table 4, for the same two sets of parameters as in Table 3, we present the numerical error, the order of the numerical
error and numbers of monotone iterations on each time level for different mesh sizes of h and τ = h, where U ref

α (p, tk),
α = 1,−1 are reference solutions with N = 1024. The data in the table show that the numerical solution has the first-order
accuracy in the time variable, and numbers of iterations decrease as N increases. Similar to Example 1, for the second data
set, numbers of iterations are approximately twice as many as for τ = h2 and the same values of N (cf., Table 3).

The case of bounded functions. On each time level tk, k ≥ 1, we now calculate an initial upper solution U(p, tk) by
solving the linear problem (46). All the conditions in (44) hold if d1 = 0, d2 = b/ς . By Lemma 7,U andU from, respectively,
(45) and (46) are lower and upper solutions. From here, we choose c(p, tk) = 2aU(p, tk) in the monotone iterative method
(9).

In Table 5, for the same two sets of parameters as in Tables 3 and 4, we present the numerical error

error(h) = ∥U1(·, T )− U ref
1 (·, T )∥ωh , T = 1,

where U ref
1 (p, tk) are reference solutions with N = 128 for τ = h2 and with N = 1024 for τ = h, the order of the numerical

error and numbers of monotone iterations on each time level for different mesh sizes h. The data in the table show that
the numerical solution has the second-order and the first-order accuracy in the time variable, and numbers of iterations
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Table 4
Numerical results for Example 2 with τ = h, the case of constant lower and upper solutions.

N 32 64 128 256 512

a = 10, b = 1, ε = 1, ς = 1, M∗
= 1

Lower solutions
Error 5.581e−4 2.786e−4 1.338e−4 5.840e−5 1.966e−5
Order 1.002 1.058 1.196 1.570
# of iterations 4 3 3 3 3

Upper solutions
Error 5.579e−4 2.788e−4 1.340e−4 5.793e−5 1.962e−5
Order 1.001 1.057 1.210 1.562
# of iterations 6 5 5 4 4

a = 1, b = 10, ε = 1, ς = 1, M∗
= 2.702

Lower solutions
Error 5.183e−3 2.564e−3 1.210e−3 5.282e−4 1.749e−4
Order 1.015 1.083 1.196 1.594
# of iterations 6 5 4 4 4

Upper solutions
Error 5.187e−3 2.567e−3 1.218e−3 5.337e−4 1.780e−4
Order 1.015 1.076 1.190 1.584
# of iterations 7 6 5 4 4

Table 5
Numerical results for Example 2 with τ = h2 and τ = h, the case of bounded functions.

N 4 8 16 32 64
τ = h2 , a = 10, b = 1, ε = 1, ς = 1

Error 1.791e−3 4.383e−4 1.107e−4 2.656e−5 5.323e−6
Order 2.031 1.985 2.059 2.319
# of iterations 4 3 2 2 2

τ = h2 , a = 1, b = 10, ε = 1, ς = 1
Error 2.404e−2 6.083e−3 1.519e−3 3.619e−4 7.245e−5
Order 1.983 2.002 2.070 2.321
# of iterations 5 3 2 2 2

N 32 64 128 256 512
τ = h, a = 10, b = 1, ε = 1, ς = 1

Error 5.585e−4 2.799e−4 1.344e−4 5.852e−5 1.969e−5
Order 0.997 1.058 1.120 1.572
# of iterations 3 3 2 2 2

τ = h, a = 1, b = 10, ε = 1, ς = 1
Error 5.184e−3 2.564e−3 1.215e−3 5.276e−4 1.759e−4
Order 1.016 1.077 1.203 1.585
# of iterations 4 3 3 2 2

decrease as N increases. As follows from Tables 3–5, for both data sets, numbers of iterations for the monotone method,
based on calculation of initial upper solutions by solving linear problems (46), are approximately twice as less as for the
monotone method, based on constant initial upper solutions (50).
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