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a b s t r a c t

The paper presents a numerical method for simulation of the effect of a soluble surfactant
on the last stage of the drop coalescence (film formation, drainage and rupture). An ax-
isymmetric interaction between drops is studied at small capillary and Reynolds numbers
and small surfactant concentrations. The hydrodynamic part of the mathematical model
includes the Stokes equations in the drop phase and their lubrication approximation in
the gap between the drops (film phase), coupled with velocity and stress boundary condi-
tions at the interfaces. The surfactant is considered soluble in both (drop and film) phases
and the distribution of the surfactant concentration is governed by a convection–diffusion
equation. A convection–diffusion equation is also used tomodel the distribution of the sur-
factant on the interfaces. The concentration in both phases is coupledwith that on the inter-
faces via the adsorption isotherm and the fluxes between the interface and the bulk phases.
The hydrodynamic and concentration parts of the mathematical model are related via the
advection of the surfactant in the fluid phases and on the interfaces. On the other hand, a
non-uniform surfactant concentration on the interfaces leads to a gradient of the interfacial
tension which in turn leads to an additional tangential stress on the interfaces (Marangoni
effects). For the flow in the drops a simplified version of Boundary integral method is used.
Finite differencemethod is used for the flow in the gap, the position of the interfaces and the
distribution of surfactant concentration on the interfaces, as well as in the fluid phases. Dif-
ferent approaches are used for an optimization of the numerical algorithm: Non-uniform
meshes for space discretization in both (r and z) directions; Explicit and implicit first and
second order time integration schemes with automatically adaptive time steps; A multi-
ple time step integration scheme that can decrease significantly the computational time
without loss of accuracy. Tests and comparisons are performed in order to investigate the
accuracy and stability of the different numerical schemes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Drop coalescence is important to many natural and man made processes. A typical example is the process of emulsifi-
cation where as a result of mixing of immiscible fluids droplets of size of micrometers, or smaller, are dispersed in a liquid
matrix, forming an emulsion. Emulsions are of practical importance for many industrial applications, e.g. food and paint
production, composite materials, pharmaceutics, petroleum, etc. The main difficulty for investigation (experimental or the-
oretical) of the process, and the emulsions itself, is the presence of several scales: the mixer of scale of meters; the drops of
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scale of micrometers; the film region (gap between the drops) with a thickness of order of nanometers. Recently population
balance models (see, for example, [1,2]) were successfully used for studying of emulsification. To overcome the difficulties
related with the different scales the different subprocesses are considered separately in these models: flow in the mixer;
drop deformation and breakup; drop coalescence, including film formation, its drainage and finally film rupture. The process
of droplet breakup can be well described theoretically [3], whereas modeling of the coalescence dynamics is more difficult.
This is because the drop coalescence involves interaction of two drops/bubbles, formation and drainage of a relatively stable
film of order of nanometers.

In the framework of the population balance models the coalescence of two drops can be split conceptually into three
elements (see, for example, [4]):

1. The external flow field, governing the frequency, strength and duration of collisions;
2. The process of film formation and drainage;
3. The destabilization of the film by van der Waals and other intermolecular forces, leading to rupture.

The first element furnishes the initial and boundary conditions for the second, which in turn provides those for the third
element.

While reasonable first approximations for the collision frequency, force and duration, as well as for the critical film-
rupture thickness can be derived inmany cases, film drainage is particularly sensitive to the details of the system concerned.
Small tangential stresses exerted on the film by the dispersed phase or by interfacial tension gradients translate into large
forces per film volume, which strongly affects drainage rates. In pure liquid–liquid systems, exhibiting constant interfacial
tension, the only tangential stresses are those exerted by the dispersed phase, arising from the internal motion within the
drops. Most practically occurring fluid–liquid dispersions, however, contain surface-active materials, either by accident or
design, that can strongly affect the drop and bubble coalescence (see for example [5] and references therein). It has long
been realized that this sensitivity derives from the fact that minor variations in interfacial/surface tension, associated with
small variations in the surfactant concentration, produce additional tangential stresses that translate into significant forces
per unit volume of the film, thereby modifying film drainage rates.

The present paper solves the fully coupled flow and interface equations governing drainage and rupture of the film
between interacting drops, together with those governing the surfactant transport and interfacial tension, at the following
assumptions:

(a) Axisymmetric drop approach, under a small constant interaction force (small deformation);
(b) A nonionic surfactant;
(c) A low surfactant concentration.

For a discussion about the limitations imposed by the above restrictions see [5].
Numerical solutions of the equations governing film drainage are available in the case of pure liquids [6–11]. The effect

of insoluble surfactants is also investigated intensively: on the film drainage [12,5,13–15]; on the interaction between
surfactant covered spherical drops [16,17]. The influence of inter-phase mass transfer on the film drainage is studied
numerically in [18–20].

The primary objective of the present paper is to develop a numerical procedure for solving the fully coupled system of
equations governing the hydrodynamics and the surfactant transport in both phases as well as on the interface. The present
study is an extension of previous works, where surfactants soluble only in one of the phases are considered: in the film
phase [21] or in the drop/dispersed phase [22].

In the following section, the equations governing the film drainage and rupture in the absence of surface active species
are extended to incorporate the influence of a surfactant soluble in both phases. In Section 3 the mathematical model is
written in terms of transformed variables, making use of the simplifications provided by the limitation to low surfactant
concentrations and small deformation. The numerical method is presented in Section 4. It consists of finite-difference
schemes: explicit for the film and the interfacial convection–diffusion equation and hybrid (explicit/implicit) for the
equations governing the convection–diffusion in the drop and film phases. A boundary integral method is used for the
Stokes equations in the drop phase. In Section 5, results are presented and discussed. Finally, the conclusions are presented
in Section 6.

2. Mathematical formulation

We consider two drops of one and the same Newtonian liquid interacting along the line of their centers under a given
interaction force or velocity in another immiscible Newtonian fluid, see Fig. 1. Here µ is the drop viscosity, h(r, t) is the
film thickness, t denotes time. The surfactant concentrations in the film and in the drop phase are C(r, z, t) and Cd(r, z, t)
respectively. In the present paper the drops are considered to approach each other at specified velocity V (t), which is
adjusted during the drainage process to maintain a constant interaction force. The same procedure can, however, be used
for time-dependent approach velocities, including force–time relationships representative of actual drop collisions.

The model is simplified by a number of approximations, which are valid in the limit of gentle collisions (film radius a is
much smaller than drop radii Ri) and which have been discussed in [5]. In addition, the influence of both inertia and viscous
normal stresses on the film flow and on the adjacent flow in the drops is supposed to be negligible—an approximation that
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Fig. 1. Schematic sketch of the problem.

is generally acceptable when the drop coalescence is considered. In the regime of gentle collision (a ≪ Ri) the governing
equations are the same for unequal drops and equal drops when formulated in terms of the equivalent radius Req (see [4]):

R−1
eq =

1
2
(R−1

1 + R−1
2 ). (1)

The mathematical model consists of hydrodynamic and surfactant transport models as described below.

2.1. Hydrodynamic part of the model

The lubrication approximation of the Stokes equations applies in the film in integral form:

∂h
∂t

= −
1
r

∂(rhu)
∂r

, (2)

τ = −
h
2

∂p
∂r

, (3)

where 0 < r < rl, h is the film thickness, τ the tangential stress exerted on the interface by the film, p is the pressure in the
film. The mean velocity in the film u is sum of uniform and parabolic parts, uu and up, respectively:

u = uu + up = uu −
λ

12µ
h2 ∂p

∂r
. (4)

Stokes equations apply in the drops:

−∇pd + µ∇
2ud = 0, (5)

∇ · ud = 0, (6)

where pd is the pressure and ud is the velocity in the drops.
The boundary conditions at the interfaces consist of continuity of tangential velocity and stress, together with a jump in

normal stress associated with the interfacial tension σ :

uu = (ur)d, τd = τ +
∂σ

∂r
, (7)

p =
2σav

Req
−

σ

2


∂2h
∂r2

+
1
r

∂h
∂r


+

A
6πh3

, (8)

where τd is the tangential stress exerted on the interface by the drop phase. The interfacial tension, σ , depends on r and t
through the surfactant concentration Γ (r, t), which will be discussed later; σav is an average value of σ . The last term is the
disjoining pressure due to the van der Waals attractive force between the interfaces, where A is the Hamaker constant.

The outer boundary conditions are prescribed pressure and approach velocity at sufficiently large r = rl:

p(rl) = 0,


∂h
∂t


rl

= V (t), (9)

where V (t) is adjusted so that:

2π
 rl

0


p −

A
6πh3


r dr = F =

2πa2σav

Req
= const, (10)

F is the interaction force and is chosen to be constant; a is a measure of the film radius (a = const).
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Additionally, the film velocities ur and uz are necessary in the surfactant transport model. They are given by:

ur = uu +
λ

2µ
∂p
∂r


z2 −


h
2

2


, (11)

uz = −
1
r

∂(ruuz)
∂r

−
λ

2rµ
∂

∂r


r
∂p
∂r


z3

3
−

h2

4
z


, (12)

where 0 < z < h(r)/2 in the film and uz is obtained from the continuity equation. We set zd = z − h(r)/2 and thus zd > 0
in the drop phase. Further we will consider the interface between the film and drops as flat in the drop phase.

2.2. Surfactant transport model

The following convection–diffusion equations, which govern the surfactant distribution in both phases (film and drop)
and on the interfaces (related with Marangoni effect) are incorporated into the model.

At the interface

∂Γ

∂t
+

1
r

∂(rΓ uu)

∂r
−

Ds

r
∂

∂r


r
∂Γ

∂r


= js + (js)d, (13)

where Γ (r, t) is the surfactant concentration on the interface, Ds is the surface diffusion and the surfactant fluxes at the
interface, js and (js)d, are given by Fick’s law:

js = −D(n.∇C)|z=h/2 = −D


∂C
∂z

−
∂h
∂r

∂C
∂r


z=h/2

, (js)d = Dd


∂Cd

∂zd


zd=0

, (14)

whereD andDd are the bulk diffusion coefficients in the film and in the drops, respectively. Boundary conditions of symmetry
at r = 0 and uniform surfactant distribution at large r = rl are respectively:

∂Γ

∂r


r=0

= 0;


∂Γ

∂r


r=rl

= 0. (15)

The dependence of the interfacial tension σ(Γ ) on the surfactant concentration is given by the 2D gas law:

σs − σ = Γ RGT , (16)

where RG is the gas constant, T the absolute temperature and σs the interfacial tension in absence of a surfactant.
In the film

The surfactant concentration C(r, z) in (14) is governed by the convection–diffusion equation in the film:

∂C
∂t

+ ur
∂C
∂r

+ uz
∂C
∂z

= D


∂2C
∂z2

+
1
r

∂

∂r


r
∂C
∂r


. (17)

Boundary conditions of symmetry at r = 0, z = 0 and uniform surfactant distribution at large r = rl are respectively:
∂C
∂r


r=0

= 0,


∂C
∂z


z=0

= 0,


∂C
∂r


r=rl

= 0. (18)

The boundary condition at the interfaces is given by the linear adsorption isotherm, relating the surfactant concentration in
the film with that on the interface, where K is the adsorption parameter:

KC(r, z = h/2, t) = Γ (r, t). (19)

In the drops
The surfactant concentration Cd(r, z) in the drops is governed by the convection–diffusion equation:

∂Cd

∂t
+ (ur)d

∂Cd

∂r
+ (uzd)d

∂Cd

∂zd
= Dd


∂2Cd

∂z2d
+

1
r

∂

∂r


r
∂Cd

∂r


. (20)

Boundary conditions of symmetry at r = 0 and uniform surfactant distribution at large r = rl and zd = ∞ are respectively:
∂Cd

∂r


r=0

= 0,


∂Cd

∂zd


zd=∞

= 0,


∂Cd

∂r


r=rl

= 0. (21)

The boundary condition at the interfaces is given by the linear adsorption isotherm, relating the surfactant concentration in
the drops with that on the interface, where Kd is the adsorption parameter:

KdCd(r, zd = 0, t) = Γ (r, t). (22)



I. Bazhlekov, D. Vasileva / Journal of Computational and Applied Mathematics ( ) – 5

2.3. Initial conditions

The initial condition for the film thickness corresponds to undeformed drops (the pressure p = 0):

h(r, t = 0) = hini +
r2

Req
. (23)

For the surfactant concentrationsΓ at the interface, C in the film, and Cd in the drops two limiting non-equilibrium initial
distributions are considered:
• Initially uniform surfactant distribution in the film and on the interfaces. The drop phase is clean of surfactant:

Γ (r, t = 0) = Γini = KC(r, z, t = 0) = KCini = const;
Cd(r, zd, t = 0) = Cd,ini = 0. (24)

• Initially uniform surfactant distribution in the drops and on the interfaces. The film (continuous) phase is clean of
surfactant:

Γ (r, t = 0) = Γini = KdCd(r, zd, t = 0) = KdCd,ini = const;
C(r, z, t = 0) = Cini = 0. (25)

2.4. Transformation and dimensionless parameters

A simplification of the governing equations is possible via a transformation of the variables that renders them dimen-
sionless and reduces the number of parameters. The transformation is:

t∗ =
tσsa′

Reqµ
; r∗

=
r

Reqa′
; z∗

=
z

Reqa′2
; h∗

=
h

Reqa′2
; τ ∗

=
τReq

σsa′
; p∗

=
pReq

σs
;

u∗

r =
urµ

σsa′2
; u∗

z =
uzµ

σsa′3
; Γ ∗

=
Γ RGT
σsa′2

; C∗
=

CRGTReq

σs
; C∗

d =
CdRGTReq

σsa′2
; (26)

z∗

d =
zd

Reqa′
; (ur)

∗

d =
(ur)dµ

σsa′2
; (uz)

∗

d =
(uz)dµ

σsa′2
; τ ∗

d =
τdReq

σsa′
; p∗

d =
pdReq

σsa′
,

where a′ is the dimensionless radius of the film, a′
= a/Req. The dimensional film radius a is given by the condition of the

constant interaction force, Eq. (10). In the small deformation limit (gentle collisions), considered here, the parameter a′ is
small (a′

≪ 1). Note that the dispersed-phase variables zd, (uz)d, Cd and pd are seen to transform differently from their
continuous-phase counterparts.

Applying the transformation above, the parameters of the problem are reduced to 9 dimensionless groups:

λ∗
= λa′

; K ∗
=

K
Reqa′2

; K ∗

d =
Kd

Req
; Pe∗

s =
σsReqa′3

Dsµ
; Pe∗

=
σsReqa′5

Dµ
;

Pe∗

d =
σsReqa′3

Ddµ
; C∗

ini =
CiniRGTReq

σs
; C∗

d,ini =
Cd,iniRGTReq

σsa′2
; A∗

=
A

4πσsR2
eqa′2

;

the viscosity ratio λ∗; the adsorption parameters K ∗ and K ∗

d ; Péclet numbers: Pe∗
s on the interface, Pe∗ in the film, and Pe∗

d in
the drops; the initial surfactant concentrations C∗

ini in the film, C∗

d,ini in the drops and the transformedHamaker parameter A∗.

3. Transformed equations

Applying transformation (26), we obtain the governing equations in dimensionless form:

3.1. Hydrodynamic part

Equations in the film, see (2), (3):

∂h∗

∂t∗
= −

1
r∗

∂(r∗h∗u∗
u)

∂r∗
+

1
r∗

λ∗

12
∂

∂r∗


h∗3r∗

∂p∗

∂r∗


, (27)

τ ∗
= −

h∗

2
∂p∗

∂r∗
, (28)

with velocity (see (11), (12))

u∗

r = u∗

u +
λ∗

2
∂p∗

∂r∗


z∗2

−


h∗

2

2


,

u∗

z = −
1
r∗

∂(r∗u∗
uz

∗)

∂r∗
−

λ∗

2r∗

∂

∂r∗


r∗

∂p∗

∂r∗


z∗3

3
−

h∗2z∗

4


.
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Equations in the drops, see (5), (6):

− ∇
∗p∗

d + ∇
∗2u∗

d = 0, ∇
∗
· u∗

d = 0. (29)
Boundary conditions at the interfaces, see (7):

u∗

u = (u∗

r )d, τ ∗

d = τ ∗
−

∂Γ ∗

∂r∗
. (30)

The 2D gas law, Eq. (16), can be written in dimensionless form as:

σ ∗
= 1 − a′2Γ ∗, (31)

whereσ ∗
= σ/σs. Thus the jump in the normal stress (see (8) and Eq. (8) of [21]) in dimensionless form can be approximated

with an error O(a′2) as:

p∗
= 2 −

1
2


∂2h∗

∂r∗2
+

1
r∗

∂h∗

∂r∗


+

2A∗

3h∗3
. (32)

The outer boundary conditions (see (9), (10)):

p∗(r∗

l ) = 0,


∂h∗

∂t∗


r∗l

= V ∗(t∗),
 r∗l

0


p∗

−
2A∗

3h∗3


r∗ dr∗

= 1. (33)

3.2. Surfactant transport model

At the interface, see (13)–(15):

∂Γ ∗

∂t∗
+

1
r∗

∂(r∗Γ ∗u∗
u)

∂r∗
−

1
Pe∗

s r∗

∂

∂r∗


r∗

∂Γ ∗

∂r∗


=

1
Pe∗

d


∂C∗

d

∂z∗

d


z∗d=0

−
1
Pe∗


∂C∗

∂z∗
− a′2 ∂h∗

∂r∗

∂C∗

∂r∗


z∗=h/2

(34)

with boundary conditions:
∂Γ ∗

∂r∗


r∗=0

= 0,


∂Γ ∗

∂r∗


r∗=r∗l

= 0. (35)

As a′2
≪ 1, the last term in (34) will be further ignored.

Surfactant transport in the film, see (17)–(19):

∂C∗

∂t∗
+ u∗

r
∂C∗

∂r∗
+ u∗

z
∂C∗

∂z∗
=

1
Pe∗


∂2C∗

∂z∗2
+

a′2

r∗

∂

∂r∗


r∗

∂C∗

∂r∗


, (36)

with boundary conditions
∂C∗

∂r∗


r∗=0

= 0,


∂C∗

∂z∗


z∗=0

= 0,


∂C∗

∂r∗


r∗=r∗l

= 0, (37)

K ∗C∗
|z∗=h∗/2 = Γ ∗. (38)

The last term in (36) will also be ignored further, as a′2
≪ 1.

Surfactant transport in the drops, see (20)–(22):

∂C∗

d

∂t∗
+ (u∗

r )d
∂C∗

d

∂r∗
+ (u∗

z )d
∂C∗

d

∂z∗

d
=

1
Pe∗

d


1
r∗

∂

∂r∗


r∗

∂C∗

d

∂r∗


+

∂2C∗

d

∂z∗2
d


(39)

with boundary conditions
∂C∗

d

∂r∗


r∗=0

=


∂C∗

d

∂z∗

d


z∗d=z∗∞

=


∂C∗

d

∂r∗


r∗=r∗l

= 0, (40)

where z∗
∞

is sufficiently large and

K ∗

d C
∗

d |z∗d=0 = Γ ∗. (41)

3.3. Initial conditions, see (23)–(25)

For the film thickness:

h∗(r∗, t∗ = 0) = h∗

ini + r∗2. (42)
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For the surfactant concentrations:
Γ ∗(r∗, t∗ = 0) = Γ ∗

ini = K ∗C∗(r∗, z∗, t∗ = 0) = K ∗C∗

ini = const;

C∗

d (r∗, z∗

d , t
∗

= 0) = C∗

d,ini = 0. (43)
or

Γ ∗(r∗, t∗ = 0) = Γ ∗

ini = K ∗

d C
∗

d (r∗, z∗

d , t
∗

= 0) = K ∗

d C
∗

d,ini = const;

C∗(r∗, z∗, t∗ = 0) = C∗

ini = 0. (44)

4. Numerical scheme

The scheme for numerical solution of the mathematical model described in the previous section is as follows: Starting
from a given h∗(r∗, t∗) and Γ ∗, given initially by (42)–(44), then p∗ is calculated from (32) and τ ∗

d from (28), providing (via
the second equation in (30), where the Marangoni effect is taken into account) a boundary condition for the Stokes equa-
tions (29). The solution of these equations in the drop then gives u∗

u via (30). Now, having u∗
u and p∗, the solution at the next

time step is obtained: for the film thickness from (27) and for the surfactant concentration Γ ∗ on the interface via Eq. (34).
The surfactant concentration in the film C∗ and in the drops C∗

d at the next time step is calculated from Eqs. (36) and (39)
respectively, where the boundary conditions at the interface (C∗(r∗, z∗

= h∗/2, t∗) and C∗

d (r∗, z∗

d = 0, t∗)) are given by the
surfactant concentration Γ ∗ via (38) and (41). Thus, the whole process can be repeated. The prescribed interaction force in
(33) is satisfied using the same approach as in [5].

Eqs. (29), governing the flow in the drops, are solved by a boundary integral method, approximating the interface as flat
and neglecting the normal velocity at the interface. The velocity in the drops is given in [22] (see also [23,24])

(u∗

r )d =

 r∗l

0
φ1(r∗, r ′)τd(r ′) dr ′, (u∗

zd)d =

 r∗l

0
φ3(r∗, r ′)τd(r ′) dr ′,

where

φ1(r∗, r ′) =
r ′

4π

 2π

0


2 cos θ

(r∗2 + r ′2 − 2r∗r ′ cos θ + z∗2
d )1/2

−
z2d cos θ + r∗r ′ sin2 θ

(r∗2 + r ′2 − 2r∗r ′ cos θ + z∗2
d )3/2


dθ (45)

φ3(r∗, r ′) =
r ′

4π

 2π

0

(r∗ cos θ − r ′)z∗

d r
′ dθ

(r∗2 + r ′2 − 2r∗r ′ cos θ + z∗2
d )3/2

.

Special attention is paid to the singularity in formula (45), which appears at r∗
= r ′ and z∗

d = 0. It can be shown that the
above solution for the velocity on the interface (at z∗

= 0) is exactly the one given by (39–40) of [21].
Eq. (27), governing the evolution of the film thickness h∗, is a nonlinear, fourth-order partial differential equation with

respect to h∗. To solve it, a Euler explicit scheme is used for the time integration in combination with a second order finite
difference scheme for the discretization of the spatial derivatives. In practical applications the numerical simulations have
to be able to follow evolution of the film with minimal thickness h∗

min down to order of 10−3. This in fact requires two
things: high accuracy of the calculations (of order 10−4), and ability to cover a broad time interval (t∗ ∈ [0, t∗l ], where
t∗l could be of order 104), see Figs. 7 and 8. Another challenge is due to the stiffness of Eq. (27), as this is mentioned by
other authors [25], especially for high values of λ∗. Thus here a special attention is paid to the space discretization and time
integration of Eq. (27), based on an assessment for the stability of the Euler explicit scheme. It can be shown (see also [21])
that the requirements for numerical stability of Eq. (27) arising from the plug and parabolic parts of the flow (the two terms
on the right-hand-side of (27)) as well as from the disjoining pressure (the last term of (32)) are respectively:

(1t∗)I ≤ const · min
j∈[0,N]


1r∗3

j

h∗2
j


; (1t∗)II ≤

24
λ∗

min
j∈[0,N]


1r∗4

j

h∗3
j


;

(1t∗)III ≤
6

λ∗A∗
min
j∈[0,N]


1r∗2

j h∗

j


, (46)

where rj, j = 0, . . . ,N , are the mesh nodes in the r direction, 1t∗ is the time step, 1r∗

j = r∗

j − r∗

j−1 are the space steps, and
h∗

j = h∗(r∗

j ) are the values of the film thickness h∗ in the nodes r∗

j .
A simple analysis shows that the use of uniform discretization in the r∗ direction (for instance1r∗

∼ 10−2) will limit the
time step ((1t∗)II ) to values of order 10−14 (h∗(r∗

l ∼ 10) ∼ 102). To avoid such extremely small time steps, non-uniform
meshes are generated depending on the values of h∗

j : small constant step 1r∗

f in the film region 0 < r∗ < 1.2, where the
most severe deformation appears; increasing by geometrical-progression law steps at large r∗, becoming of order 1 at the
end of the computational domain r∗

l . Thus the time steps 1t∗ that satisfy the stability conditions (46), and are used in the
present calculations, are in the interval 10−5–10−6.

Similar approach is used for discretization of the computational domain in the z∗

d direction in the drop phase and in
the z∗ direction in the film phase. Non-uniform meshes are used: small steps (1z∗

d ∼ 0.01) close to the interface z∗

d = 0
and relatively large steps (1z∗

d ∼ 1) at large z∗

d . The mesh in the z∗ direction in the film is also non-uniform, an order of
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magnitude finer close to the interface z∗
= h∗/2 than in the center of the film z∗

= 0. Additionally, the transformation
η = 2z∗/h∗(r∗, z∗, t∗) is applied in order to account for the curvilinear form of the interface, an approach used earlier by
Saboni et al. [18].

Another optimization of the time integration is based on a qualitative comparison between the different parts of the
hydrodynamic model (Eq. (27)), regarding the CPU time for their calculation and the restrictions on the time step that they
impose. Thus the plug part of the film flow, u∗

u , depends on the flow in the drops via the first boundary condition in (30)
and requires the solution of the Stokes equations (45) there. The second, parabolic part (second term on the r.h.s. of (4)), is
computed directly via (32) and consumes much less CPU time. On the other hand the ratio (1t∗)I/(1t∗)II is proportional
to λ∗h∗/1r∗ and can be of order 103–104. Based on the above comparisons a multiple time step approach is used (see [26])
with automatic choice of the time step. Thus the parabolic part of the film flow is calculated at every time step (1t∗), that
is chosen to satisfy the second and third restrictions in (46). The plug part of the film flow, u∗

u , is calculated via (45) once
at every M such time steps. In this way the simulations are numerically stable and almost M times faster compared to the
standard one, where single time step integration (M = 1) is used.

For the convection–diffusion equations in the drop and film phases, first order Euler explicit time integration scheme
appeared to be numerically unstable. Thus, based on the fact that the gradients of the surfactant concentration are much
higher in the z∗ than in the r∗ direction, a hybrid (explicit/implicit) method is developed for time integration of the
convection–diffusion equations in the drop and film phases. It consists of explicit time integration in the r∗ direction and
implicit in the z∗ (z∗

d ) direction. In this scheme,N five-diagonal systems have to be solved (N is the number of nodes in the r∗

direction) for each of the phases (drop and film). If we denote C(i, j, k) = C∗(r∗

i , z∗

j , t
∗

k ) the hybrid explicit/implicit scheme
for the film phase (Eq. (36)) can be written as:

C(i, j, k + 1) + β1T

u∗

z δz −
1
Pe∗

δ2
z


C(i, j, k + 1)

= C(i, j, k) − 1Tu∗

r δrC(i, j, k) + (β − 1)1T

u∗

z δz −
1
Pe∗

δ2
z


C(i, j, k), (47)

where 1T = M1t∗; δx and δ2
x are finite difference approximations for the first and second derivatives with respect to the

variable x (x stands for r∗ or z∗). Here five node discretization is used for the first and second derivatives in the r∗ and z∗

directions. Thus the second derivative is approximated as:

∂2C(i, j, k)
∂z∗2

≈ δ2
z C(i, j, k) = a1.C(i, j − 2, k) + a2.C(i, j − 1, k)

+ a3.C(i, j, k) + a4.C(i, j + 1, k) + a5.C(i, j + 2, k),

with a1 = y1, a2 = y2, a3 = −(y1 + y2 + y3 + y4), a4 = y3, a5 = y4, where the vector y = (y1, y2, y3, y4)T is the solution
of the algebraic system Ey = b, b = (0, 2, 0, 0)T , 1z∗

i = z∗

i − z∗

i−1 and E is the matrix:
−(1z∗

i−1 + 1z∗

i ) −1z∗

i 1z∗

i+1 (1z∗

i+1 + 1z∗

i+2)

(1z∗

i−1 + 1z∗

i )
2 (1z∗

i )
2 (1z∗

i+1)
2 (1z∗

i+1 + 1z∗

i+2)
2

−(1z∗

i−1 + 1z∗

i )
3

−(1z∗

i )
3 (1z∗

i+1)
3 (1z∗

i+1 + 1z∗

i+2)
3

(1z∗

i−1 + 1z∗

i )
4 (1z∗

i )
4 (1z∗

i+1)
4 (1z∗

i+1 + 1z∗

i+2)
4

 .

The first derivative with respect to z∗ is approximated as:

∂C(i, j, k)
∂z∗

≈ δzC(i, j, k) = a1.C(i, j − 2, k) + a2.C(i, j − 1, k)

+ a3.C(i, j, k) + a4.C(i, j + 1, k) + a5.C(i, j + 2, k),

with a1 = y1, a2 = −(y1 + y2 + y3 + y4), a3 = y2, a4 = y3, a5 = y4, where the vector y is the solution of the algebraic
system Ey = b, here b = (1, 0, 0, 0)T . The first derivative in the r∗ direction is approximated in a similar manner.

The convection–diffusion equation in the drop phase is approximated in a similar way. In order to approximate
1
r∗

∂
∂r∗


r∗ ∂C∗

d
∂r∗


on the left boundary (r∗

= 0) we use l’Hospital’s Rule: limr∗→0
1
r∗

∂C∗
d

∂r∗ =
∂2C∗

d
∂r∗2

(see also [27]) and then natural
symmetric boundary conditions are imposed.

As it was mentioned, the above described scheme is unstable for β = 0 (Euler explicit scheme). Thus, two implicit
time-stepping schemes were tested: first order implicit, at β = 1 and second order Crank–Nicolson scheme, at β = 0.5,
see Fig. 2. At M = 10, 000 Crank–Nicolson scheme (β = 0.5) is unstable, which indicates that the stable time step for
the first order implicit scheme is larger than that when Crank–Nicolson scheme is used. The parameters for this test are:
Pe∗

d = Pe∗
= 103

; Pe∗
s = 105

; λ∗
= 1; K ∗

= K ∗

d = Γ ∗

ini = 0.2, C∗

ini = 1, C∗

d,ini = 0. These values of the parameters are
chosen to correspond to amore pronounced effect of the surfactant on the film drainage, and at the same time to numerically
more challenging situations. Thus at λ∗

= 1 the drainage rate is dominated by the interfacial velocity, u∗
u , (partially-mobile

limit, see Fig. 10 of [28]). Note, that the direct effect of the surfactant concentration gradient is on the interfacial velocity via
the Marangoni stress, see the second equation (30). The values of the bulk Péclet numbers are chosen for simplicity equal at
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Fig. 2. The evolution of the minimal film thickness h∗

min for different time stepping methods.

Table 1
Themaximal relative difference RelDiff between the solutions using different
time stepping methods and the solution for β = 1, M = 10.

β M RelDiff

1.0 100 3.0 ∗ 10−6

1.0 1000 0.2 ∗ 10−3

1.0 10000 1.7 ∗ 10−3

0.5 100 0.5 ∗ 10−3

0.5 1000 5.0 ∗ 10−3

an intermediate value of 103, see [18]. The surface Péclet number Pe∗
s = 105 corresponds to a range of negligible diffusion,

where the gradients of the surfactant concentration are higher [5] and the simulations are more difficult.
From the first frame of Fig. 2 it is seen that for all values of M considered here the graphs for h∗

min are virtually identical.
More detailed inspection (see the second frame of Fig. 2 and also Table 1) indicates that for sufficiently largeM the additional
error, introduced by the multiple time step integration, is approximately proportional to the value of M . At a given M the
results for β = 1 are an order of magnitude more accurate than that for β = 0.5. It is also seen from Table 1 that at
β = 1,M = 1000 the additional error is of order 10−4, which is similar to that due to the approximations of the spatial
terms (O(1r∗2) ∼ 10−4). Thus, for the simulations presented in the next section the multiple time step integration with
β = 1 andM = 1000 is used.

In order to choose an optimalmesh and computational domain number of numerical testswere performedusing different
space steps (1z∗

d , 1η and 1r∗) and computational domains (r∗

l and z∗
∞
), see also [22] and [20]. In Fig. 3 the evolution of the

minimal film thickness h∗

min and that in the center h∗

0 = h∗(r∗
= 0, t∗) are shown for different meshes. In ‘‘Base Mesh’’ the

space steps close to the interface (z∗
= h∗/2; z∗

d = 0) are of order: 1z∗

d ∼ 10−2 in the drop phase and 1z∗
∼ 10−2h∗/2 in

the film phase. ‘‘Coarse Mesh’’ is twice coarser and ‘‘Fine Mesh’’ is twice finer than ‘‘Base Mesh’’. Fig. 3 shows that the results
for all three meshes are very close regarding the minimal film thickness h∗

min(t
∗). For the film thickness in the center of the

film, h∗

0(t
∗), ‘‘Coarse Mesh’’ does not supply sufficiently accurate results, while the results for the other twomeshes are very

close. Thus, ‘‘Base Mesh’’ is used for the simulations presented in the next section.

5. Results and discussions

One of the main effects of the insoluble surfactants on drop coalescence is that their presence reduces the film drainage
rate (see for instance [5]). The mechanism is schematically shown in Fig. 1: the outward interfacial flow advects the
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Fig. 3. The evolution of the minimal film thickness h∗

min and of the film thickness in the center of the coordinate system h∗

0 for different meshes.

Fig. 4. The evolution of the minimal film thickness h∗

min for different limiting cases.

surfactant, generating gradient of the interfacial tension (Marangoni stress) in direction opposite to the flow. TheMarangoni
stress directly effects the interface velocity u∗

u via the tangential stress τ ∗

d and the flow in the drop. Thus the main effect of
the surfactant on the film drainage is that it reduces the plug part of the flow towards immobilization of the interface.
The method presented in this study can help to understand in detail the influence of surfactants soluble in both phases
on the film drainage. To illustrate this in the present section two limiting cases of the initial surfactant distribution are
considered, see the conditions (43) and (44): (D → C)—initially the surfactant is uniformly distributed only in the drop phase
at C∗

d,ini = 1; C∗

ini = 0; (C → D)—initially the surfactant is uniformly distributed only in the film phase at C∗

d,ini = 0; C∗

ini = 1.
The other parameters are kept the same: Pe∗

d = Pe∗
= 103

; Pe∗
s = 105

; λ∗
= 1; K ∗

= K ∗

d = Γ ∗

ini = 0.2.
Fig. 4 shows the evolution of the minimal film thickness, h∗

min for the above mentioned initial conditions (C → D and
D → C). The results are compared with the cases of film drainage in the presence of an insoluble surfactant and that for
a pure system (in absence of surfactants). For both cases (C → D and D → C) the film drainage is faster than that for the
insoluble surfactant and slower than that for the pure system. It is also seen that in the case of initial surfactant transport
from the drop to the continuous (film) phase (D → C) the film drainage is faster than that when the transfer is in the
opposite direction (C → D). This situation is similar to that of inter-phase mass transfer, see [18,20]. In contrast to the
present results the (D → C) inter-phase mass transfer leads to film drainage faster than that for ‘‘Pure’’ case. The difference
is due to the presence of surfactants on the interface, which leads towards immobilization of the interfaces and respectively
slower film drainage.

For a better understanding of the effect of soluble surfactants on the drainage rate of the film in Figs. 5 and 6 the
distribution of the surfactant concentration is presented at several time instances. In order to analyze qualitatively the
possible effects of the surfactant on the film drainage, different processes can be considered: First, due to the exchange of
the surfactant between the phases, boundary layers of the surfactant concentration are formed at both sides of the interfaces.
Second, with the progressing film drainage, the surfactant on the interface is advected outwards the film center, creating
a significant gradient of the surfactant concentration on the interface. Third, the exchange of the surfactant between the
interface and the surrounding bulk phases in general decreases the gradients of the surfactant on the interface.

The interplay of the above described subprocesses of the surfactant transport effects the Marangoni stress and in this
way the film drainage. The thickness of the boundary layers increases with time, while the thickness of the film decreases.
Thus, when the thickness of the boundary layer in the film phase becomes comparable with the half thickness of the film,
the two boundary layers overlap in the region where the film thickness is minimal. In the case D → C , Fig. 5, this is seen
after the second frame. Indeed, at time t∗ = 44.8 (see the third frame of Fig. 5) the concentration at the periphery of the
film, around r∗

= 1.2, is the highest. The distribution of the surfactant concentration Γ ∗ on the interfaces is similar, highest
just outside the film. Having in mind, that the Marangoni stress is proportional to −∇Γ ∗, it can be concluded that such
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Fig. 5. The surfactant distribution in the drop and in the film at four time instances for C∗

d,ini = 1; C∗

ini = 0.

surfactant distribution promotes the local film drainage. A similar effect is seen in the case of inter-phase mass transfer
(see [20]) when the transfer of solutes is from the drop to the continuous phase.

The surfactant distribution in the opposite case C → D (when initially the surfactant is only in the continuous phase)
is shown in Fig. 6 for five time instances. In this case the advection of the surfactant on the interfaces and the surfactant
transport from the continuous to the drop phase act in one and the same direction, decreasing the surfactant concentration
in the film region and adjacent parts of the interfaces. Thus, after time t∗ = 60.3 (see the third frame of Fig. 6) the film region
is exhausted from the surfactant while the concentration in the continuous phase outside the film region (r∗ > 1.5) is still
high. Such distribution of the surfactant concentration in the film, and respectively on the interface, generates Marangoni
stress in direction opposite to the film drainage. This explains the slower (about 10 times) film drainage, comparedwith that
in the case (D → C). Let us analyze the contribution of theMarangoni stress in the total stress τ ∗

d , see Eq. (30). It is seen from
Eq. (28) that the hydrodynamic part of the stress, τ ∗ is proportional to the film thickness h∗. The film thickness decreases
with time and for t∗ = 60.3 is of order h∗

∼ 5∗10−2, see Fig. 7. Thus, at this stage of the film drainage, theMarangoni stress
dominates over the hydrodynamic one, resulting in a negative total stress τ ∗

d < 0. This generates, via the flow in the drops,
negative interface velocity, leading to an increase of the film thickness in the center, see Fig. 7.

The effect of the van der Waals forces (disjoining pressure) on the film rupture is shown in Fig. 8 in the case C → D, and
for the same values of the parameters. It is seen that at the last stage of the film drainage the thickness of the film decreases
to values at which the intermolecular van derWaals forces become significant. Being proportional to h∗−3 (see the last term
in (32)) once the van der Waals forces are comparable with the other forces they become dominant very fast leading to film
rupture. This is seen in Fig. 8 at different values of the transformed Hamaker parameter A∗. At this stage the last limitation
in (46) on the time step ((1t∗)III ) becomes most restrictive, limiting the time steps to values of order 1t∗ ∼ 10−9 and even
smaller.

6. Conclusions

A numerical method is presented for simulation of film drainage between axisymmetrically interacting drops in the
presence of a surfactant soluble in both, drop and film, phases. The mathematical model includes fully coupled flow and
concentration equations in both phases as well as on the interface. The presented tests, comparisons and numerical exper-
iments show that the method is capable to simulate drainage of films with thickness of order of the critical film thickness.
The intermolecular van der Waals forces are also considered. They become dominant at the last stage of the film drainage,
predicting the film rupture and a consequential coalescence. Different approaches for optimization of the numerical algo-
rithm are tested: Non-uniformmeshes for space discretization in the film and drop phases; Time integration schemes with
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Fig. 6. The surfactant distribution in the film and in the drop at five time instances for C∗

d,ini = 0; C∗

ini = 1.

Fig. 7. The evolution of the film thickness h∗ for C∗

d,ini = 0; C∗

ini = 1.

automatically adaptive time steps; A multiple time step integration scheme that can improve significantly the performance
of the computations; A hybrid (explicit/implicit) method is developed for time integration of the convection–diffusion equa-
tions in the drop and film phases, which consists of explicit time integration in the r∗ direction and implicit in the z∗ (z∗

d )
direction. The presented numerical method will be used in a following study for a more extensive investigation of the effect
of soluble surfactants on the drop coalescence, where practically interesting values of the parameters will be considered.
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Fig. 8. The evolution of the minimal film thickness h∗

min for different values of the Hamaker constant A∗ .
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