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High-order ADI finite difference schemes for parabolic equations in the
combination technique with application in finance

Christian Hendricks*, Christof Heuer**, Matthias Ehrhardt* and Michael Giinther*

Abstract

In this article we combine high-order (HO) finite difference discretisations with alternating direction
implicit (ADI) schemes for parabolic partial differential equations with mixed derivatives in a sparse
grid setting. In each implicit leg of the ADI schemes, we propose a high-order-compact (HOC)
discretisation, such that only tridiagonal systems have to be solved. With the help of HO spatial
discretisations and ADI schemes solutions with second order accuracy in time and fourth order
accuracy in space can be computed. In order to reduce the number of involved grid points we use
the combination technique to construct the so called sparse grid solution. The theoretical findings
are illustrated by numerical examples with European basket options.

1. Introduction

High dimensional parabolic partial differential equations (PDEs) arise in many fields of science,
for example in computational fluid dynamics or in computational finance for pricing derivatives,
e.g., which are driven by a basket of underlying assets. The exponentially growing number of
grid points in a tensor based grid makes it computationally demanding to solve problems in a
high dimensional setting. This growing complexity leads to unreasonable long run-times and an
excessive memory consumption. Even for a moderate number of spatial dimensions the so called
curse of dimensionality shows its effects very clearly. In this article we combine three numerical
methods in order to solve the equation numerically and to cope with the curse of dimensionality:

High-order-compact (HOC) finite difference schemes exploit the structure of the governing partial
differential equation to achieve fourth order accuracy in space on the compact stencil. Starting with
the early work by Gupta et al. [2] further effort has been spent on the derivation of HOC schemes,
e.g. in [7, 8, 10, 16, 24, 30, 38, 39] to mention a few examples. In the field of computational finance
HOC methods have been proposed by [7, 8, 10]. Compared to central standard high-order schemes
relying on broad stencils, the compactness of HOC schemes significantly reduces the computational
effort, while having the same order of consistency. However, in the high dimensional case the
sparsity is deteriorated. With operator splitting techniques, e.g. Locally-One-Dimensional (LOD)
or Alternating-Direction-Implicit (ADI) schemes, the discretisation matrix can be decomposed
into tridiagonal systems, which can be solved sequentially in linear run-time. The classical ADI
schemes were introduced by Peaceman and Rachford [31] and Douglas [6] for equations without
mixed derivatives on rectangular domains. The original schemes exhibit order two in time if no
mixed derivatives are present, otherwise the order is reduced to one. More sophisticated schemes
are introduced in [1, 17, 23] and are able to deal with mixed derivatives while maintaining second
order accuracy in time. Typically the ADI schemes are supplied with second order discretisations
in space. HOC discretisations for ADI time stepping methods were considered by Mitchell and
Fairweather [30] as well as Karaa and Zhang [24] for problems without mixed derivatives. Diiring
et al. [9] then derived high-order (HO) ADI methods for convection diffusion equations with mixed
derivatives. Recently their work was extended in [16], where multi-dimensional diffusion equations
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in a sparse grid setting are solved, and by Diiring and Miles in [11], which considers a HO ADI
discretisation for stochastic volatility models.

The combination technique can be employed to construct the sparse grid solution [12, 33], which
only has O (h™'logy(h™')%"!) nodes compared to O(h~%) nodes using the full grid, where d
denotes the dimension of the problem. Thus, it suffers from the curse of dimensionality in a much
lower extent. The combination technique is based on linearly combining an anisotropic sequence
of solutions such that low order error terms cancel out. This results in a pointwise accuracy of
@) (hp logz(h_l)d_l) if a p-th order scheme is used to compute each sub-solution. The combination
technique has successfully been applied to option pricing problems in [27, 33] by Reisinger and
Leentvaar, who use spatial discretisations of order two and employ grid stretching as well as grid
transformation techniques. In their numerical experiments the sparse grid solution outperforms the
full grid solution and underlines the advantages of the combination technique in terms of accuracy
versus computationally effort.

In this article we extend our previous work [16] to convection diffusion equations with mixed
derivative terms. Therefore, we consider the following PDE on a d-dimensional spatial domain
with space-dependent coefficients

ou

where L is an elliptic operator of the form

d d d
Lu=3"a() 58+ Y biy(X)ggs + > ci(x) e
i=1 ij=1 i=1
i#]
on a rectangular domain Q4 x €; with suitable initial and boundary data. In the spatial domain
we use a fourth order scheme, which provides highly accurate solutions. The time domain is
discretised via ADI splitting, such that the discretisation matrix is efficiently decomposed into a
sequence of sparse matrices. The linear systems occurring in the algorithm can then be solved in
linear run-time. To further reduce the number of grid nodes, we construct a sparse grid solution
using the combination technique. This significantly reduces the number of degrees of freedom,
while maintaining a high accuracy. Based on the stability results for second-order ADI schemes
in two spatial dimensions, we perform a von Neumann stability analysis for HO ADI schemes in
the case of frozen coefficients. For the cases of three and four dimensional spatial domains we
investigate the stability behaviour experimentally.

The article is organised as follows: in Section 2 we give an introduction to four well known ADI
schemes. In Section 3 we carry over the idea of dimensional splitting to the semi-discrete (space
discretisation) HO representation. Section 4 is devoted to the stability analysis of the HO ADI
schemes with frozen coefficients. A brief introduction of the combination technique and sparse
grids is followed by numerical examples. We apply the numerical schemes to the multi-dimensional
Black-Scholes PDE to price European basket options.

2. ADI schemes

We consider the semi-discretisation of the PDE (1)
u'(t) = F(u(t)), t>0,

with suitable initial and boundary data and u only depending on the time ¢. While fully implicit
schemes result in a non-sparse linear equation system, which is very expensive to solve, explicit
time-stepping suffers from restrictions on the time step-size to ensure stability. For an effective
time discretisation of this semi-discrete problem setting ADI schemes have been discussed in the
literature [1, 5, 6, 23, 22], relying on a decomposition of F

Fu(t) = Fo(u(t)) + Fi(u() + . + Falu(t)).



In this paper Fj stems from all mixed derivatives and F; from all unidirectional contributions in the
i-th coordinate direction of PDE (1) for ¢ = 1,...,d. In the case of a finite difference discretisation
the mixed derivatives lead to broad stencils, which will be treated explicitly. The F;sfori=1,...,d
can be discretised with a compact three point stencil and will be treated implicitly. We consider
four ADI schemes.

Douglas scheme (DO):

Yy = Up + AtF(Un)7
Y, =Y +0A (F(Y:) — Fy(up)) fori=1,....d 2)
Up+1 = Yd.

Craig-Sneyd scheme (CS):

Yo = Uy + AtF(un)v

Y; =Y, 1+ 0A (Fi(Y;) — Fi(uy)) fori=1,....,d

Yo = Yo + 54¢ (Fo(Ya) — Fo(un)) (3)
Y; =Y, 1+ 0A, (Fl(f/l) - Fl(un)) fori=1,....d

Un+1 = Y/d-

Modified Craig-Sneyd scheme (MCS):

Yy = Up + A¢F(uy),

Y; =Y,1 +0A,(F(Y;) — Fi(uyp)) fori=1,...,d

3:’0 =Yy + 0A: (Fo(Ya) — Fo(un)) @)
Yo o =Yo+(5-0)A(F(Y. ) F(un)

Y; =Y 1 +0A; ( 1(}/; )) for i = od

Unp1 =Yy

Hundsdorfer-Verwer scheme (HV):

YO = Up + AtF(un)a

Y:L' = i—1+6At (FZ(K)*FZ(UTL)) fOI‘?:: 1,...,d

Yo = Yo + 34¢ (F(Ya) — F(un)) (5)
Vi =Yia+0A (R(Y) - F(Yy) fori=1,..d

Up+1 = Yda

where A; > 0 is the step size in time, u,, ~ u(nAt) and § > 0. The Douglas scheme was initially
developed for application to the heat equation, see [6], and exhibits order two in time if § = %
and Fy = 0, order one otherwise. In the case of § = % the method is known as the Douglas
[6] and Brian [3] scheme, while it has also been considered by Douglas in [5] for § = 1, Fy = 0.
The Craig-Sneyd scheme and the modified Craig-Sneyd scheme can be seen as an extension of the
Douglas scheme. The Craig-Sneyd scheme was introduced in [1] and has order two in time if § = %
independent of Fy. The modified Craig-Sneyd scheme was defined by in’t Hout and Welfert in [23]
and exhibits order two in time for any 6. Please note, that for § = % the modified Craig-Sneyd
scheme reduces to the Craig-Sneyd scheme. The Hundsdorfer-Verwer scheme was introduced in
[17] and shows consistency of order two for arbitrary 6. A small 6 value in general leads to a
more accurate solution, but might cause instabilities if chosen too small. Hence, it is important to
carefully determine bounds to ensure a high accuracy, as well as an unconditional stable bahaviour.

Let the scheme be given in one-step form
Upy1 = Ruy,

with iteration matrix R and vectors u,,, u,t1 respectively. In order to analyse the stability of the
schemes, they are applied to the linear scalar test equation

u'(t) = ()\0 + A+ .+ )\d) u(t), (6)



with complex values A; for i = 0,1,...,d. Then R reduces to the scalar factor r(zqg, 21, .., 24) with
z; = A\ for i =0,1,...,d and the numerical scheme is stable iff

<1
is fulfilled. Defining
z=2z04+ 21+ ... + 2a, p=(1—0z1) (1 —0z9)...- (1 —0zy)

the scalar functions r for the ADI schemes (2) - (5) are given by

TDO<Z0VZ17 '-'7Zd> =1 + %7 TCS(ZO7Z1a -~-azd) =1 +
2

s (20,215 s 20) = 14+ 240252 4+ (5= 0)%,  Tav (20,2150 20) = 1422 = 5 4+ 35

Conditions on # ensuring unconditional stability have been derived in the pure diffusion case with
two and three spatial dimensions [21, 23]. For higher dimensions necessary lower bounds could be
given in [21]. In case of the HV scheme it has been proved in [23] that these are sufficient. For the
other three schemes it is not clear if the lower bounds are sufficient. In [20, 22, 26] the stability of
these four schemes is analysed for convection-diffusion equations. There the following conditions
for two dimensional problems have been derived:

Assume conditions
Re(z1) <0, Re(z2) <0 and |z0] < 24/ Re(z1) - Re(z2) (7)

hold for zg, 21,29 € C and 6 > %, then |rpo| < 1 and |res| < 1 holds. In 't Hout and Mishra
[20] show for F = 0 that for the modified Craig-Sneyd scheme it holds |ryres(0, 21, 22)| < 1 for
all z1, 29 € C with negative real part Re(z1) < 0, Re(z3) < 0 if and only if § > %. For zp € R and
21,29 € C fulfilling (7), they derive the necessary stability condition 6 > % However, the scheme
has been applied successfully to convection-diffusion equations with mixed derivatives in [19] even
for 6 > % An experimental analysis of this observation can be found in [20]. Recently it has been

shown by Mishra [29] that the MCS scheme is unconditionally stable for § > % if the modulus of

the mixed derivative coeflicient is at most %T V10,

For pure diffusion equations stability could be shown in the three dimensional case [21]:

DO: § > max{;,“”‘”y”}, CS: 0> 1,

MCS: 6 > max{i,f?)(?y—l— 1)}7 HV: 6 > max{i, 42_:;\/15},

for a parameter y € [0, 1], which describes the relative size of the mixed derivative coefficient
|aij| < vy/awag; for all i # 7,

where A = (a;;) denotes the symmetric, positive semi-definte diffusion coefficient matrix. In the
higher dimensional case necessary bounds on 6 could be found [21]:

DO: 6 > max {é, 31— é)d_l((d — 1)y + 1)}, CS: 0 > max {%, (1 - (li)ddv},

(d—1)y+1
T4 (14 gp)dt

N

MCS:GZmaX{}l, }, HV:Hzmax{i,éad((d—l)’y—&—l)},

where aq € (0,3) is the unique solution of the equation 2aq (1 + 1=%¢)?=1 — 1 = 0. In [14]

the stability for convection-diffusion problems with three spatial dimensions was experimentally
analysed. The bounds derived for pure diffusion equations turned out to lead to a stable behaviour
in case of the DO, CS and MCS scheme. For the HV scheme with 6 = % + %\/g the error
decayed monotonically with A;. This #-value was derived for two dimensional convection-diffusion
equations without mixed derivatives in [26].



3. High-order ADI schemes

In recent years high-order-compact finite difference schemes have been proposed to solve elliptic
[38] and parabolic [2, 8, 9, 24, 39] partial differential equations numerically. These schemes make
use of the structure and smoothness of the solution of the problem to algebraically derive a fourth-
order approximation while maintaining a compact stencil. This leads to a discretisation matrix
with small bandwidth and hence to a low computational effort and low memory consumption.
Combining this with ADI methods leads to an efficient time integrator. First, we introduce the
finite difference operators used throughout this paper, afterwards we derive a HOC discretisation
of the unidirectional contributions F; for ¢ = 1, ..., d and then apply them to the ADI framework of
the previous Section. Please note, that the derivation of the HO ADI scheme follows the approach
by Diiring et al. in [9].

3.1. Finite difference operators

In this Section we discretise the derivatives occurring in (1) by using central difference operators.
Let I = (I1,l2,...,l5) € N? denote a multi-index, then we can define a grid €; on Q4 with mesh
width h = (h1,ha,....hg) = (c1 - 271 ¢co - 2712, ... cq - 27), which consists of the grid nodes
Trj = (T1y 51> Tl jos oo Llg,jg) With ay, 5, = ji - hy for j; = 0,1,...,2% and ¢; is the size of the
computational domain in coordinate direction i for ¢ = 1,2, ...,d. With Taylor expansions under
the assumption that w is sufficiently smooth, a second order approximation to the first and second
derivative with respect to direction 7 at grid node x;; is given by

Ju
Su(zry) = g (u(@rg + hiei) — u(erg — hieq)) = 5, (213) + O(h?),
2 1 &*u 2
diu(zg) = pz (u(wrg + hier) = 2u(wrg) +ulzrg — hiei)) = 55 (1) + O(h3),

where e; denotes the i-th unit vector. The mixed derivatives will be treated in an explicit way,
hence we use a broad stencil to approximate the first derivative with order four

odu(zy ) = T (—u(@eg + 2hie;) + 8u(zrj + hie;) — 8u(xyj — hiei) + u(ay; — 2he;))
ou

= 87%(3”,1') + O(hy).
Thus, we obtain a fourth order approximation of the cross derivative for ¢ # j with
o~ 1
5?52u(xl7j) = T h [64 (U(Jfl’j + hie; + hje;) — u(zy; — hie; + hje;)
il

+ u(xw — h;e; — hjej) — ’LL(JJLJ' + hie; — hjej))

+ 8( — u(xl’j + 2h;e; + hj(:’j) — u(scl,j + hie; + thej)

+ u(mlﬂ' — h;e; + 2hj€j) + u(xl,j — 2h;e; + hjej)
— U(SL'LJ' — thei — hjej) — u(:cl,j — hiei — Zhjej)

+ u(ml’j + hie; — 2hj€j) + u(xl,j + 2h;e; — hj@j))
+ u(xm‘ + 2h;e; + thej) — u(xlyj — 2h;e; + thej)

+u(zyj; — 2hie; — 2hje;) — u(zy; + 2hie; — 2hje;) ] .

8.2. HO finite differences

In this Section we derive HO approximation of the summands F; arising in the decomposition of (1).
For brevity we streamline our notation and write a; := a;(z;;) and ¢; = ¢;(x15), bi; = b; ;(x15).
The unidirectional contributions are given by

Fi(u)zai%Jrci%:f (8)



for i = 1,...,d and some arbitrary smooth right hand side f. Inserting the finite difference operators
we obtain

u h"L u w
Fi(u(zi5)) = ai5zu($l,j) am gm (T15) — aizgy gI (z15) + cibu(wrg) — i gm (z1,5)
h
— CiTag d (xl,]) + O(hﬁ) f(xl,j)~ (9)

Since the leading error term in (9) is of order two, we can derive a fourth-order compact approxi-
mation if the third and fourth derivative is approximated with second order on the compact stencil.
In order to derive these approximations, we differentiate equation (8) once with respect to x; and
thus get

(90.1‘ 8211,
ox; aazf +a

de; du 9%y __ Of
+ + L ox2 T 4

7’8a:

Hence, the third derivative is given by the auxiliary equation

8w 1 Of 1 9a; 8%u 1 dc; du
S=agh - (Ghmve) B - (10)

a; Ox; a; Ox; a; Ox; Ox;

In a similar fashion we obtain an expression for the fourth derivative by differentiating (8) twice
with respect to x;. The third and fourth derivative can then be approximated with second-order
stencils via central difference operators. Replacing the truncation error in (9) leads to a fourth-order
accurate approximation

h? 8%a; h?Ci da; h? da; hl Cl h 801 2
(ai + o - g - g[S e+ ) Slulay)
R} da; dc; hici 9ci R? 92¢; 0 4
+ (CZ ~ 6a; Ox; Bxi + 12a; 0z; + 12 8x 5 (:CLJ) + hi Ti

= Flarg) + 1507 flang) + ($5 — 492 ) 00 f () (11)

on the compact stencil with

Ti = ( 361a1 ?9;1 gil + 72a, %205 + ﬁ%) g;l (z14)
+ (ﬁlz; %xa,l + 72a1 %zal - 121ai % %1? - 361a % %xal + 2221 ?9;21 + 316 %;L) g %L( L3)
+ (%%‘;afl + 22;1 %xafl - 181ai gi: %Z - 121ai %6;;; + 35; g;: + 3176%161) %(xl7])
+ (ﬁ %Z(Z‘i + ﬁ% - ?2%[5%]2 + 144a + 75 807) ozt t(214)

+ 810cz gm (15) + 24110az gg;“ (z15) + O(h3). (12)

From the truncation error 7; we see that beside the solution u, also the coefficient functions a; and
¢; have to be sufficiently smooth, such that their fourth derivative is bounded.

Rewriting this scheme in terms of matrices or symbolic operators gives

for vectors u and f, where A,, corresponds to the left hand side of (11) and B,, to its right hand
side. The semi-discrete scheme can then be written as

u'(t) = Fo(u) + By, Agyu+ ...+ B! Agu+ O(h) + ...+ O(hd) + Y _O(h{h3).  (13)

2]
The mixed derivatives are approximated via
Oy 5080+ 117 4 147 + hind
i,jaxiax] 1,5Y% ju+ iTi T jTj+ iV Ti,g

with

- 1 0% . 1 0% 1 0%

Ti=bijooasa—  Tj=bijara—s,  Tij= bijosoeas (14)

¥ 30 0230z 730 Oz; 03 ’ 900 Oz O



for i # j, 4,5 = 1,...,d. Thus, the mixed term is given by Fy(u) = >, ; b; Jdi)(;;]u or in matrix
notation by Fy(u) = Zi;ﬁj Ag,; z;u. Since the treatment of the mixed derivative requires to use a
broad stencil, the spatial approximation is not defined on a compact stencil anymore. Nevertheless,
the usage of ADI schemes allows us to treat the mixed derivatives explicitly. Therefore, the
composition of the derived HO approximation and ADI time splitting is compact in each implicit

step and non-compact in each explicit step.

3.3. HO ADI schemes

Using the HO formulation in each of the ADI schemes from Section 2 thus gives

HOC Douglas scheme (HDO):

Yo = U, + Ay (Fo(un) + Bgllelun +..+ B, Amun)
(B, —O0AA,,)Y; =B, Yi 1 —0AAzu, fori=1,..,d (15)
Un+1 = Yda

HOC Craig-Sneyd scheme (HCS):

Yo = U, + Ay (Fo(un)—FB YAp un + ...+ B, Axdun)

(By, —0AA,,))Y, =B, Y1 —0A A u, fori=1,...d

Yy = Yo+ A (Fo(Ya) - Fo(un)) (16)
(By, — 00 A) Y = By, Yioy — OA Ay up fori=1,....d

Un+1 = de)

HOC Modified Craig-Sneyd scheme (HMCS):

Yy = un + Ay (Fo(un) + By A un + ..+ By Agun)
(By, —0ALA:,))Y, =B, Y1 —0AAyu, fori=1,..,d
Yo = Yo + 02 (Fo(Ya) — Fo(un)) an
Yo =% '5:(% —0)A (F(Ya) — F(un))
(By, —0ALA,,)Y: =B, Y1 —0AAyu, fori=1,...d
Up 41 = Yd.
and HO Hundsdorfer-Verwer scheme (HHV):
Yy =up + Ay (Fo(un) + B Agun + ...+ B Ay un)
(By, —0ALA,,)Y: =B, Y1 —0A A u, fori=1,...d
Y/O > =Y ‘V:%At (F(Yd) - F(Un)) (18)
(By, —0ALA,)Y, =B, Yi1—0MN A, Y fori=1,..,d
Up 41 = Y/d.

In order to avoid the explicit computation of the inverse B;il for ¢ = 1,...,d, one can rewrite
the schemes by multiplying with B,, and introducing new variables Z; := H imit1 Ba; Vi, Z;

HJ i+1 Bz Yi, and Zy = H;'l:1 By, Y,. For a detailed derivation we refer to [16]. All mixed
derlvatlves are treated explicitly and the discretisation operator reads By, - ... - By, Fo(u). This
formulation leads to broad stencils since B,, as well as §Y act in coordinate direction i. The
involved discretisations in the single coordinate directions are given by 5.21’ S? and 5315?

52152 u(zyj) = ﬁ( —u(wyj — 3hie;) + 8u(wy; — 2hie;)
| +u(zy; — hie;) — 16u(zy ;) + ul(zy; + hie;) + 8u(zy; + 2hie;) — u(zr; + 3hiei))
= D4(w1g) + ' Gt (@eg) + O(hD),
(ﬁiggu(:vl,j) = ﬁ(u(mm —3he;) — 10u(zy; — 2hie;) + 1Tu(xyj — hie;) — 1Tu(zy ; + hie;)
+ 10u(zy; + 2hie;) — u(zi; + Shiei))

Su h
= gT,?(le) 1 gz (z14) + O(hy).



These operators are a discretisation of the second and third derivative with accuracy two. However,
they are not optimal in the sense of width and therefore we propose to use smaller stencils with
the same accuracy in our schemes

Ou = b (u(wry + 2hie;) — 2u(wyy) + u(zyy + 2hie;)) + O(h?),

8%y

U —
ox;

= —ﬁ (u(zi; —2hie;) — 2u(xyj; — hie;) + 2u(wyj + hie;) — u(zy; + 2hie;)) + O(h3).
Please note, that this does not effect the consistency of the scheme. The ghost points arising in the
approximation of the third derivative approximation or in §? can be computed via extrapolation

9]
u(zi; £e;) =5u(zr;) — 10u(zy; F hie;) + 10u(xy j F 2hse;) — bu(zy; F 3hie;)
+u(zy; F 4hie;) + (’)(h?).

4. Stability for frozen coefficients

In this Section we carry out a stability analysis of the HO ADI schemes (15) — (18). We consider
the von Neumann stability analysis under the assumptions of frozen coefficients of the general
convection-diffusion PDE

up = div(AVu) + ¢+ Vu (19)
with A = (a;5), ¢ = (1, ¢, ...,cd)T and supplemented with periodic boundary conditions. Please
note, that this causes all derivatives of the coefficients in our scheme to vanish. In the current
setting the discretisation matrices are normal and commuting, such that it is sufficient to consider
the scalar test equation (6) to prove stability in the von Neumann framework. For a detailed
discussion we refer to [18]. Throughout this Section we will analytically investigate the stability
for d = 2 and experimentally in higher dimensions. In a first step we rewrite our schemes to the
one step form

Upt1 = Ruy.

For brevity we streamline our notation and introduce

Zo =0 Ag,a,s Z=Zg+MB Ay + oo+ AB AL,
i#]
d
Qu, = By, — A A, fori=1,...,d, p=1]@: Ba.
=1

The iteration matrices are then given by

Rupo=I1+P 12, Rycs=1+P ' Z+ 3P 22,
Rumes =1+P ' Z+0P *ZyZ+ (5 —0)P* 2% Ruywyv =I1+2P ' Z—-P 2?72+ LP 227"
A detailed derivation can be found in [16]. One readily observes that the stability matrices exhibit

the same structure like the stability functions in Section 2. Inserting Fourier modes into the
discretisation operators we obtain the eigenvalues

5o hici\ 1 17 -

Zi=2(au+ - ) 32 (cosp; — 1) + cih—iIsmgﬁi fori=1,...,d,

Z; = 1—%(1—cos¢i)+ﬁhilsin¢i fori=1,....d,

2o = — Zaij%hf;j (8sin ¢; — sin 2¢;) (8sin p; — sin 2¢;) , (20)

it
with imaginary unit I. The eigenvalues Z; stem from A,, whereas Z; from B,, and zp from all cross

derivatives. The angles ¢, are integer multiples of 27 /m; with m; being the dimension of the grid
in x;-direction for i = 1, ..., d. Defining

Z2i = Atéi/gi, (21)



we obtain the scalar stability functions

1
T‘DO(ZO7Z17 "'7Zd) =1 + %7 TCS(ZO7ZI7 "'7Zd) =1 + % + §Z;2Z7

_ z 20 % 1 22 _ z z 12?2
rves(20,21, - 2a) =14+ 24025 + (3= 0)%,  ranv(zo,21,.,24) = 1422 = 5+ 35,

with p = (1 —0z1) - ...- (1 — 0zq) and z = 29 + 21 + ... + z4. We see that the stability functions
of the HO ADI schemes coincide with their standard ADI counterpart from Section 2. Thus, the
proof of stability reduces to the analysis of the eigenvalues.

Lemma 1. Letd =2 and HO ADI schemes (15)-(18) be applied to the convection-diffusion problem
(19) with symmetric positive semi-definite coefficient matriz A. Then it holds for the eigenvalues,
defined according to (20), (21), respectively,

Re(z1) <0, Re(z2) <0 and |z0] < 24/ Re(z1) - Re(z2).
Proof. The positive semi-definiteness of A is equivalent to
ajp >0, az >0, (a12 + as1)? < daryags.

We first compute the real part of the eigenvalues z; for ¢ = 1,2 and obtain

a; 62 1 c? -2
i+ 12:%») (cosg; —1) (1 — £(1 —cos¢y)) + T3q; SIN° @

2(
Re(z;) = A¢ . 3
(1 — %(1 — cos qbl)) + (%) sin? ¢;

With
. cosdi=l
(673 1—%(1—COS ¢7)7
2
Bi == hi S,
X 2
vi = sin i/ (1= §(1—cos¢y))”,
it holds

o 14 ggBi (24 yi/eu
Re(zz) = Ata’ZQO{i 246 (1 i / )
hi 1+ 1287

Please note that

1+ 570: (2+ i/ o)

1+ w5780 = (22)
which can be verified by straightforward calculus
1+ iﬁi(er%/ai) 51 o 1< 20 + i _ 5+0208¢¢ € [2,00).
L+ 128 a5; 18 cos? ¢; /2
Furthermore, the inequality
L (8sin¢; — sin2¢;)° < —20; (23)

is fulfilled. Due to ;; < 0 and inequality (22) we directly observe that the real parts of the eigenval-
ues z; lie on the left hand side of the complex plane. It remains to show |zg| < 24/ Re(z1) - Re(z2).
Due to the positive semi-definiteness of A we obtain

2

1 A7 . . .

|20|% < 4a11a92 (36) hTiiQ (8sin ¢y — sin 2(;51)2 (8sin ¢o — sin 2¢2)2
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Exploiting conditions (23), (22), we obtain

2
20]* < 16a11a22 512
hih3
A7 1+ 2561 2+ vi/o1) 1+ 582 (2 + 72 /as)
< 16a11a22 7550100 T T
hihs L+ t76m 1+ 1515272

= 4Re(z1) - Re(z2).

Remark:

The Lemma ensures the unconditional stability of schemes (15), (16) and the necessary condition
on the lower bound for # in scheme (17). For the HHV scheme (18) this leads to unconditional
stability if zg = 0.

In Figures 1 and 2 we plot the stability regions of the HO ADI schemes for three and four spatial
dimensions. The part in dark gray shows the stability region for the special choice zg = 0, 213 =
29 = ... = z4. Asin [16, 21| we consider the choice z; = 29 = ... = 24 to derive a necessary stability
condition. The part in light gray shows the position of the eigenvalues z; given by equation (21).
The sample points have been computed for the parameter set h; = 1071, A, = 1, ¢; = 1/2
and a; = ¢; - p. This case is rather conservative as it considers a large parabolic mesh ratio.
The parameter p determines the ratio between convection and diffusion and can be seen as the
non-scaled reciprocal of the Péclet number [36]; the smaller p, the stronger is the convection
dominance. Note, in the case of zg = 0 the stability functions of the Douglas and the Craig-Sneyd
scheme coincide. Therefore, we omit to plot the regions for the HCS scheme. The 6 values have been
chosen according to the results for ADI schemes with second order spatial disrectisation applied to
diffusion equations without mixed derivative terms from literature, e.g. [21]. In [16] it was shown
that these bounds are also valid for HO ADI schemes applied to pure diffusion problems. Hence,
we also expect the HO ADI schemes for convection-diffusion equations to have similar stability
properties as their second order counterpart. Both in the three (Figure 1) and four dimensional
(Figure 2) case the eigenvalues (light gray) lie within the stability region (dark gray) in all plots
except in Figure 2 (i). For strong convection dominance in plot (i) the HHV scheme is unstable. At
the current state we have only investigated the stability if no mixed derivatives occur. In Section
6 we evaluate the behaviour of the schemes in the case of non-vanishing mixed derivatives.

5. Sparse grid combination technique

Solving high dimensional problems on a tensor based grid leads to a rapidly increasing complexity,
the so called curse of dimensionality. As the number of degrees of freedom grows with O(h~9)
the memory consumption quickly reaches the limit of available memory. Sparse grids and the
sparse grid combination technique can reduce the number of necessary grid points significantly,
but also maintain a rather high rate of accuracy. The sparse grid approach goes back to Smolyak
[37], who developed it for numerical integration. Zenger [42], Bungartz et al. [4] and Schickofer
[35] transferred this idea to solve PDEs in the context of finite elements, finite volumes and finite
differences. These methods in general require hierarchical, tree-like data structures, which makes
the data structure management more complicated than in the full grid case [13]. With the help of
the sparse grid combination technique [12] this problem can be overcome. Here, full grid solutions
are linearly combined to construct the sparse grid solution. This allows to use standard full grid
PDE solvers. Hence, this approach is very versatile and broadly applicable. Furthermore, each
sub-solution can be computed independently, which makes it easily parallelisable.

In the following we give a brief introduction to the sparse grid combination technique in two
dimensions. A more detailed derivation can be found in the literature [33] . We consider a problem
on the unit square = [0, 1]? and assume that our numerical solution up, », has a second order
error of the form

U — Uhy ,hy = h%wl(hl) + h%wg(hg) + h%h%wlg(hl, hg)
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Figure 1: 3d: stability region (dark gray) for z1 = z2 = z3 and eigenvalues z; (light gray) for special

parameter choices.
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The mesh widths hy, ho are independent of one another and the functions wy, ws only depend on
either hy or hy. Hence, we can subtract two numerical solutions with the same mesh width in one
dimensions from another, such that one w; term for either ¢ = 1 or ¢ = 2 cancels out. Pursuing
this idea further leads to the two dimensional combination technique

L
un == Z 'U/2711,2712 - Z UQ71172—l2

[l]1=n+1 [li=n

with multi-index ! = (I1,l2). Inserting the error structure from above all low order error terms
cancel out and one obtains

ufl =u+ 2—2(n+1)w1(2—(n+1)) +2—2(n+1)w2(2—(n+1))

n+1 n
+2720FD Y Ty (27, 27 (D) 2720 Y T p(277,27007Y),
i=0 =0

If we assume that wy, ws and w; 2 are bounded by K € RT, we get a pointwise error

luf —u| = O(n27%"),

|us —u| = O(h*logy(h™1)) for h =27",

respectively. Compared to the original second order scheme the accuracy is deteriorated by
O(logy(h™1)), but the loss of accuracy is compensated by a lower number of grid points. The
sparse grid has O(2971.27) degrees of freedom, which is equal to O(h~!logy(h~1)471) for h = 27,
whereas the full grid has O(h~%) nodes. Thus, the combined sparse grid can achieve a high accuracy
with a low number of grid points.

The general d dimensional combination technique for an order p scheme assumes an error structure
of the form

d

U — uy :Z Z wjl,---jk(';hju"'7hjk)h§1 hfk

with multi-index I = (Iy,ls,...,1q), step sizes h = (2711 27tz . 27l4) and bounded functions
|w| < K. The combination technique reads

with a pointwise accuracy O(h? logy(h~1)471), see [34]. The crucial point is the existence of such
an error splitting structure. In [34], Reisinger investigated under which conditions such a splitting
can be shown and notes the following properties, which have to be fulfilled:

Properties:

1. The scheme has a truncation error of the form

d
(A=Au=>Y" " Vi s (5hj e b WP - hE

k=1 {j1,..,jr}
c{1,....d}

where A is a differential operator (e.g. % — L) and Ay, its discrete finite difference approzi-
mation.

2. The discretisation scheme has to be stable.

3. The initial data has to be sufficiently smooth and compatible boundary data is required, such
that the mized derivatives of required order are bounded.
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In option pricing one is in general interested in an accurate solution at the present time ¢ = 0.
Therefore, we intent to construct a space sparse grid at the final time slice of the numerical solution.
In Section 3.2 we derived the truncation errors for the spatial discretisation, hence we have in the
spatial domain

d d
(L= Lp)u=Y_ hivi(ihi)+ Y hihjvi (5 hi, hy),
i=1 i1
17

where v; = 7, + 7; and v; j = 7;; with 7, 7 given by equations (12), (14), respectively. Thus, the
spatial error is of the desired form. In the case of second order finite differences it was shown in [34]

that if bounded mixed derivatives azﬁ?‘_af_‘gﬁ with @ = (aq, ..., aq) and «; € {0,1,...,4} exist, then
such a splitting exists for the Poisson equation. For a fourth order scheme the analogue condition

for the mixed derivatives with «; € {0,1,...,6} was derived in [15].

6. Numerical experiments

In this Section we apply the numerical schemes to the multivariate Black-Scholes PDE

d d
ov 2
E_F% E pijUinSiSj;ng"i' E TSl—;ggL —rV =0 (24)
i=1

ij=1

in the space-time cylinder Qg4 x ; with Q4 = [0, ST"**] x ... x [0, S7*¥], €, = [0,T]. The volatility
of the i-th asset is denoted by o; for i = 1,2, ...,d, whereas the correlation between assets ¢ and j
is pi;. The risk-free interest rate is given by 7. The option value at the maturity 7" is defined by
its payoff profile g(S1, ..., S¢). In the remainder of this article we restrict ourselves to basket put
options with

d
9(S1, ..., Sa) =max{K — > §;,0}.

i=1

As the spatial domain of each asset S; is truncated at [0, SM**], boundary values have to be
prescribed. At S; = 0 the PDE reduces to a lower dimensional PDE. Hence, we solve the lower
dimensional PDE at each boundary. This is called the natural boundary condition [27, 33]. At the
upper boundary we imply Dirichlet boundary conditions and set the option value to zero. This
means that the computational domain has to be chosen large enough, such that the option is far
out of the money at the upper boundary and the introduced error is negligible small.

We investigate the accuracy both in the temporal and spatial domain. Consider the vector space

R™ with & = 1/m and discrete norms [[v]ja = (2327, [vi2)Y2, v]leo = max |v;| for v € R™.
<i<m

Then we define the errors
erry = ||uﬁt - uﬁAtHg, eIToo = Huﬁt — UEA‘HOO,

where uf" denotes a highly accurate reference solution with step size A; in time and spatial mesh

width h. The numerical approximation is denoted by uEA" with A, — A, and A — h. The solutions
are compared at the final time level on the spatial grid of the reference solution. Therefore, we
extend the approximation via multivariate cubic spline interpolation to the grid of the reference
solution. Note, that the interpolant is fourth order accurate and hence does not have any negative
effect on the rate of convergence. For the experiments in the spatial domain we employ the full grid
solver to compute the reference solution in the two dimensional case. In the higher dimensional
case the combination technique is used to compute the reference solution and then extended to the
full grid. The experiments in the temporal domain are always performed on the full grid.

In our numerical experiments we investigate the behaviour of the sparse grid combination technique
in comparison to the full grid solver. Recall that according to Section 5 the combination technique
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‘ 01 02 03 04 | P12 P13 P14 P23 P24 P34
Aj06 06 06 06|02 02 02 0.2 0.2 0.2
B|04 04 04 04|02 02 02 0.2 0.2 0.2
cl|06 06 06 06)|-05 05 -025 -0.25 -0.25 -0.25

Table 1: Parameter sets for numerical experiments

P12

01,02 01,02 01,02

(a) 332 grid nodes. (b) 652 grid nodes. (c) 1292 grid nodes.

Figure 3: Mixed fourth derivative [|0303us" || for a decreasing mesh width h in the two dimensional case.

has stronger regularity requirements than the full grid solution. In the full grid case the derivatives
in the truncation error need to be bounded, namely

8% 8% 8%
Ba:? ’ 8If8w§? ) 8If8wj

fori,j=1,...,dand i # j

arising in (12) and (14), respectively. The combination technique requires the mixed derivatives

ﬁ with a; € {0,1,...,6} to be bounded, see e.g. [15] for a fourth order approximation to the
Poisson equation. These derivatives arise due to the anisotropic splitting within the combination
technique and do not stem from mixed derivatives in PDE (1). A detailed discussion of the
error splitting can be found in [15, 34]. In order to relate the option parameters to the expected
smoothness of the solution, we compute ||5f§§Uﬁt oo for a decreasing mesh width as a measure
of smoothness. Figure 3 suggests that the solution at the final time level becomes smoother for
large diffusion and positive correlation. If strong diffusion is present already a resolution of 65
grid points in each dimension seems to be sufficient to capture the maximum of the derivative.
For smaller diffusion a higher resolution is required to capture the maximum. If one assumes that
analogue results hold for the higher derivatives, arising in the truncation errors of the full grid
solver as well as in the combination technique, the theoretical asymptotic rate of convergence will
be reached much faster for high diffusion with positive correlation than for small diffusion and
negative correlation. Please note, that also a longer time to maturity leads to a smoother solution
at t =0.

In the following we consider three different test cases given in Table 1. In case A we choose a
parameter set with large diffusion and a positive correlation. In the second case the diffusion
coefficients are reduced. Compared to A the correlation in C is decreased, which leads, according
to Figure 3, to a larger mixed fourth derivative. Thus, case A seems to be the most favorable for
the combination technique, while the other two test cases are expected to be more difficult due to
the reduced smoothness. If not mentioned otherwise, we choose T' =1, K = 20 and r = 0.025 in
the numerical experiments.

6.1. Non-smooth initial data

The analysis of consistency for numerical methods typically relies on smoothness assumptions of
the initial data. However, in practice and especially in financial option pricing the payoff function
usually exhibits discontinuities: plain vanilla options have a discontinuity in the first derivative at
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the strike price, while for example digital options have a discontinuous payoff profile. This leads
to a maximal error in the at-the-money region in the numerical solution. Since the option values
close to the strike price are in general of highest interest from the viewpoint of practitioners in
finance this is a severe problem. In [32] several methods have been discussed to overcome this issue
and to recover a high rate of accuracy.

An intuitive approach is to place more grid points in the region of interest. For example Sydow
et al. [28] solve a sub-problem with O(h~2) grid nodes around the strike price to gain sixth order
accuracy in space. Kreiss et al. [25] propose to smooth the initial condition. With this averaging
a high rate of convergence can be recovered, while the initial condition converges to the original
initial condition as the grid spacing goes to zero. This approach was successfully applied to option
pricing problems in one dimension [32] and two dimensions [10]. An additional method to cope with
the non-smooth initial data was given by Wahlbin [41], where the initial payoff profile undergoes
an Lo projection onto a set of basis functions. Besides these techniques in [40] grid shifting is
suggested. Here the grid is sequentially shifted, such that the discontinuity falls midway between
two successive grid nodes. The discrete payoff for the shifted grid reveals that this method can be
interpreted as a kind of smoothing.

The latter three approaches have been investigated in [32] for one dimensional option pricing
problems in the case of second order accuracy: in the numerical test all techniques showed the
desired order of convergence. Furthermore, they give a brief outlook how to apply these methods
to higher dimensional problems: at the current state it is not clear if grid shifting is possible for
higher dimensions since the grid is not allowed to coincide with the discontinuity. In the case of
the projection Wahlbin reports technical difficulties if the discontinuities do not match with the
grid nodes.

In the remainder of this article we restrict ourself to smooth the initial condition according to
[25] via a convolution operator. This approach can be easily extended for arbitrary dimension
via a tensor product of one dimensional convolutions. Compared to the first method it can be
computed during an offline phase and the smoothed data can be reused to price options with
different parameter sets.

In the following we consider the d-dimensional formulation of the smoothing operator used in [10].
Let

41 6 1

- sin sW + sin 1
(1)4((41) 2 1 3 )
(5“)4
then the smoothed initial data g is given by
3h1 Shd
G(x1,.yxq) = hi ' hy / / a(RT ). ®a(hy  Ea)g(x1 — &1, ..., ®g — Tq)dE1...dEg,  (25)
3hq 3hg

where @4 is the inverse Fourier transform of @4((,()) and g denotes the original initial condition.

6.2. European basket put options

In this Section we solve the multi-dimensional Black-Scholes equation (24). We apply the following
coordinate transformations x; = log(S;) for i =1,...,d, 7 =T —t, u = "V and obtain

d

ou 0?u 1, u
ar QZ””"”a ax]_z(“ ) o, =
i,j=1 i=1 v
The payoft transforms to g(z1,...,xq) = max{K — Zle e®i,0}. The HOC formulation of F; for
it = 1,...,d according to Section 3.2 can be derived by inserting a; := ;af and ¢; ;== 1r — %a into

equation (11). In a first experiment we investigate the spatial accuracy of the uniform full grid,
as well as of the sparse grid, for a basket put with two underlying assets. In Figure 4 (a) - (c)
the full grid solution exhibits an accuracy close to order four. However, compared to case A one
observes a slightly lowered rate of convergence in the more difficult cases B and C. Due to the
stronger regularity requirements of the sparse grid combination technique, the rate of convergence
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shows a greater sensitivity to the smoothness of the solution. Nevertheless, the sparse grid is more
accurate per grid node than the full grid in two of the three test cases: only in case C the sparse
grid is outperformed.

In Figure 5 all numerical schemes show the desired rate of convergence in the time domain. The
HDO scheme exhibits order one in time, while the HCS, HMCS and HHV scheme show order two.
According to the stability results in Section 4 we see a stable behaviour.

In Figures 6, 8 we numerically analyse the performance for basket options with three assets. The
full grid solution in Figure 6 states convergence close to order four. Similar to the two dimensional
problems the rate of convergence of the sparse grid solution is more sensitive to the parameter
changes in cases B and C than the full grid solver. If we consider the accuracy per grid node, the
sparse grid error is lower than the full grid error. Figure 7 indicates that the run-time per node is
only slightly higher for the combination technique than for the full grid solver and thus the sparse
grid is more efficient in the asymptotic. Both plots show that the time increases with an order of
approximately one as one would expect due to the ADI time stepping.

For the parameter choices A-C there is no convection dominance ( [p| > 36/31). Hence, we expect
from the stability region plots in Figure 1 a stable behaviour. The numerical experiments in Figure
8 confirm this and the error decreases monotonically with a rate of accuracy according to theory.

Remark:

During our numerical tests the initial condition is smoothed according to the convolutions described
above. Diiring and Heuer [10] suggest to only smooth the grid points around the discontinuity to
reduce the computational workload. Doing so the full grid performed according to the theoretical
results, but the sparse grid solution showed oscillations near the discontinuity in our numerical
experiments. This issue could be cured by smoothing all grid points. In the case of the above
given payoff an analytical solution to the integral (25) is available, if the domain of integration
does not intersect the discontinuity. Thus, smoothing the initial condition on the entire grid does
not introduce a large additional computational effort. In order to smooth the initial condition for
our numerical experiments, we either solve the integral analytically if possible or use the Matlab®
built-in routine integral2, integral3, respectively.

6.3. Powered FEuropean basket options

In this Section we compute powered European basket put options with three and four underlying
assets. The power parameter ¢ € N allows to control the smoothness of the payoff profile and of
the solution. Let the payoff under logarithmic transformed coordinates be given by

d
g(xla "'793(1) = maX{K - Zema O}q7

i=1

then the initial condition fulfills g € C?7!. In the following we investigate the influence of the
regularity on the rate of convergence.

Figure 9 shows the result for ¢ = 6, ¢ = 9 with three spatial dimensions and strike price K = 1.
The sparse grid solution shows a significant better performance for a smoother initial condition.
In contrast, the full grid solution shows no noticeable improvement. This underlines the stronger
regularity requirements of the combination technique compared to standard full grid solvers. In
Figure 10 we compute the error of the sparse grid for ¢ = 6 and ¢ = 9 for a four dimensional
problem with strike price K = 1. The error decay again shows a strong sensitivity towards the
smoothness of the initial condition. Please note, that we did not compute the full grid solution
here, since due to the high dimensionality the memory constraints make it impossible to compute
a full grid solution with a reasonable large number of grid nodes per coordinate direction on our
test machine.

In Figure 11 we compare the rate of convergence in time of the four HO ADI schemes. The HDO
and HCS scheme exhibit order one, while the HMCS and HHV show order two. Note, that the rate
of the HCS scheme is reduced to order one due to 6 # 1/2. All schemes show a stable behaviour.
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Figure 8: 3d temporal error for At — A; =271 The following values of 6 were used: HDO 6 = 0.67,
HCS 6 = 0.5, HMCS 6 = 0.462, HHV 6 = 0.79. The spatial discretisation is computed on a grid with 65
nodes in all coordinate directions. Order erre: A 1.03 (HDO), 2.07 (HCS), 2.07 (HMCS), 2.10 (HHV);
B 1.02 (HDO), 2.01 (HCS), 2.01 (HMCS) 2.08 (HHV); C 1.04 (HDO), 2.07 (HCS), 2.07 (HMCS), 1.95
(HHV). Order erro: A 1.02 (HDO), 2.14 (HCS), 2.13 (HMCS), 2.15 (HHV); B 1.02 (HDO), 2.02 (HCS),
2.02 (HMCS), 2.03 (HHV); C 1.11 (HDO), 2.05 (HCS), 2.08 (HMCS), 1.97 (HHV).
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Figure 9: Spatial error for options with three underlying assets and powered payoff. The sparse grid
solution at level 14 is used as a reference solution and evaluated on a full grid with 129% grid points. Order
on sparse grid: A ¢ =6: 3.48, ¢ =9: 3.90, Bqg=6: 3.21,¢q=9: 3.74, Cq=6 2.78, ¢ = 9 : 3.09. Order
on full grid: A ¢g=06: 4.10,¢q=94.16:, Bg=6: 4.16,¢=9: 430, C¢g=6: 4.10, ¢ =9: 4.15.
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Figure 10: Spatial error for options with four underlying assets and powered payoff. The sparse grid

solution at level 17 is used as a reference solution and evaluated on a full grid with 33* grid points. Order:
A g=6: 265 ¢g=9: 3.30, Bgq=6: 2.45, ¢=9: 2.95, C ¢ =6: 2.60, g = 9: 2.83.

6.4. European basket options with space-dependent coefficients

In this Section we consider a basket option with space-dependent coefficients. Therefore, we assume
a basket of two underlyings, driven by the system of stochastic differential equations

dS1 ¢ = p1S1,¢dt + S101(S1,1)dW1 ¢,
dSs+ = paSs¢dt + So02(S2,)dWa s,

where the volatilities depend on the underlying and the Wiener increments are correlated, such
that E(dW; 1dWa ) = pi2dt. Let V(Sy, S2,t) denote the option value, then by standard arguments,
application of the Ito formula and considering the riskless portfolio, the option price dynamics can
be described via the PDE

o
ot

2 2 2
+307(51)S7 Ggr + 505(52) 83 G55 + p1201(51)02(82) 519258 5,
+rS P 1S 2 — 1V = 0. (26)
In the remainder, we assume the volatilities to follow a cubic polynomial
0i(S;) = a; 0+ a;1S; + ;257 +a; 357

for ¢ = 1,2. Note, that also more sophisticated models for the volatilities can be used if they are
sufficiently smooth. In order to derive the numerical method to solve PDE (26) we apply the same
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Figure 11: 4d temporal error for A, — A; = 27'% and ¢ = 1. The following values of 6 were used: HDO
0 = 0.85, HCS 6 = 0.663, HMCS 0 = 0.5935, HHV 0 = 0.79. The first three choices are the lower bounds
derived for pure diffusion equations, while the latter one is the bound for 2-d convection-diffusion equations
without mixed derivative terms. The spatial discretisation is computed on a grid with 33 nodes in each
coordinate direction. Order erry : A 1.01 (HDO), 0.98 (HCS), 2.01 (HMCS), 2.17 (HHV); B 1.01 (HDO),
0.99 (HCS), 2.01 (HMCS) 2.13 (HHV); C 1.01 (HDO), 0.99 (HCS), 2.01 (HMCS), 1.99 (HHV). Order erroo
: A 1.02 (HDO), 0.97 (HCS), 2.01 (HMCS), 1.93 (HHV); B 1.02 (HDO), 0.99 (HCS), 2.01 (HMCS), 1.08
(HHV); C 1.08 (HDO), 1.02 (HCS), 1.94 (HMCS), 1.91 (HHV).

transformations as in Section 6.2. Figure 12 shows the numerical results for a two dimensional
basket option, whose assets are correlated with p12 = 0.5. The temporal error decay in (a), (b) is
monotone and of the desired order. In the spatial domain the sparse grid has a slightly lower rate
of convergence than the full grid solution. The numerical results are in line with the theoretical
findings and show a similar behaviour like in the frozen coefficients case.
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Figure 12: Numerical example with space dependent coefficients 1 (S) = 0.5 —0.008 - S +0.001- 5% —0.36 -
107%- 83, 52(S) = 0.4 — 0.01- S +0.0002 - S% — 0.87-107% - S®. Order (a) errs: 1.07 (HDO), 2.07 (HCS),
2.02 (HMCS), 2.06 (HHV). Order (b) errw: 1.06 (HDO), 2.14 (HCS), 2.05 (HMCS), 2.04 (HHV). Order
(c) erre: 3.04 (sparse grid), 3.50 (full grid); erro 2.68 (sparse grid), 3.33 (full grid).
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7. Conclusion

In this paper we introduced a fourth-order spatial discretisation for multi-dimensional convection-
diffusion equations with space dependent coefficients. In the time domain we applied ADI schemes
to achieve up to second order accuracy. Due to the ADI splitting the spatial discretisation could be
decomposed in such a way, that all implicitly treated approximations are defined on the compact
stencil, which results in tridiagonal linear systems. These systems can be solved very efficiently
in linear run-time. Broad stencils only occur in the explicit steps of the algorithm. In the two
dimensional case we were able to show that the stability regions coincide with the standard central
second order ADI schemes. For the HDO and HCS scheme sufficient conditions on 6, ensuring
unconditional stability, could be proven. For the HMCS scheme a necessary lower bound on 6 was
found, while for the HHV scheme a lower bound on 6 for vanishing correlation was derived. In the
three and four dimensional case the proposed schemes showed good stability properties. In order
to reduce the computational complexity, we applied the sparse grid combination technique in the
spatial domain. This allows to lower the number of grid nodes and to reduce the effects of the
curse of dimensionality. In terms of accuracy per grid node the sparse grid performed better than
the full grid solution in two of the three test cases. Only for negative correlation in experiment
C the full grid showed a better accuracy in the 2-d case. Based on experiments with a powered
payoff the regularity requirements of the combination technique could be compared to the ones of
full grid solvers. The sparse grid showed a significant better performance with sufficiently smooth
data, which underlines the stronger smoothness requirements of the combination technique.

Acknowledgement

The work of the authors was partially supported by the European Union in the FP7-PEOPLE-
2012-ITN Programme under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project
Multi-ITN STRIKE - Novel Methods in Computational Finance).

Further the authors acknowledge partial support from the bilateral German-Spanish Project "HiPeCa
High Performance Calibration and Computation in Finance" (Grant No. 57049700), Programme
Acciones Conjuntas Hispano-Alemanas, financed by DAAD.

8. References

[1] 1.J.D. Craig and A.D. Sneyd. An Alternating-Direction Implicit scheme for parabolic equations
with mixed derivatives. Comput. Math. Appl., 16(4):341-350, 1988.

[2] G. Berikelashvili, M. Gupta, and M. Mirianashvili. Convergence of fourth order compact finite
difference schemes for three-dimensional convection-diffusion equations. SIAM J. Numer.
Anal., 45:443-455, 2007.

[3] P. Brian. A finite-difference method of high-order accuracy for the solution of
three-dimensional transient heat conduction problems. AIChE Journal, 7:367-370, 1961.

[4] H. Bungartz and M. Griebel. Sparse grids. Cambridge University Press, pages 1-123, 2004.

[5] J. Douglas and H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Trans. Amer. Math. Soc., 82:421-439, 1956.

[6] J. J. Douglas. Alternating Direction methods for three space variables. Numer. Math.,
4(1):41-63, 1962.

[7] B. Diiring and M. Fournié. High-order compact finite difference scheme for option pricing in
stochastic volatility models. J. Comput. Appl. Math., 236(17):4462-4473, Nov. 2012.

[8] B. Diiring, M. Fournie, and C. Heuer. High-order compact finite difference schemes for op-
tion pricing in stochastic volatility models on non-uniform grids. J. Comput. Appl. Math.,
271:247-266, 2014.

23



19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

B. Diiring, M. Fournié, and A. Rigal. High-order ADI schemes for convection-diffusion equa-
tions with mixed derivative terms. In Spectral and High Order Methods for Partial Differential
Equations - ICOSAHOM 2012, volume 95, pages 217-226. Springer International Publishing,
2014.

B. Diiring and C. Heuer. High-order compact schemes for parabolic problems with mixed
derivatives in multiple space dimensions. SIAM J. Numer. Anal, 53(5):2113-2134, 2015.

B. Diiring and J. Miles. High-order ADI scheme for option pricing in stochastic volatility
models. Preprint, 2015.

M. Griebel, M. Schneider, and C. Zenger. A Combination Technique for the solution of sparse
grid problems. IMACS Elsevier, Iterative Methods in Linear Algebra, 16:263-281, 1992.

M. Griebel and V. Thurner. The efficient solution of fluid dynamics problems by the combi-
nation technique. Int. J. Numer. Meth. Heat and Fluid Flow, 5(3):251-269, 1995.

T. Haentjens and K. J. in’t Hout. ADI finite difference schemes for the Heston-Hull-White
PDE. J. Comput. Fin., 16:83-110, 2012.

C. Hendricks, M. Ehrhardt, and M. Giinther. Error splitting preservation for high order finite
difference schemes in the combination technique. to appear in Numer. Math. Theor. Meth.
Appl., 2016.

C. Hendricks, M. Ehrhardt, and M. Giinther. High-order ADI schemes for diffusion equations
with mixed derivatives in the combination technique. Appl. Numer. Math., 101:36-52, 2016.

W. Hundsdorfer. Accuracy and stability of splitting with stabilizing corrections. Appl. Numer.
Math., 42(1-3):213-233, 2002.

W. Hundsdorfer and J. Verwer. Numerical solution of time-dependent advection-diffusion-
reaction equations, volume 33. Springer, 2003.

K. J. in’t Hout and S. Foulon. ADI finite difference schemes for option pricing in the Heston
model with correlation. Int. J. Numer. Anal. Mod., 7:303-320, 2010.

K. J. in’t Hout and C. Mishra. Stability of the Modified Craig-Sneyd scheme for two-
dimensional convection-diffusion equations with mixed derivative terms. Math. Comp. Simul.,
81:2540-2548, 2011.

K. J. in’t Hout and C. Mishra. Stability of ADI schemes for multidimensional diffusion
equations with mixed derivative terms. Appl. Numer. Math., 74:83-94, 2013.

K. J. in’t Hout and B. D. Welfert. Stability of ADI schemes applied to convection-diffusion
equations with mixed derivative terms. Appl. Numer. Math., 57(1):19-35, Jan. 2007.

K. J.in’t Hout and B. D. Welfert. Unconditional stability of second-order ADI schemes applied
to multi-dimensional diffusion equations with mixed derivative terms. Appl. Numer. Math.,
59(3-4):677-692, 2009.

S. Karaa and J. Zhang. High-order ADI method for solving unsteady convection-diffusion
problems. J. Comput. Phys., 198(1):1-9, 2004.

H. O. Kreiss, V. Thomée, and O. Widlund. Smoothing of initial data and rates of convergence
for parabolic difference equations. Commun. Pure Appl. Math., 23(2):241-259, 1970.

D. Lanser, J. Blom, and J. Verwer. Time integration of the shallow water equations in spherical
geometry. J. Comput. Phys., 171:373-393, 2001.

C. Leentvaar and C. Oosterlee. On coordinate transformation and grid stretching for sparse
grid pricing of basket options. J. Comput. Appl. Math,, 222(1):193-209, 2008. Special Issue:
Numerical Methods in Finance.

G. Linde, J. Persson, and L. V. Sydow. High-order adaptive space discretizations for the
BlackScholes equation. Master’s thesis, 2005.

24



[29] C. Mishra. A new stability result for the Modified Craig-Sneyd scheme applied to two-
dimensional convection-diffusion equations with mixed derivatives. Appl. Math. Comput.,
285(C):41-50, July 2016.

[30] A. R. Mitchell and G. Fairweather. Improved forms of the Alternating Direction methods of
Douglas, Peaceman, and Rachford for solving parabolic and elliptic equations. Numer. Math.,
6(1):285-292, 1964.

[31] D. W. Peaceman and J. H. H. Rachford. The numerical solution of parabolic and elliptic
differential equations. J. Soc. Indust. Appl. Math., 3(1):28-41, 1955.

[32] D. M. Pooley, K. R. Vetzal, and P. A. Forsyth. Convergence remedies for non-smooth payoffs
in option pricing. J. Comput. Fin., 6(4):25-40, 2003.

[33] C. Reisinger. Numerische Methoden fiir hochdimensionale parabolische Gleichungen am
Beispiel von Optionspreisaufgaben. PhD thesis, Ruprecht-Karls-Universitdt Heidelberg, 2004.

[34] C. Reisinger. Analysis of linear difference schemes in Sparse Grid Combination Technique.
IMA J. Numer. Anal., 33(2):544-581, 2013.

[35] Schiekofer. Die Methode der Finiten Differenzen auf diinnen Gittern zur Losung elliptischer
und parabolischer partieller Differentialgleichungen. PhD thesis, Universitiat Bonn, 1999.

[36] R. Seydel. Tools for computational finance. Springer, 2006.

[37] S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of
functions. Dokl. Akad. Nauk SSSR, 148:1042-1045, 1963.

[38] W. Spotz. High compact finite difference schemes for computational mechanics. PhD thesis,
University of Texas, Austin, 1995.

[39] W. Spotz and G. Carey. High-order compact scheme for the steady stream-function vorticity
equations. Int. J. for Numer. Meth. in Engin., 38:3497-3512, 1995.

[40] D. Tavella and C. Randall. Pricing financial instruments: the finite difference method. Wiley,
New York, 2000.

[41] L. B. Wahlbin. A remark on parabolic smoothing and the finite element method. STAM J.
Numer. Anal, 17(1):33-38, 1980.

[42] C. Zenger. Sparse grids. Technical report, Institut fiir Informatik, Technische Universitét
Miinchen, Oct. 1990.

25



