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An extension of Heston’s SV model to
Stochastic Interest Rates

Javier de Frutos, Víctor Gatón

September 5, 2018

Abstract

In [6], Heston proposes a Stochastic Volatility (SV) model with constant interest rate and derives
a semi-explicit valuation formula. Heston also describes, in general terms, how the model could be
extended to incorporate Stochastic Interest Rates (SIR). This paper is devoted to the construction
of an extension of Heston’s SV model with a particular stochastic bond model which, just increasing
in one the number of parameters, allows to incorporate SIR and to derive a semi-explicit formula for
option pricing.

Keywords: Stochastic Volatility, Stochastic Interest Rates, Option Pricing.

1 Introduction
In [6], Heston proposes a Stochastic Volatility (SV) model with constant interest rate and derives a

semi-explicit valuation formula. Heston also describes, in general terms, how the model could be extended
to incorporate Stochastic Interest Rates (SIR). We will see how, with a particular stochastic bond model
and just increasing in one the number of parameters, we can incorporate SIR and derive a semi-explicit
formula for option pricing.

The paper will be organized as follows. First, we will review Heston’s original model with constant
interest rates. In a second step, we will make the theoretical development of the extended model as
presented in [6]. In a third step, we will search for a stochastic bond formula that can be nested within
this framework, i.e., that fits with the specifications of the pricing model and it does not increase much
the number of parameters.

Finally, we will assume that the market is composed by the stock and the discounted bond computed
in the previous step. We will see that, under certain parameter restrictions, the resulting model is of
the type proposed by Heston in [6]. We will derive a semi-explicit formula and a pricing model will be
obtained with just one more parameter than the original Heston’s SV. Thus, we will have incorporated
stochastic interest rates without increasing much the number of parameters.

2 Heston SV model
In [6], Heston assumes that the asset S̄(t) follows a diffusion model with constant drift and where the

volatility
√
v̄(t) of the asset follows an Ornstein-Uhlenbeck process (see [9]). After some calculus, the

dynamics is: {
dS̄(t) = µS̄(t)dt+

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = k[θ − v̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

(1)
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where µ is the constant drift of the asset, σ is the volatility’s volatility and z̄1 and z̄2 are Wiener processes.
The variance drifts (in the physical measure), toward a long-run mean of θ with mean-reversion speed
given by k.

Employing the notation of [1] or [6], we define the (instantaneous) correlation coefficient ρ by ρdt =
Cov(dz̄1, dz̄2), where Cov(. , . ) stands for covariance.

We also assume that a constant rate risk-free bond exists and it is denoted by B(t, T ) = e−r0(T−t),
where t denotes today, T denotes maturity and r0 corresponds to the constant risk-free rate.

In [6], it is claimed that these assumptions are insufficient to price contingent claims, because we have
not made an assumption that gives the price of “volatility risk”. By no arbitrage arguments (see [1] or
[6]), the value of any claim must satisfy:

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ r0S

∂U

∂S
+ (k(θ − v)− λ(S, v, t))

∂U

∂v
− r0U +

∂U

∂t
= 0, (2)

where S̄(t) = S, v̄(t) = v and λ(S, v, t) represents the price of volatility risk.
Since we are working with Heston’s model (see [6]), we will assume that any risk premia is of the form

λ(S, v, t) = λv. It should be remarked that, once the components of the market are fixed, the risk premia
is independent of the claim, i.e. the same risk premia is used to price all the claims (see [1]).

As Heston points in [6], this choice of risk premia is not arbitrary (see [2] and [4]).
Thus, the price of the European call option U(S, v, t) satisfies the PDE:

1

2
vS2 ∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ r0S

∂U

∂S
+ (k(θ − v)− λv)

∂U

∂v
− r0U +

∂U

∂t
= 0, (3)

subject to the following conditions:

U(S, v, T ) = max(0, S −K),

U(0, v, t) = 0, r0S
∂U

∂S
+ kθ

∂U

∂v
− r0U + Ut

∣∣∣∣
(S,0,t)

= 0,

∂U

∂S
(∞, v, t) = 1, U(S,∞, t) = S.

(4)

Heston conjectures a solution similar to the Black-Scholes model for the price of an European call
option:

U(S, v, t, T,K) = SR1 −KB(t, T )R2, (5)
where K corresponds to the strike of the option and T denotes the maturity of the option.

The following semi-explicit formula for the price of the European call option is obtained

U (x, v, τ, ln(K)) = xR1 (x, v, τ ; ln(K))− ln(K)B(t, T )R2 (x, v, τ ; ln(K)) , (6)

where x = ln(S), τ = T − t and function Rj , j ∈ {1, 2} are given by

Rj(x, v, τ ; ln(K)) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K)fj(x, v, τ, φ)

iφ

]
dφ, (7)

where
fj(x, v, τ ;φ) = eC(τ ;φ)+D(τ ;φ)+iφx,

C(τ ;φ) = r0φiτ +
a

σ2

{
(bj − ρσφi+ d)τ − 2 ln

[
1− gedτ

1− g

]}
,

D(τ ;φ) =
bj − ρσφi+ d

σ2

[
1− edτ
1− gedτ

]
,

g =
bj − ρσφi+ d

bj − ρσφi− d
, d =

√
(ρσφi− bj)2 − σ2(2ζjφi− φ2),

ζ1 =
1

2
, ζ2 = −1

2
, a = kθ, b1 = k + λ− ρσ, b2 = k + λ.

(8)
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3 The extended model
We propose (see [6]) the following market dynamics in the physical measure:





dS̄(t) = µsS̄(t)dt+ σs(t)
√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = k[θ − v̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

dB̄(t, T ) = µbB̄(t, T )dt+ σb(t)
√
v̄(t)B̄(t, T )dz̄3(t),

(9)

where B̄(t, T ) corresponds to the price of the risk-free bond with maturity T when stochastic interest rates
are considered.

We also denote

ρsvdt = Cov(dz̄1, dz̄2), ρsbdt = Cov(dz̄1, dz̄3), ρvbdt = Cov(dz̄2, dz̄3). (10)

Let X̄(t) = (S̄(t), v̄(t), B̄(t, T )). Let us assume that the short rate of interest is a deterministic function
of the state factors, i.e. r̄ = r̄(X̄(t)), (short rates are stochastic but, at any fixed time t, they can be
computed from the state of the market). Assuming as in [6] that the risk premia is of the form λv, any
claim satisfies the PDE (see [1], pg 218):

∂U

∂t
+

1

2
σ2
svS

2 ∂
2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
σ2
bvB

2 ∂
2U

∂B2
+ ρsvσsσSv

∂2U

∂s∂v
+ ρsbσsσbvSB

∂2U

∂S∂B

+ ρvbσbσBv
∂2U

∂v∂B
+ rS

∂U

∂S
+ [k(θ − v)− λv]

∂U

∂v
− rU + rB

∂U

∂B
= 0,

(11)

where, with a small abuse of notation, the value of today’s state factors are X = (S, v,B), r = r (X) and
subject to the terminal condition of the claim (European call option), proper boundary data (see (4)) and
B(T, T ) = 1.

There also exists a risk-neutral measure π. The value of any T-claim U(t,X) is given by the conditional
expectation:

U(t,X) = Eπ
[
e−

∫ T
t
r̄(X̄(s))dsU(X̄(T ))

∣∣∣ X̄(t) = X
]
, (12)

and the market dynamics in the risk neutral measure is given by




dS̄(t) = rS̄(t)dt+ σs(t)
√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = [kθ − kv̄(t)− λv̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

dB̄(t, T ) = rB̄(t, T )dt+ σb(t)
√
v̄(t)B̄(t, T )dz̄3(t).

(13)

The change of variable x = ln
(

S
B(t,T )

)
implies that the PDE in the new variable is:

∂U

∂t
+

(
1

2
σ2
sv +

1

2
σ2
bv − ρsbσsσbv

)
∂2U

∂x2
+

1

2
σ2v

∂2U

∂v2
+

1

2
σ2
bvB

2 ∂
2U

∂B2

+
(
−σ2

bvP + ρsbσsσbvB
) ∂2U

∂x∂B
+ (ρsvσsσv − ρvbσbσv)

∂2U

∂x∂v
+ (ρvbσbσvB)

∂2U

∂v∂B

+

(
−1

2
σ2
sv +

1

2
σ2
bv

)
∂U

∂x
+ [k(θ − v)− λv]

∂U

∂v
+ rB

∂U

∂B
− rU = 0.

(14)

Similar to the simple SV model, Heston (see [6]) conjectures a solution of the form:

U(t, x, P, v) = exB(t, T )R1(t, x, v)−KB(t, T )R2(t, x, v). (15)
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Substituting (15) into equation (14), we obtain that Rj(t, x, v) must satisfy, for j = 1, 2:

1

2
σ2
xv
∂2Rj
∂x2

+ ρxvσxσv
∂2Rj
∂x∂v

+
1

2
σ2v

∂2Rj
∂v2

+ ζjv
∂Rj
∂x

+ (a− bjv)
∂Rj
∂v

+
∂Rj
∂t

= 0, (16)

where
1

2
σ2
x =

1

2
σ2
s − ρsbσsσb +

1

2
σ2
b , ρxv =

ρsvσsσ − ρbvσbσ
σxσ

,

ζ1 =
1

2
σ2
x, ζ2 = −1

2
σ2
x, a = kθ,

b1 = k + λ− ρsvσsσ, b2 = k + λ− ρbvσbσ,

(17)

subject to the condition at maturity corresponding to the European call option:

Rj(T, x, v; ln(K)) = I{x≥ln(K)},

where I denotes the indicator function.
In order to apply Heston’s results, we need to find an stochastic bond model such that the risk premia

is of the form λ(S,B, v, t) = λv and where short rates can be computed from the state of the market.
The bond model is developed in the next Section and the proof that the requirements are fulfilled is

in Section 5.

4 The stochastic bond
We are looking for a bond formula which can be nested in (9). Longstaff and Schwartz develop in [8]

a model for interest rates that we are partly going to use.
Without loss of generality, we can assume that the bond is offered to the market by an entity (the

US government, for example), whose only purpose is to trade the bond. This bond is constructed, by no
arbitrage arguments, upon a certain asset Q̄ with dynamics:

{
dQ̄ = (µ+ δv̄)Q̄dt+ σQ̄

√
v̄Q̄dZ̄,

dv̄ = [k(θ − v̄)]dt+ σ
√
v̄dz̄2,

(18)

where v̄(t) is the same volatility process of (9).
We assume that asset Q̄, although dependent of the state of the market, is only accessible to the entity

which offers the bond. Therefore, any other investor who invests in the market described by (9) can only
negotiate upon the traded stock S̄ and the bond.

Following the development in [8], we assume that individuals have time-additive preferences of the
form

Et

[∫ ∞

t

exp(−ρs) log(C̄s)ds

]
, (19)

where E[· ] is the conditional expectation operator, ρ is the utility discount factor and C̄s represents
consumption at time s.

The representative investor’s decision problem is equivalent to maximizing (19) subject to the budget
constraint

dW̄ = W̄
dQ̄

Q̄
− C̄dt, (20)

where W̄ denotes wealth.
Standard maximization arguments employed in [8] lead to the following equation for the wealth dy-

namics
dW̄ = (µ+ δv̄(t)− ρ)W̄dt+ σQ̄W̄

√
v̄(t)dZ̄. (21)
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Applying Theorem 3 in [3], the value of a contingent claim B(t, v) must satisfy the PDE

−∂B
∂t

=
σ2v

2

∂2B

∂v2
+ (kθ − kv − λv)

∂B

∂v
− rB, (22)

where v̄(t) = v, the market price of risk is λv and r̄(t) = r is the instantaneous riskless rate.
To obtain the equilibrium interest rate r̄, Theorem 1 of [3] is applied. This theorem relates the riskless

rate to the expected rate of change in marginal utility. The result obtained is that

r̄(t) = µ+ (δ − σ2
Q̄)v̄(t) = µ+ βv̄(t). (23)

The price of a riskless unit discount bond B(τ, v), where τ = T − t is obtained solving equation (22)
subject to the maturity condition B(0, v) = 1.

For the rest of the paper, we assume that β > 0. We will see that when parameter β → 0+, the function
B(τ, v) approaches to the bond price when the risk-free rate is considered constant (B(τ, v) = e−µτ ).

Now, we proceed to give the main result of this Section.

Theorem 4.1. The riskless unit discount bond B(τ, v), where τ = T − t denotes the time until maturity,
v̄(τ) = v and r̄(t) = r = µ+ βv, is given by the formula:

B(τ, v) = F (τ)eG(τ)v, (24)

where
F (τ) = exp

(
−
(
µ+

kθ

b

)
τ + kθ

(
b+ c

bc

)
ln
(
b+ cedτ

)
− kθ

(
b+ c

bc

)
ln(b+ c)

)
,

G(τ) =
edτ − 1

b+ cedτ
,

(25)

and
d = −

√
(k + λ)2 + 2βσ2, b =

(k + λ)− d
2β

, c =
−(k + λ)− d

2β
. (26)

Proof. For simplicity, along the proof, we will employ the notation:

η = kθ, α = k + λ.

The claim satisfies the partial differential equation (22) subject to the maturity condition B(0, v) = 1.
With the notation that we have just introduced, we have to solve:





∂B

∂τ
=
σ2

2
v
∂2B

∂v2
+ (η − αv)

∂B

∂v
− (µ+ βv)B,

B(0, v) = 1.

(27)

We conjecture a solution of the form B(τ, v) = F (τ)eG(τ)v, thus, Bv, Bvv and Bτ are explicitly
computable. Condition B(0, v) = 1 imposes that F (0) = 1 and G(0) = 0.

Substituting the conjectured solution in (27) we obtain:

σ2

2
vF (τ)G2(τ) + (η − αv)F (τ)G(τ)− (µ+ βv)F (τ) = F ′(τ) + F (τ)G′(τ)v. (28)

As the previous equation is an identity in v, we have two equations:




σ2

2
F (τ)G2(τ)− αF (τ)G(τ)− βF (τ) = F (τ)G′(τ),

ηF (τ)G(τ)− µF (τ) = F ′(τ).

(29)
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For G(τ), as candidate for solution we take:

G(τ) =
a+ edτ

b+ cedτ
=

edτ − 1

b+ cedτ
,

as G(0) = 0 implies a = −1 and b 6= −c.
Thus, obtaining G2(τ), G′(τ) and substituting in the first equation in (29), we obtain a second degree

equation given in function of exp(2dτ), exp(dτ), 1, which implies that:

σ2 − 2αc− 2βc2 = 0,

−2σ2 − 2α(b− c)− 4βbc = 2(bd+ cd),

σ2 + 2αb− 2βb2 = 0.

Solved for b and c, we obtain:

c =
−α±

√
α2 + 2βσ2

2β
, b =

α±
√
α2 + 2βσ2

2β
.

As b 6= −c, two solutions are eliminated. Another one is rejected when solving the second ODE in
(29), as it appears ln(b+ c), which must be positive. The solution is then:

c =
−α+

√
α2 + 2βσ2

2β
, b =

α+
√
α2 + 2βσ2

2β
, d = −

√
α2 + 2βσ2.

For the second equation in (29), we have to solve:
{
ηF (τ)G(τ)− µF (τ) = F ′(τ),

F (0) = 1.
(30)

After substituting the value of G(τ) in (30), the solution is:

F (τ) = exp

(
−
(
µ+

η

b

)
τ + η

b+ c

bc
ln(b+ cedτ )− η b+ c

bc
ln(b+ c)

)
,

which completes the proof.

For the rest of the paper, we denote B̄(τ, v̄) = B(τ, v̄).
To finish the Section, we give some auxiliary results which will be needed in Section 5. They will be

employed to prove that, when we incorporate the bond to the pricing model of the option, we can employ
Heston’s results to price options in the extended model (see [6]).

The proofs of the following results are not included since they are quite straightforward to prove.

Proposition 4.1. The bond dynamics in the physical measure is given by

dB̄(τ, v̄) = [µ+ βv̄ + λv̄] B̄(τ, v̄)dt+G(τ)σ
√
v̄B̄(τ, v̄)dz̄2

= (r̄(t) + λv̄)B̄(τ, v̄)dt+G(τ)σ
√
v̄B̄(τ, v̄)dz̄2,

(31)

where r̄(t) denotes the instantaneous riskless rate and z̄2 is the same Wiener process as in equation (9).

The following result states that, when parameter β approaches to 0+, then function B(τ, v) converges
to the price of the bond when constant risk-free rates are employed, i.e., the bond employed in the simple
SV model with constant interest rates (see Section 2).
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Proposition 4.2. Consider the functions F (τ) and G(τ) given by (25)-(26).
If β → 0+, then we have that F (τ)→ exp(−µτ) and G(τ)→ 0.

As B̄(τ, v̄) is the stochastic process of a bond price, the stochastic component G(τ)σ
√
v̄ of equation

(31) must vanish at maturity so the bond reaches par at maturity with probability one. This is also
satisfied due to following lemma.

Lemma 4.1. Let G(τ) be given by (25). Then it holds:




G(τ) =
edτ − 1

b+ cedτ
−→
τ→0

0,

G(τ) 6= 0, τ > 0,

G(0) = 0.

5 Valuation Formula
Suppose that the market is formed by a stock given by (physical measure)

{
dS̄(t) = µsS̄(t)dt+ σs(t)

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = k[θ − v̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

and by a bond
B̄(t, T ; v̄) = B̄(τ ; v̄) = F (τ)eG(τ)v̄,

where τ = T − t and F (τ), G(τ) are explicitly given by formulas (25)-(26).
If we compute the bond dynamics, Proposition 4.1 enforces that, in order to be consistent with model

(9), 



σb(τ) = σG(τ),

ρbv = 1,

ρbs = ρvs,

(32)

and for simplicity reasons (other specifications could be considered), we have taken σs(t) ≡ 1.
The sign and magnitude of the correlation between the bond and the stock seems to be difficult to

estimate from market data (see [7]). Condition ρbs = ρvs, although restrictive, does not violate market
empirical observations in the sense of the sign (positive/negative).

Proposition 5.1. The short interest rate is given by r = µ + βv and the risk premia λ(S, v,B, t) = λv
where λ is the constant employed in the bond formula (24).

Proof. Let us assume that it exists a deterministic function r̄ = r̄
(
X̄(t)

)
where X̄(t) = (S̄(t), v̄(t), B̄(t, T ))

for the short interest rate. Using the results in [1], pg 218, any contingent claim must satisfy

∂U

∂t
+

1

2
σ2
svS

2 ∂
2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
σ2
bvB

2 ∂
2U

∂B2
+ ρsvσsσSv

∂2U

∂s∂v
+ ρsbσsσbvSB

∂2U

∂S∂B
+

+ ρvbσbσBv
∂2U

∂v∂B
+ rS

∂U

∂S
+ [k(θ − v)− λ(S, v,B, t)]

∂U

∂v
− rU + rB

∂U

∂B
= 0,

where X̄(t) = X = (S, v,B).
Suppose that, fixed a maturity T (τ = T − t), we want to price the contingent claim which values 1 at

maturity. In order to avoid any arbitrage opportunity, this claim has to be the bond,

U(S, v,B, τ) = F (τ)eG(τ)v,

7



thus, it must hold that

−
(
F ′(τ)eG(τ)v + F (τ)G′(τ)veG(τ)v

)
+

1

2
σ2vF (τ)G2(τ)eG(τ)v+

+ [k(θ − v)− λ(S, v,B, t)]F (τ)G(τ)eG(τ)v − rF (τ)eG(τ)v = 0.

On the other hand, by construction of the bond, we know that

−
(
F ′(τ)eG(τ)v + F (τ)G′(τ)veG(τ)v

)
+

1

2
σ2vF (τ)G2(τ)eG(τ)v+

+ [k(θ − v)− λv]F (τ)G(τ)eG(τ)v − (µ+ βv)F (τ)eG(τ)v = 0.

We subtract both expressions and divide by F (τ)eG(τ)v to get to

(−λ(S, v,B, t) + λv)G(τ) + (−r + (µ+ βv)) = 0.

The previous expression must hold for all v, τ . From Proposition 4.1 we know that G(τ) 6=0, τ 6= 0
and that G(0) = 0. Standard arguments yield the desired result.

In the riskless measure, the dynamics is:




dS̄(t) = rS̄(t)dt+
√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = [kθ − kv̄(t)− λv̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

dB̄(t, T ) = rB̄(t, T )dt+ σG(τ)
√
v̄(t)B̄(t, T )dz̄2(t),

(33)

where the riskless rate is r̄(t) = µ+ βv̄(t).
If we compare it with the original SV model of Heston (see Section 2), note that just one new parameter

has appeared, β, which models the stochastic component of the bond.
Proposition 4.2 states that, as β approaches to 0+, the function which gives the bond price B(τ, v)

converges, for any fixed v, to e−µτ , which is the price of a bond when constant risk free rates are employed.
Therefore, the original SV model can be considered a particular case of this one and we allow β ≥ 0 where
β = 0 denotes the the original SV model.

Now we are going to develop a semi-explicit formula. We point that Heston conjectured in [6] a solution
for the extended model:

U(t, x, P, v) = exB(t, T )R1(t, x, v)−KB(t, T )R2(t, x, v),

where Rj , j ∈ {1, 2} satisfies (16)-(17).
Substituting the parameter restrictions (32) into (16)-(17), we obtain

1

2
σ2
xv
∂2Rj
∂x2

+ ρxvσxσv
∂2Rj
∂x∂v

+
1

2
σ2v

∂2Rj
∂v2

+ ζjv
∂Rj
∂x

+ (a− bjv)
∂Rj
∂v

+
∂Rj
∂t

= 0, (34)

where
1

2
σ2
x =

1

2
− ρsvσG(τ) +

1

2
σ2G2(τ), ρxv =

ρsv − σG(τ)

σx
,

ζ1 =
1

2
σ2
x, ζ2 = −1

2
σ2
x, a = kθ,

b1 = k + λ− ρsvσ, b2 = k + λ− σ2G(τ).

(35)

The following result is proved in Appendix in [6].
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Lemma 5.1. Let τ = T − t. The solution of equation

1

2
σ2
xv
∂2fj
∂x2

+ ρxvσxσv
∂2fj
∂x∂v

+
1

2
σ2v

∂2fj
∂v2

+ ζjv
∂fj
∂x

+ (a− bjv)
∂fj
∂v
− ∂fj
∂τ

= 0, (36)

subject to fj(x, v, 0;φ) = eiφx, j ∈ {1, 2} is the characteristic function of Rj.

In order to obtain the solution of (36), the characteristic function is conjectured to be

fj(x, υ, τ, φ) = eCj(τ,φ)+Dj(τ,φ)υ+iφx.

Thus it holds that:
∂f

∂t
= f

(
∂C

∂t
+
∂D

∂t
υ

)
= f

(
−∂C
∂τ
− ∂D

∂τ
υ

)
,

∂f

∂x
= fiφ,

∂f

∂v
= fD,

∂2f

∂x2
= −fφ2,

∂2f

∂v2
= fD2,

∂2f

∂v∂x
= iφDf.

Substituting in the PDE (36), we come to:

−1

2
σ2
xvfφ

2 + ρxvσxσviφDf +
1

2
σ2vfD2 + ujvfiφ+ (a− bjv)fD + f

(
−∂C
∂τ
− ∂D

∂τ
υ

)
= 0.

As the previous expression is a second degree polynomial identity in v, we obtain the next two equations:




− 1

2
σ2
xφ

2 + ρxvσxσiφD +
1

2
σ2D2 + ujiφ− bjD −

∂D

∂τ
= 0,

aD − ∂C

∂τ
= 0,

plus the condition C(0) = D(0) = 0.
The first equation is a Ricatti equation, but as σx(t) depends on time and not being constant, a direct

solution has not been found and it has to be solved numerically, for example, by means of the routine of
Matlab ode45.

Finally, the price of the European call option is computed with (15), where

Rj(x, v, τ, ln(K)) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K)fj(x, v, τ, φ)

iφ

]
dφ,

and fj(x, υ, τ, φ) = eCj(τ,φ)+Dj(τ,φ)υ+iφx.

6 Numerical Experiments
In this section we are going to study the effect of incorporating stochastic interest rates to the pricing

model. As in [6], we perform the change of variables

k∗ = k + λ, θ∗ =
kθ

k + λ
,

since, in the risk-neutralized process, the variance drifts toward a long-run mean θ∗, with mean-reversion
speed k∗.

The model parameter values are:

k∗ = 2, θ∗ = 0.01, v(0) = 0.01, ρvs = −0.5, σ = 0.1, µ = 0.04, β = 0.5.
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First, we are going to study the stochastic bond. For a maturity T ∈ [0, 1], we are going to compute
the price of the riskless unit discount bond B̄(0, T ; v̄).

In order to study how interest rates evolve, we have also computed the equivalent constant interest
rate rcT , i.e. for the same maturities, we have computed the values rcT such that:

e−r
c
TT = B̄(0, T ; v̄)

The results are plotted in Figure 1, where in the left side we have plotted the bond price and in the
right side the equivalent constant interest rate rcT .
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0.95
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0.98

0.99

1

Time to maturity

Bond Price

0 0.2 0.4 0.6 0.8 1
0.0525

0.0530

0.0535

0.0540

0.0545

0.0550

0.0555

0.0560

0.0565

Time to maturity

Equivalent constant interest rate

Figure 1: Price of the riskless unit discount bond B̄(t, T ; v̄) (left) and equivalent constant interest rate
(right).

The value rcT decreases as maturity grows but, as the variance is a mean-reversion process, rcT converges
and, as T →∞, the value of rcT → 0.0491.

Now we are going to study the effects of the stochastic interest rates in option prices. For a stock
price S(0) ∈ [70, 130], a strike K = 100, a maturity T = 0.5 years and the same parameter values of the
previous experiment, we have computed the price of the European call option with the SVSIR model (see
Section 5).

In order to compare it with Heston’s model, we have computed the price of the European call option
with the original SV model (see Section 2) for rA = 0.056 and rB = 0.053, which, for a maturity of
T = 0.5, are respectively above and below the values of rcT (see Figure 1).

As we can see in Figure 2, the option prices of the SVSIR model are consistent with option prices of
the SV model with nearby interest rates.

7 Conclusions
We have presented an extension of Heston’s SV model which, just increasing in one the number of

parameters, allows to incorporate SIR to the pricing model of the European call option. We have also
derived a semi-explicit formula which is easy to implement, for example, with Matlab routines.

Although one option price can be computed fast with a small numerical error, one of the main concerns
in option pricing is that we usually need to compute a large amount of contracts with different strikes,
maturities and even different parameter values. This problem can be radically reduced employing the
reduced basis method presented in [5], where the model presented in this work can be employed to
construct the polynomial basis which interpolate the value function for several different parameter values
at the same time.
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Figure 2: Price (left) and difference between prices (right) of European call options. In the left, the colour
code is blue for SV(rA),red for SVSIR and black for SV(rB) models. In the right side, the colour code is
blue for SV(rA)-SV(rB) and red for SVSIR-SV(rB).

Further work may include the analysis of this model with real market data. Since we have an explicit
formula for the bond price, the estimation of market parameter values can be done not only adjusting to
option prices, but also enforcing the price of, for example, the US-Treasure bond.
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