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Abstract

In [6], Heston proposes a Stochastic Volatility (SV) mou." witk - astant interest rate and derives
a semi-explicit valuation formula. Heston also describes, in gew. -al terms, how the model could be
extended to incorporate Stochastic Interest Rates (SIR, This p¢ yer is devoted to the construction
of an extension of Heston’s SV model with a particula. ~tocn. *.¢ bond model which, just increasing
in one the number of parameters, allows to incorporate Sli. ~ud to derive a semi-explicit formula for
option pricing.
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1 Introduction

In [6], Heston proposes a Stochastic Vola. "ty (»V) model with constant interest rate and derives a
semi-explicit valuation formula. Heston also descr.. es, in general terms, how the model could be extended
to incorporate Stochastic Interest Rates [ZTR). We will see how, with a particular stochastic bond model
and just increasing in one the numbe’ of par: neters, we can incorporate SIR and derive a semi-explicit
formula for option pricing.

The paper will be organized as follnws. irst, we will review Heston’s original model with constant
interest rates. In a second step we will .nake the theoretical development of the extended model as
presented in [6]. In a third ster, we . 1l search for a stochastic bond formula that can be nested within
this framework, i.e., that fits ., *h the specifications of the pricing model and it does not increase much
the number of parameters.

Finally, we will assume .u. " the market is composed by the stock and the discounted bond computed
in the previous step. Wr wil' see that, under certain parameter restrictions, the resulting model is of
the type proposed by Festo.. n [6]. We will derive a semi-explicit formula and a pricing model will be
obtained with just on mc e parameter than the original Heston’s SV. Thus, we will have incorporated
stochastic interest rav. ~ v 1the it increasing much the number of parameters.

2 Heston SV n odel

In [6], He' von as mes that the asset S(t) follows a diffusion model with constant drift and where the
volatility /i) of t! e asset follows an Ornstein-Uhlenbeck process (see [9]). After some calculus, the
dynamics is:

{ dS(t) = uS(t)dt + /o(t)S(t)dz (1), O
=k

do(t) = k[0 — (b)]dt + o\/D(t)dz (L),



where g is the constant drift of the asset, o is the volatility’s volatility and z; and Z =re Wiener processes.
The variance drifts (in the physical measure), toward a long-run mean of § wita me. *-reversion speed
given by k.

Employing the notation of [1] or [6], we define the (instantaneous) correl sion coefficient p by pdt =
Cov(dzi, dZs), where Cov(.,.) stands for covariance.

We also assume that a constant rate risk-free bond exists and it is denow ! by B(¢,T) =
where t denotes today, T denotes maturity and r¢ corresponds to the co sve 1t riss-free rate.

In [6], it is claimed that these assumptions are insufficient to price ¢ ntir ,env claims, because we have
not made an assumption that gives the price of “volatility risk”. By no « bitrage arguments (see [1] or
[6]), the value of any claim must satisfy:

0%U ?U 1 4, 0*U ou . oU ou
w“t‘pd Sasa +*2W+T0565 (k(H—v)—)\(Jmf\/%—roU—&—E:O, (2)
where S(t) = S, 9(t) = v and A(S,v,t) represents the price of ol> ity risk.

Since we are working with Heston’s model (see [6]), we wi'! assume Jhat any risk premia is of the form
A(S,v,t) = Av. It should be remarked that, once the component. ~f the market are fixed, the risk premia
is independent of the claim, i.e. the same risk premia is u. ~d to pr :e all the claims (see [1]).

As Heston points in [6], this choice of risk premia is . ~t ai. ™ ary (see [2] and [4]).

Thus, the price of the European call option U(S,v t) sat. Ses the PDE:

—ro(T—t
e~ ro(T—1)

1
fvSQ

1 ,0°U 02U 1 2, 0?U , ou ou
fvS w%— 05658 +f a2—|—7’oS + Ll —v)— ) — 5 roU—|—§*O, (3)
subject to the following conditions:
U(S,v,T) = max(0,5 — K),
LoU ou
U(0,v,t) =0, + k60— U+ U, =0,
( v ) aS o —To t S0 (4)
ou
35 (0 vt) =1, U(S,00,t) = S.

Heston conjectures a solution simi.. v to t ie Black-Scholes model for the price of an European call
option:
J(S v,t,7,K)= SRy — KB(t,T)Ro, (5)

where K corresponds to the str'ce o1 e option and 7" denotes the maturity of the option.
The following semi-explicit [>rmula for the price of the European call option is obtained

U(z,v,7,I0/ ) = 2.2y (x,v,7;In(K)) — In(K)B(t, T)Rs (z,v, 7;In(K)) , (6)
where z =In(S), 7 =T - ¢t ar . function R;, j € {1,2} are given by

1 1 [ —igIn(K) f.
T(x J,T;ln(K)):i_F;/o Re [e {;5(17;”77'79%’)

} a9, )

where |
f/ (1’7 v, ¢) = €C(T;¢)+D(T§¢)+l¢x

ﬂ{_;¢):r0¢i7+:2{( po(bl—&—d)T—?ln[ lgedr}}7

b —pogi+d [ 1—el”
D(r;¢) = +——; L_gedr} (8)
_bj—pogitd — ; 2 _ 52 Y
g*m d*\/(ﬂfﬂm*bj) — 0%(2G;¢i — ¢?),
1 1
C1:§, C2:—§, a:kﬁ, b1:k+/\—p0', b2:k+)\



3 The extended model

We propose (see [6]) the following market dynamics in the physical measure-

dS(t) = psS(t)dt + os(t)\/v(t)S(t)dz (t
do(t) = k[0 — v(t)]dt + o+/0(t)dZa(t (9)
dB(t,T) = ubB(t T)dt + o (t)\/v(t)B(t, T‘ 1z3(7 ),

where B(t, T) corresponds to the price of the risk-free bond with mat: *'y T' v “en stochastic interest rates
are considered.
We also denote

psvdt = COV(dEl, diz), psbdt = COV(dEl, d,gs) £ oL = COV(dfz, dfs) (10)

Let X(t) = (S(t),v(t), B(t,T)). Let us assume that the sho." rate or interest is a deterministic function
of the state factors, i.e. 7 = 7(X(t)), (short rates are stochastic Hut, at any fixed time ¢, they can be

computed from the state of the market). Assuming as in |u, that .he risk premia is of the form Av, any
claim satisfies the PDE (see [1], pg 218):

oU 1 5, ,0°U 1 o2 ?U 1 N 0*U 0*U
— 4= ~— 4+ ~¢%v— 4 =c2uB B———
ot T3S g 37 Vg B g oo Sug st paosowSBpgan (11)
82U oU oUu oUu
B — rB— =
+ PopTHo va aB+ SaS + k(0 —v) I]— 5 —rU + 3B 0,

where, with a small abuse of notation, the value o. touay’s state factors are X = (S,v, B), r = r (X) and
subject to the terminal condition of the claiu. ‘®uic, 2an call option), proper boundary data (see (4)) and
B(T,T) =1

There also exists a risk-neutral measr~- —. The value of any T-claim U (¢, X) is given by the conditional
expectation:

Ut,X) =k [off ‘f(X“))dSU(X(T))‘ X(t) = X] : (12)

and the market dynamics in the r sk r ;utr- 1 measure is given by

dS(t) =, S(t)dt + o, (t)\/v(t)S(t)dz (t
do(e, = [k0 — kv(t) — Mo(t)]dt + a+/v(t) dig (13)
(ds (tT)—TB(tTdt-i‘O'b VO(t)B(t, T)dzs(t

The change of vari- ole ~ = 1.« (%) implies that the PDE in the new variable is:

oUu /1 9 1, 0?U 1 o2 0?U 1 282
ORI L) b el L rl i L7
2 2 2
+ (=0, P+ ,JsbosobvB) (;;GUB + (PspOsOV — PLpopov) % + (pwpopovB) ;JTUB (14)
1 1 5, \oU oUu ou
3 (—50' U+20'b11> %—F[k(e ) )\’l}]ai—FTBaiB—TU 0.
Simile. - v 7 - simple SV model, Heston (see [6]) conjectures a solution of the form:
U(t,z, P,v) =e"B(t,T)Ri(t,x,v) — KB(t,T)Ra(t, z,v). (15)



Substituting (15) into equation (14), we obtain that R;(t,z,v) must satisfy, for + =1,2:

1, 0°R, PRy 1, O OR; OR  OR,
3OV G + P OaOVG A 4 S0l Gt (= byo) 4 5 =0, (16)
where 1 1
Psv0s0 — PbyOpe
50720 = 503 — PsbOsOp + 5013» Pzv = 70%’ >
1 1
Cl = 5037 CQ 2 a:a a = ke? (17)

b1:k+A_psvo—sa7 b2:k+)\_pbv()a7

subject to the condition at maturity corresponding to the European -all or jion:
Rj (T, x, V; IH(K)) = I{th ‘KY

where I denotes the indicator function.
In order to apply Heston’s results, we need to find an stochastic bond model such that the risk premia
is of the form A(S, B,v,t) = Av and where short rates cen be ~om ,uted from the state of the market.
The bond model is developed in the next Section and .. = proof that the requirements are fulfilled is
in Section 5.

4 The stochastic bond

We are looking for a bond formula which car. L. nerced in (9). Longstaff and Schwartz develop in [8]
a model for interest rates that we are partly egoing ‘o use.

Without loss of generality, we can assum. tha. Jhe bond is offered to the market by an entity (the
US government, for example), whose only purpose is to trade the bond. This bond is constructed, by no
arbitrage arguments, upon a certain ase-. ) with dynamics:

(ol = (1 r 00)Qdt + 0ovVvQdZ, 18)
( 7= k(0 — v)]dt + ov/vdZ,
where 0(t) is the same volatilit: procc = .t (9).

We assume that asset @, a'.. ~ugh dependent of the state of the market, is only accessible to the entity
which offers the bond. Thererore, a.. - other investor who invests in the market described by (9) can only
negotiate upon the traded ..o\ S and the bond.

Following the develor nen’ in [8], we assume that individuals have time-additive preferences of the
form

5, [ | exp-psyos(Cuis|. (19)

where E[-] is the coaditional expectation operator, p is the utility discount factor and C, represents
consumption at t me s.
The representa. e ir estor’s decision problem is equivalent to maximizing (19) subject to the budget
constraint
dQ

dW =W —= — Cd 20
0 t, (20)

where W ‘enc .. wealth.
Standarc maximization arguments employed in [8] lead to the following equation for the wealth dy-
namics
AW = (p+ 00(t) — p)Wdt + oW +/0(t)dZ. (21)



Applying Theorem 3 in [3], the value of a contingent claim B(t,v) must satisfv ~he PDE

9B o2 9B aB
9B _gwI B ke a?P B 92
ot~ 3 90z T VoA B, (22)

where 9(t) = v, the market price of risk is Av and 7(t) = r is the instantane. s ris. '=ss rate.
To obtain the equilibrium interest rate ¥, Theorem 1 of [3] is applied. This tu. ~rem relates the riskless
rate to the expected rate of change in marginal utility. The result obtai' ed 1+ "hat

F(t) = p+ (6 — 03)o(t) = p + Bo(1) (23)

The price of a riskless unit discount bond B(7,v), where 7 =T — t is o stained solving equation (22)
subject to the maturity condition B(0,v) = 1.

For the rest of the paper, we assume that 8 > 0. We will see “ nat ~ .. ~n parameter 8 — 07, the function
B(r,v) approaches to the bond price when the risk-free rate is -~ .sider :d constant (B(r,v) = e H7).

Now, we proceed to give the main result of this Section.

Theorem 4.1. The riskless unit discount bond B(7,v), v »re T = I' — t denotes the time until maturity,
(1) =v and 7(t) = r = p+ Po, is given by the formula.

B(r,u)=F ., (24)
where ” 5 b
F(r)=exp|—(p+—|7+k0 i\111(b+cedT)fk9 te In(b+c¢) ),
b he be (25)
G( )_ edT -1
Tt cedr
and (k+\) —d (k+\) —d
+A)— —(k+A)—
f— 2 3 Uq = =
d (k+ X2+ b 53 , ¢ 55 (26)

Proof. For simplicity, along the pronf, w. wil' employ the notation:
r=k0, a=k+\

The claim satisfies the part 2l differeutial equation (22) subject to the maturity condition B(0,v) = 1.
With the notation that we h..ve ju.* introduced, we have to solve:

(08 _o 0B
or 2 o2
| -(0,v) =1.

+i—an)?Z (1 BB,

dv (27)

We conjecture a soi.“ior of the form B(r,v) = F(7)e“?, thus, B,, B,, and B, are explicitly
computable. Conc ition R(0,v) = 1 imposes that F(0) =1 and G(0) = 0.
Substituting t e conje tured solution in (27) we obtain:

%v} ‘TVG2(7) + (n — av)F(1)G(T) — (u + Bv)F (1) = F'(1) + F(7)G'(T)v. (28)

As the nrevious equation is an identity in v, we have two equations:

0.2

5 F(N)G2(r) = aF(7)G(r) - BF(1) = F(r)G'(7),
nF(T)G(1) — pF(r) = F'(7).

(29)



For G(7), as candidate for solution we take:

G _a_|_ed7'_ed7'_1
(T)_b—i—cedT_b—l—cedT’

as G(0) =0 implies a = —1 and b # —c.
Thus, obtaining G2(7), G’(7) and substituting in the first equation in /29), w. ~btain a second degree
equation given in function of exp(2dr), exp(dr), 1, which implies that:
0% —2ac—2Bc* =0,
—202% — 2a(b— ¢) — 48bc = 2(bd + cd),
0% 4+ 2ab — 28b* = 0.

Solved for b and ¢, we obtain:

—a+ /a2 + 2802 b_ai\/q2+2602
203 ’ ¢ 3 '

As b # —c, two solutions are eliminated. Another onc ‘< rejected when solving the second ODE in
(29), as it appears In(b + ¢), which must be positive. ™. __l.wo0n is then:

_ 2 1 93,2 /A2 4 7802
c= 207 ;%* bo” b:a—'—erﬂ, d=—/a? 1 280°.

For the second equation in (29), we have to s v

nF(r)l'7) — uF(1) = F'(1), (30)
F(0)=1.
After substituting the value of G(- ) in (30 , the solution is:
b b
F(1) =exp ( N %) T+ ;;Cln(bJrcedT) U;:jcln(bJFC)) )
which completes the proof.
O

For the rest of the pap r, v > denote B(7,v) = B(1, ).

To finish the Section, . ~ < ive some auxiliary results which will be needed in Section 5. They will be
employed to prove that when . ~ incorporate the bond to the pricing model of the option, we can employ
Heston’s results to pr'ce ¢ tiors in the extended model (see [6]).

The proofs of the to.” ‘wir | results are not included since they are quite straightforward to prove.

Proposition 4.1 The v 'nd dynamics in the physical measure is given by
dB(7,7) = [ + B + \0] B(7,0)dt + G(1)o Vi B(7,7)dZ; (31)
= (7(t) + \o) B(7,0)dt + G(1)oVoB(1,0)dZ2,

where 7(t* Jenotes the instantaneous riskless rate and Z is the same Wiener process as in equation (9).

The follc  ng result states that, when parameter 3 approaches to 0%, then function B(7,v) converges
to the price ot the bond when constant risk-free rates are employed, i.e., the bond employed in the simple
SV model with constant interest rates (see Section 2).



Proposition 4.2. Consider the functions F () and G(7) given by (25)-(26).
If B — 0T, then we have that F (1) — exp(—ut) and G(1) —

As B(7,) is the stochastic process of a bond price, the stochastic compc went G(7)o/v of equation
(31) must vanish at maturity so the bond reaches par at maturity with pro. ' dity one. This is also
satisfied due to following lemma.

Lemma 4.1. Let G(1) be given by (25). Then it holds:
edm —1
G = e b
G(r)#£0, 7>0,
G(0) = 0.

)

5 Valuation Formula

Suppose that the market is formed by a stock given by ‘mhysic' | measure)

dS(t) = psS(t)dt + o, (H)\ /v S(t)dz (),
do(t) = k[0 — v(t)]dt + . - /o(t)dz(t),
and by a bond
B(t,T;0) = R(r;¢ = F(r)ef7,

where 7 =T —t and F(7), G(7) are explicitly giv n ., formulas (25)-(26).
If we compute the bond dynamics, Prop. “ui.. 2 ' enforces that, in order to be consistent with model

(9),
{ op(1) = oG (1),

1 Ppo = 1, (32)
Pbs = Pus,

and for simplicity reasons (other s peci’.cations could be considered), we have taken o4(t) = 1.

The sign and magnitude of the - irrel .tion between the bond and the stock seems to be difficult to
estimate from market data (se : [7]). Ccadition pps = pys, although restrictive, does not violate market
empirical observations in the sens. f the sign (positive/negative).

Proposition 5.1. The short aterest rate is given by v = p + Bv and the risk premia A(S,v, B,t) = v
where X is the constant e, mlc jed in the bond formula (24).

Proof. Let us assume * 1at L exises a deterministic function 7 = 7 (X (t)) where X(t) = (S(¢),v(t), B(t,T))

for the short interest . ~te. Us'ag the results in [1], pg 218, any contingent claim must satisfy
ou 1 Y 28 f 1 2 ?U 1, 282 02U 02U
o + —cvS 5t V—s 502 + 5%93 352 + psvasaSva 5 + psbasavaBasaB
>J 3 ou ou
+p1 ,UbUB 91}8 +TS%+[1€(9 )—A(S,U,B,t)]ai—rU'i—TBaiB 0,

where X(t) = a 3,0, B).
Suppc @ w .., Gxed a maturity T (7 = T —t), we want to price the contingent claim which values 1 at
maturity. Ii. srder to avoid any arbitrage opportunity, this claim has to be the bond,

U(S,v,B,1) = F(r)e™",



thus, it must hold that

B (F/(T)GG(T)U + F(T)G/(T)WG(T)U> + %UZUF(T)G’Q(T)eG/ N
+ [k(0 = v) = A(S,v, B, )] F(1)G(1)eCD? — pF(7)eCTv -«

On the other hand, by construction of the bond, we know that

— (F(0)e9@" 4 PG (1)et D) 4+ LomF ()6 1650
+ [k(0 — v) — W) F(1)G(1)eC D" — (u+ Bu)F 1) = 0.
We subtract both expressions and divide by F(7)e%(™? to gr. .o
(=A(S,v,B,t) + A\) G(1) + (=1 + . +Pv')=0.

The previous expression must hold for all v, 7. From Proposi.’on 4.1 we know that G(7)#£0, 7 # 0
and that G(0) = 0. Standard arguments yield the desired 1< mlt.
O

In the riskless measure, the dynamics is:

dS(t) = rS(t)dt + o HdE (1),
do(t) = [k0 — k71) — . 5(t)]dt + o+/0(t)dZa(t (33)
dB(t,T) =rB(t,T)dv + ¢ F(T)\/¥ BtTd22

where the riskless rate is 7(t) = u + So(t).

If we compare it with the original SV model of Heston (see Section 2), note that just one new parameter
has appeared, 3, which models the sto nasti. component of the bond.

Proposition 4.2 states that, as 8 =proacl s to 07, the function which gives the bond price B(r,v)
converges, for any fixed v, to e ™7, v hich .. *F 2 price of a bond when constant risk free rates are employed.
Therefore, the original SV model ¢ «n b . considered a particular case of this one and we allow 8 > 0 where
8 = 0 denotes the the original SV . < del.

Now we are going to develor a semi-v plicit formula. We point that Heston conjectured in [6] a solution
for the extended model:

U'syz, Pv)=e"B(t, T)Ry(t,z,v) — KB(t,T)Ra2(t, x,v),

where R;, j € {1,2} sa'isfies [16)-(17).
Substituting the p .ram ster restrictions (32) into (16)-(17), we obtain

1, 02 Dj 82 1 o2 0°R R; aR OR; OR;
§O'I’U 87 vaUIO"Ua o + a 2 + Cj — + ( —b; U)W + W = 0, (34)
where ) ) ) G(r)
L2 1 1 2.2 _ Psv = 0G(T
2Jm 2 PsvoG(T) + 20 G*(T),  Pav on )
1 1 35
C1:§U§> C2:*§%; a=kb, (85)

by =k+X—pswo, by=k+\—0>G(r).
The followiag result is proved in Appendix in [6].



Lemma 5.1. Let 1 =T —t. The solution of equation
1 o2 0% f;

1, 0%f; 0%f; 1
z%”a ozov 27 Vo2

subject to fj(z,v,0;¢) = €e'**, j € {1,2} is the characteristic function of R,

f’ =+ (a b]v)% _9 =0, (36)

0 T

+ Pru0L0V + v

In order to obtain the solution of (36), the characteristic function is ¢ u, ctured to be

fi(@,v,7,¢) = CimA+Di(nd)vtivn,

Thus it holds that:
of 8C’ 6D oC 9D
==t = (-5 v

5't 8t 3’r b'l ,
of _ 4 ﬂ _

8793 - f7'¢7 8'[) - fDa

D*f _ s  O°f _ 2 ot .
a2~ 1 g TP guar T 9PT

Substituting in the PDE (36), we come to:

;axqui) + prvOrovipDf + 0' 20fD?* +ujvge + (a—bjv)fD+ f (—80 — 3DU> =
T T

As the previous expression is a second degree poly "o’ iial identity in v, we obtain the next two equations:

1 * D
- 50’1 +pgyu0_z0'7,¢D -+ 70{202 +'LL]Z¢ — b]D - 7887- = O7
oC
p-% _g
“ or ’

plus the condition C'(0) = D(0) = 0.

The first equation is a Ricatti equ. “on, bu as o,(t) depends on time and not being constant, a direct
solution has not been found and it .as to * = solved numerically, for example, by means of the routine of
Matlab ode45.

Finally, the price of the Europe. = call option is computed with (15), where

L [
2 ™ Jo Z(ZS

Rj(z,v, r,In"M) =

de,

and f;(z,v,7,¢) = oCi (T 1D T p)vtips

6 Numerica. F«prriments

In this section we are going to study the effect of incorporating stochastic interest rates to the pricing
model. As in [6], ve perfc ‘m the change of variables

k6

P N L
TA Y

since, in the risk-ueutralized process, the variance drifts toward a long-run mean 6*, with mean-reversion
speed k*.
The moa ' parameter values are:

k*=2, 6*=001, v(0)=001, py=-05 o=01 p=004, B=0.5.



First, we are going to study the stochastic bond. For a maturity T € [0,1], we ~re going to compute
the price of the riskless unit discount bond B(0,T’; ).

In order to study how interest rates evolve, we have also computed the ec ... lent constant interest
rate rf, i.e. for the same maturities, we have computed the values r% such tb t:

= B(0,T;v)

e—T%T

The results are plotted in Figure 1, where in the left side we have r .otts 1 .\ = bond price and in the
right side the equivalent constant interest rate 7.

Bond Price Equivaler . constal. interest rate
1 0.0565
0.0560
0.99
0.0555
0.98
0.0550
0.97 1 0.0545
0.0540
0.96 |
0.0535‘
0.95
0.94 0.052:
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Time to maturity Time to maturity

Figure 1: Price of the riskless unit discount b’ B(v T; ) (left) and equivalent constant interest rate
(right).

The value r% decreases as maturity grows buy, ~s the variance is a mean-reversion process, r{. converges
and, as T' — oo, the value of 7% — 0.0491

Now we are going to study the eff .cts o, the stochastic interest rates in option prices. For a stock
price S(0) € [70,130], a strike K = 1." a ma urity 7" = 0.5 years and the same parameter values of the
previous experiment, we have comp «ted tu. - rice of the European call option with the SVSIR model (see
Section 5).

In order to compare it with Hes. a’s » 1odel, we have computed the price of the European call option
with the original SV model (e Sectio. 2) for r4 = 0.056 and rp = 0.053, which, for a maturity of
T = 0.5, are respectively abe e au ' below the values of rg. (see Figure 1).

As we can see in Figure © the option prices of the SVSIR model are consistent with option prices of
the SV model with nearbr inte ‘est rates.

7 Conclusior.s

We have preser .cd an o .tension of Heston’s SV model which, just increasing in one the number of
parameters, allov s to inc wporate SIR to the pricing model of the European call option. We have also
derived a semi-exy.*cit fo mula which is easy to implement, for example, with Matlab routines.

Although - ¢ option price can be computed fast with a small numerical error, one of the main concerns
in option pri ing is 1 at we usually need to compute a large amount of contracts with different strikes,
maturities an. ever different parameter values. This problem can be radically reduced employing the
reduced ' - “o method presented in [5], where the model presented in this work can be employed to
construct 1 e polynomial basis which interpolate the value function for several different parameter values
at the same \ ne.
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European call option price Difference between price«
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Figure 2: Price (left) and difference between prices (right) of Ex or san « all options. In the left, the colour
code is blue for SV(r4),red for SVSIR and black for SV(rp) ~odele 7a the right side, the colour code is
blue for SV(r4)-SV(rp) and red for SVSIR-SV(rp).

Further work may include the analysis of this model wiu.. real market data. Since we have an explicit
formula for the bond price, the estimation of market _-uawecier values can be done not only adjusting to
option prices, but also enforcing the price of, for example, *he US-Treasure bond.
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