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A NEW PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT
METHOD FOR ILL-POSED ELLIPTIC CAUCHY PROBLEMS

CHUNMEI WANG *

Abstract. A new numerical method is devised and analyzed for a type of ill-posed elliptic
Cauchy problems by using the primal-dual weak Galerkin finite element method. This new primal-
dual weak Galerkin algorithm is robust and efficient in the sense that the system arising from the
scheme is symmetric, well-posed, and is satisfied by the exact solution (if it exists). An error esti-
mate of optimal order is established for the corresponding numerical solutions in a scaled residual
norm. In addition, a mathematical convergence is established in a weak L? topology for the new
numerical method. Numerical results are reported to demonstrate the efficiency of the primal-dual
weak Galerkin method as well as the accuracy of the numerical approximations.

Key words. primal-dual, weak Galerkin, finite element methods, elliptic Cauchy problem, weak
gradient, polygonal or polyhedral meshes.
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1. Introduction. This paper is concerned with the development of new nu-
merical methods for solving a type of elliptic Cauchy problems. For simplicity, we
consider the second order elliptic equation with Cauchy boundary data on part of the
boundary: Find an unknown function u = u(x) such that

-V - (aVu) =f in Q,
(1.1) u=g1  only,

aVu-n =gy on 'y,

where € is an open bounded domain in R? (d = 2,3) with Lipschitz continuous
boundary 9; I'y and T',, are two segments of the domain boundary 9Q; f € L?(Q);

the Cauchy data g, € Hz(I'y) and gy € (Hééz (T'y,))" are two given functions defined on
I'y and T',, respectively; n is an unit outward normal direction to I',,. The diffusion
coefficient a = a(x) is assumed to be symmetric, bounded, and uniformly positive
definite in the domain €.

The essence of the elliptic Cauchy problem is to solve a partial differential equation
on a domain with over-specified boundary conditions given on parts of the domain
boundary. On the other side, the elliptic Cauchy problem is to solve a data completion
problem with missing boundary conditions on the remaining parts of the domain
boundary. It is well-known that the solution of the elliptic Cauchy problem (1.1)
(if it exists) must be unique, provided that I'; N T, is a nontrivial portion of 9.
Throughout this paper, we assume that the Cauchy data is compatible so that the
solution of the elliptic Cauchy problem (1.1) exists; furthermore, we assume that
'y N T, is a nontrivial portion of 9N so that the solution of the elliptic Cauchy
problem (1.1) is unique.
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The elliptic Cauchy problems arise from various applications in science and en-
gineering, such as vibration, wave propagation, geophysics, electromagnetic scatter-
ing, steady-state inverse heat conduction, cardiology and nondestructive testing; etc.
Readers are referred to the “Introduction Section” in [10] and the references cited
therein for a detailed description of the elliptic Cauchy problems.

This paper aims to devise a new numerical scheme for the elliptic Cauchy problem
(1.1) by using the newly developed primal-dual weak Galerkin (PD-WG@G) finite element
method [8, 9, 10]. The new scheme is different from the one introduced and analyzed
in [10] although both aim to solve numerically the elliptic Cauchy problem under the
general framework of the PD-WG finite element method. The main difference between
them is that the present approach is based on weak gradients while the scheme in [10]
is based on weak Laplacians. As a result, the weak finite element space consisting
of piecewise linear functions is applicable in the present approach, but not in [10], as
the Laplacian of linear functions would be vanishing. In addition, new mathematical
tools (namely, methods based on generalized inf-sup conditions) must be introduced
in order to establish a mathematical theory for the new scheme.

Let us now briefly introduce the essential ideas behind the PD-WG finite element
method for solving the elliptic Cauchy problem (1.1). Denote by I'S = 9Q\T,, and by
Hj . () the subspace of H'(Q) consisting of functions with homogeneous boundary
value on Iesie.,

H&FTCL(Q) ={ve H(Q):v=0o0nT:}.

A weak formulation for the elliptic Cauchy problem (1.1) would find v € H*(£2) such
that u = g; on 'y and

(1.2) (aVu, Vw) = (g2, w)r, + (f,w) ~ Yw € Hype

where (-, -)p, stands for the pairing between H()%O(l"n) and (HO%O(I‘,L))'. The weak
formulation (1.2) is different from the one employed in [10], and shall result in a
new numerical scheme different from the one in [10] although both use the general
framework of the primal-dual approach.

Using the weak gradient operator V,, introduced originally in [12], one may re-
formulate (1.2) as follows

(1.3) (aVwiu}, Vu{w}) = (g2, w)r, + (f,w)  Yw € Hype,

where {u} = {u|r, ulor} and {w} = {w|r,w|or} are the weak functions (see Section
2 for the definition). The weak functions are then approximated by piecewise polyno-
mials on each element 7" and its boundary 07T. Note that no continuity requirement
is necessary between the information in the element 7" and on its boundary 07T. The
weak gradient operator V,, is further discretized by using vector-valued polynomials,
denoted as V5, (see Vi 1 in Section 2 for its precise definition) so that the weak
form (1.3) can be approximated by

(1.4) (aVu,ntt, Vi pw) = (g2, w)r, + (f, wo) Yw € VO},LF5~L7

where Voifﬁ is a test space consisting of weak finite element functions with proper
boundary values. However, the discrete problem (1.4) is not well-posed unless the injf-
sup condition of Babuska [1] and Brezzi [2] is satisfied. The primal-dual formulation is



thus developed to overcome this difficulty through a strategy that couples (1.4) with
its dual equation which seeks A, € V' satisfying

(15) (avuuhva Vuuh)‘h) =0 Vv € Vv()}fl"d'

A formal coupling between (1.4) and (1.5) can be accomplished via a stabilizer, de-
noted as s(v,v), designed to measure the level of “continuity” of v € V" in the sense
that v € V" is a classical C%-conforming element if and only if s(v,v) = 0. The
resulting scheme seeks uy, € VP and N\, € Vo’frc satisfying up = Qpg1 on I'y, and the
following equations: "

(1.6) { s(up,v) — (aV,pv, Vi nAn) =0 Yo € Vo}fpd,
. —(

S()\hv U}) + (avw,huha vw,hw) aw()) + <92a wb>l_‘n Yw € VE)},LF‘;L?
where s(-,-) is a bilinear form in the weak finite element space V" known as the
stabilizer or smoother that enforces certain weak continuity for the approximation wuy,
and Ap. Numerical schemes in the form of (1.6) have been named primal-dual weak
Galerkin finite element methods in [8, 9, 10], and they are also known as stabilized
finite element methods in [4, 5, 3] in different finite element contexts.

The primal-dual weak Galerkin finite element method (1.6) has shown promising
features as a discretization approach in the following aspects: (1) it offers a symmetric
and well-posed problem for the ill-posed elliptic Cauchy problem; (2) it is consistent
in the sense that the exact solution (if it exists) satisfies the system; (3) it works well
for a wide class of PDE problems for which no traditional variational formulations are
available; and (4) it admits general finite element partitions consisting of arbitrary
polygons or polyhedra.

The paper is organized as follows. In Section 2, we introduce a primal-dual
weak Galerkin finite element scheme for solving the elliptic Cauchy problem (1.1).
In Section 3, we present some technical estimates and a generalized inf-sup condition
useful for a mathematical study of the new algorithm. In Section 4, we derive an error
equation for the numerical solutions obtained from the primal-dual weak Galerkin
algorithm devised in Section 2. In Section 5, we establish an optimal order error
estimate for the primal-dual WG finite element approximations in a scaled residual
norm. In Section 6, a convergence theory in a weak L? topology is presented under
a certain regularity assumption for the elliptic Cauchy problem. Finally in Section 7,
we report some numerical results to demonstrate the efficiency and accuracy of our
new PD-WG finite element method.

We follow the usual notations for Sobolev spaces and norms. For any open
bounded domain 7" C R? (d-dimensional Euclidean space) with Lipschitz continu-
ous boundary, we use || - ||s,r and |- |5,z to denote the norm and seminorm in Sobolev
space H*(T') for any s > 0, respectively. The inner product in H*(T) is denoted by
(-,)s,7- The space H(T) coincides with L?*(T), for which the norm and the inner
product are denoted by || - ||z and (-, )7, respectively. For the case that T' = Q, we
shall drop the subscript T' in the norm and inner product notations. Throughout the
paper, C appearing in different places stands for different constants.

2. Primal-Dual Weak Galerkin. Denote by 7} a finite element partition of
the domain  C R%(d = 2, 3) into polygons in 2D or polyhedra in 3D which is shape
regular in the sense described in [12]. A weak function on the element T' € T, refers
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to a pair v = {vg, vy} where vg € L*(T) and v, € L*(0T). The component vy can be
understood as the value of v in T, and the other component v, represents the value
of v on the boundary 0T. Note that v, may not necessarily be the trace of vg on 9T,
though v, = vglgr would be a feasible option. Denote by W(T') the space of all weak
functions on T i.e.,

W(T) = {v = {vo, v} : vo € L*(T), v, € L*(9T)}.

Denote by P.(T) the set of polynomials on 7' with degree no more than » > 0.
A discrete weak gradient of v € W(T'), denoted as V., v, is defined as the unique
polynomial vector in [P,.(T)]? satisfying

(2.1) (Vo 0,9)1 = —(00, V- )7 + (0,9 -m)or Vo € [P(T)]Y,

which, from the usual integration by parts, gives

(2.2) (Vor 70, 9) 1 = (Yo, )7 — (vo — vy, % - m)or  Vab € [P(T)]*

provided that vg € H(T). The concept of discrete weak gradient was introduced
originally in [11, 12].

Denote by &y, the set of all edges or flat faces in Ty, and &) = &, \ 99 the set of all
interior edges or flat faces. Denote by h7 the meshsize of T € 7j, and h = maxre, hr
the meshsize for the partition 7p,.

For any given integer k > 1, denote by Vj(1") the local discrete weak function
space given by

Vie(T) = {{vo, v} : vo € Pr(T),vp € Px(e),e C IT}.

Patching Vi (T) over all the elements T' € 7, through a common value v, on the
interior interface 52 gives rise to a weak finite element space V" i.e.,

V= {{vo,n} : {vo,wu}|r € Vi(T),VT € Tp }.

Denote by VJde and V({ch the subspaces of V" with vanishing boundary value for vy,
on I'y and TS, respectively; i.e.,

VO}de = {{Uo,vb} evh. vple = 0,e C Fd},

Vo}fpz = {{'Uo,vb} eVh:inl.=0,eC I‘fl}

2.1. Algorithm. For simplicity of notation and without confusion, for any o €
V1, denote by V0 the discrete weak gradient V,, ,—1 7o computed by using (2.1) on
each element T i.e.,

(vuJU)|T - vw,k—l,T(0|T)7 o c Vh-

For any u, v € V", we introduce the following bilinear forms

s(u,v) = Z h;1<u0 — Up, Vo — vb>8Ta
TETh

b(u,v) = Z (aV o, Vyyv) 7.

TeTh
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Let k > 1 be an integer. For each element T € Ty, denote by Qo the L? projection
onto P (T). Denote by Q, the L? projection onto Py (e) for each edge or flat face
e € &,. For any w € H(2), denote by Qjw the L? projection onto the weak finite
element space V" such that on each element T,

Qrw = {Qow, Qpw}.

Denote by Qj, the L? projection onto the space of piecewise polynomials of degree
k—1.

The numerical scheme for the elliptic Cauchy model problem (1.1) based on the
variational formulation (1.2) by using primal-dual weak Galerkin strategy is as follows:

PRIMAL-DUAL WEAK GALERKIN ALGORITHM 2.1. Find (up; \p) € V" x Vo’frc
satisfying up = Qpg1 on Ty, such that

(2.3) s(un,v) — b(v,\p) =0, Ve Vir,,
(24) S()‘hvw) + b(uha w) = (fa 'lU()) + <927wb>Fn7 Yw € VE)},'F‘;L

2.2. Solvability. The following is a well-known result on the solution’s unique-
ness for elliptic Cauchy problems, see [6] for reference.

LEMMA 2.1. Assume that Q is an open bounded and connected domain in R? (d =
2, 3) with Lipschitz continuous boundary 9S). Denote by I'y the portion of the Dirichlet
boundary and T',, the Neumann portion. Assume that I'qNT, is a non-trivial portion
of 9. Then, the solutions of the following elliptic Cauchy problem, if they exist, are
unique

=V - (aVu) =f, in €,
U =41, on Fd7
aVu -n =g, on I',.

LEMMA 2.2. [11, 12] The L? projection operators Qp, and Qy, satisfy the following
commutative property:

(25) Vw(Qhu) — Qh(vu), (IS HI(T)

THEOREM 2.3. Assume that T'qNT, contains a nontrivial portion of the domain
boundary 02 and T'y N T, € 0 is a proper closed subset. The primal-dual weak
Galerkin algorithm (2.3)-(2.4) has a unique solution.

Proof. As the number of equations is the same as the number of unknowns, it
suffices to show that the homogeneous problem (2.3)-(2.4) has only the trivial solution.
To this end, we assume f =0, g1 = 0 and g2 = 0 in (2.3)-(2.4). By letting v = uy
and w = Ap, the sum of (2.4) and (2.3) gives

s(uh, Uh) -+ S(/\h, /\h) =0,
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which implies ug = u, and Ao = A\, on each OT. Thus, we arrive at ug € C°(Q) and
Ao € CY(2). Note that u, =0 on I'y and A\ = 0 on I'S. Thus, (2.4) can be rewritten
as follows

Z (aVwup, Vyw)r =0, Yw € Voifpz,
TETh

which, by letting ¥ = V,uy in (2.1), gives rise to

0= Z (aVyup, Vow)r

TETh
(26) = Z afkuh) wO)T + (akuh -1, wb>3T
TETh
= Z (aVywun), wo)r + Z ([aVyup - 0], wp)e,
TeTh ecE\Tg

where we have used w, = 0 on I'S. By letting w, = 0 on each edge e € &, \ TS in
(2.6) and wg = V - (aV,up), we arrive at V - (aV,up) = 0 on each element T € Tj,.
Similarly, by letting wo = 0 on each element T' € T}, in (2.6), we obtain [aV ,up-n] = 0
on each edge or face e € &, \ I'S.

Note that up = uj, on each 9T. It follows from (2.2) that for any q € [Pr_1(T)]¢,
we have

(Vwun, q)r = (Vuo, q)7 + (q - n,up — uo)ar
= (vanq)Ta

which gives rise to Vy,up = Vug on each element T € 7. This implies that V -
(aVug) = V- (aVup) = 0 on each element 7' € T,. Using [aVuyp - n] = 0 on each
edge or face e € &, \ I'y,, we arrive at [aVug - n] = 0 on each e € &, \ IT'S,. Note that
we have ug =0 on I'y and aVug-n =0on I',, and 'y N T, is non-trivial portion of
0f). Thus, from Lemma 2.1 we obtain ug = 0 in . Using ug = up on each 9T gives
up = 0 on each 9T. Thus, u;, =0 in .

Since I'yUT,, € 0N is a closed proper subset, then I'G NI, = (I'y UT',)¢ contains
a nontrivial portion of 9€2. A similar argument can be made to show that A, =0 in
Q. This completes the proof of the theorem. O

3. Some Technical Estimates. The goal of this section is to establish some
technical results which are valuable in the error analysis of the primal-dual weak
Galerkin finite element method (2.3)-(2.4) for solving the elliptic Cauchy problem

(1.1).

In the weak finite element space V", we introduce four semi-norms as follows:

ol

31 ol = (3 B3IV @Vl + 3 hrllaVeo n])? +5(0,0))

TEeTh ecEp\I'g

(32) Nollr, = ( 30 PIV - @Vu)l3+ 3 hrllaVao a2 +s(,0))

TeTh e€EL\TY,



33 W = (X BIV- @B+ 3 hrllara-nlE+ s ),
TETh eESh,\Fd

1

(34) IAlyrs = (3 PHIV- @I+ D hrlllaVud-n]|2 +500)

TeTh eeEp\ly
LemMA 3.1. The semi-norm || - ||p, defines a norm in the linear space V()’?Fd.
Likewise, the semi-norm || - ||p. defines a norm in the linear space Vy'r. .
n T n

Proof. We only need to verify the positivity property of | - || . To this end,
assume [Jvf|p, = 0 for a given v = {vo, v} € V', It follows that vy = vy on each
0T, V - (aVuvg) = 0 on each element T € T, and [aVvg - n] =0 on each e € &, \ T'S..
Thus, vy € C°(2) is a strong solution of V - (aVvg) = 0 in Q. From vy = v, on each
OT and v, = 0 on I'y, we obtain vg = 0 on I'y. Furthermore, from [aVuvg - n] = 0 on
En\T¢, we have aVvg -n = 0 on I';;. Thus, it follows from Lemma 2.1 that vg = 0 in
Q, which leads to v, = 0 on each 0T by using v, = vg dT. This shows that v =0 in
Q. A similar argument can be made to show that || - ”lr; defines a norm in the linear

space VO’TFC . This completes the proof of the lemma. [
On any element T € Tj, the following trace inequality holds true
(3.5) lell? < Chzt ez +hrVel?)

for ¢ € HY(T); readers are referred to [12] for a derivation of (3.5) under the shape
regularity assumption on the finite element partition 7. For polynomials ¢ in the
element T" € Tp, it follows from the inverse inequality (see also [12]) that

(3.6) lell2 < Chz (o3

Here e is an edge or flat face on the boundary of T'.

The following Lemma shows that the norms defined in (3.3) and (3.4) are indeed
equivalent.

LEMMA 3.2. There exist C7 > 0 and Cy > 0 such that
(37) Cll\ly rs. < WM, < CollAll e
for all X € ‘/O}fpﬁ.

Proof. First of all, from (2.2) we have

(VA = Vo, @)1 = (Ao — Ao, @ - m)or

for all ¢ € [Pr—1(T)]?. Thus, by using the Cauchy-Schwarz inequality and the trace
inequality (3.6) we have

[(VwA = V2o, d)r| =[{Xs — Ao, @ - n)or7|
<[ = Aollorllé - nllor

<Chz2 ||\ — Nollar|l @l 7,
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which leads to

IVuA = Vollr < Chi [\ = Allor-
Hence,

(3.8) > Ver = VAlF <C D7 Azt A = Xolljr < Cs(A, ).
TET TeThH

Next, using the triangle inequality, the trace inequality (3.6), and (3.8), we obtain

he Y lllaVeA-n]|?

eEgh\Fd

<h Y (a(Vwr = Vo) n][Z+h D [[aVAe - n?
ecEp\Ig ecEp\I'yq

(3.9) ShTZ la(Vur = Vo) -nl5z +h > [[aVAo-n]Z
€Th ecEp\I'y
<D IVuA=VXollz+h > [[[aVAo-n]|2
TETh ecEp\Tq
<Cs(A N +h Y [[aVae-n]|2.

eEgh\Fd

We now estimate the term ||V - (aV,A)||2. Note that VA € [Py—1(T)]? so that
V- (aVyA) € Py_o(T) for k> 2 and V- (aV,A) =0 for k = 1. For any ¢ € P;_2(T)
for k > 2, using the usual integration by parts and (2.2) we get

(V- (aVuA), ¥)r

aVu\, V)r + (aV A - n,¥)ar

aV o, V)1 + (Ao — Ao, aV - n)ar + (aVu A -1, ¢) o7

(aV ), )T — (aV o -0, 9)or + (Ao — X, aVY - n)gr + (aV A - 0, ) o7
(aV ), ¥)r + (a(VuyX = Vo) - n,V)ar + (Ao — Mo, aVY - n)or,

= —(
= —(
which implies

(V : (an)\) -V. (av>\0), w)T = <a(Vw/\ - V)\()) . n,¢>aT + <>\() - )\b, aVQ/J : Il>3T.

Thus, using the Cauchy-Schwarz inequality, the inverse inequality and the trace in-
equality (3.6), we arrive at

(V- (V) = V- (aV o), ¥)r]
<la(VuA = Vo) - nllar|[¥llor + | Ao — AsllorllaVibllar

_3
<Chp' |V = Vol zl[¢[lr + Chy® Ao = Asllor ¢ 7-
Therefore, we obtain

IV - (aVwd) = V- (aVAo)l7 < Chz?[[Vwd = Voll7 + Chz® Ao = Noll3e-



Using (3.8) we have
D IV (@Vud) = V- (@VAo) 7

T€7-h
<Y Ch? [V = Vollz + Chi® Ao — Moll3r
TeTh
<Ch™2s(\ ),
or equivalently,
(3.10) W’ Y IV (aVwd) = V- (aV )l < Cs(A,N).
TETh

Note that (3.10) also holds true for k£ = 1 where V- (aV,A) =0 and V- (aV)g) = 0.
Combining the above estimate with the triangle inequality gives

Y|V @V V)
TeTh

(3.11) <h? YV @VX)lF 487 Y (V- (@Vid) = V- (aVAo) |7
TeTh TeTh

<h? Y IV - (V)17 + Cs(A, ).
TEThH

Now it follows from (3.9) and (3.11) that there exists a constant Cy such that
INlrs > Cull Al e

This gives the lower-bound estimate of ||A[|p. in (3.7). The upper-bound estimate of
Ml e can be established analogously, but with details omitted. O

Similar to Lemma 3.2, the following lemma shows that the norms defined in (3.2)
and (3.1) are also equivalent.

LEMMA 3.3. There exist C7 > 0 and Cy > 0 such that
Cillvlly r, < lolle, < Collvlly,r,
for all v € VO’de.

LEMMA 3.4. (generalized inf-sup condition) For any A € Voifpc, there exists a
UNS Vo}frd, such that

(3.12) b(0;) ZC1lIMl g = C25(M, ),
(3.13) 5(v,0) <CIAII, re -

Proof. Using (2.1) with @ = aV,, A\, we get
b(v, ) = Y (aVyv, Vud)r

TeTh

(3.14) = Z (vo, =V - (aV )1 + (b, aV X - 1)o7
TETh

= Z (U(),—V' (ava))T—i_ Z <vbv[[avw>\’n]]>€v

TeT ec&p\I'yq
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where we have used the fact that v, =0 on I'y.

By letting v € Vo p, such that vg = —h7V - (aV,A) on each element T' € T, and
= hr[aV,A-n] one € &, \ Ty in (3.14), we arrive at

b(o,A) = Y W7V @VuM)lF+ Y hrl[aVeA-n]|Z,
TeTh PEgh\Fd
which, together with the definition (3.4) of the norm || - ||, .. , completes the proof of
(3.12).

As to (3.13), note that v € Vo r, is chosen such that vg = —h3V - (aV,,A) on each
element T € T;, and v, = hT[[aV )\ n] on each e € &, \ T'y. Thus from the trace
inequality (3.6), the triangle inequality and (3.4), we have

v) =D hz'lvo —wldr

TETh

< bl + D0 hptllwll?

TeTh eely \Fd

< MRV - (@VuNEr+ Y hplllhr[aVieA - n]|?
TET, ec&p\lg

<N BV @VuNIE+ D hrl[aVe ]|

TETh e€&y \Fd

< ClIMI re

which completes the proof of (3.13). O
Similar to Lemma 3.4, we have the following result:

LEMMA 3.5. (generalized inf-sup condition) For any v € Vo}frdf there exists a
A€ VO},LFC , such that

(3.15) b(v,A) > Cillulli ., — Cas(v,v),
(3.16) s A) < Cllolly -

Proof. Using (2.1) with 1 = aV,,A, we get
b('U, )‘) = Z (vwvvavw/\)T

T€eTh
(3.17) = Z (MNos =V - (aVyv))r + (A, aV v - n)or
T€Th
= Z Ao, =V - (aVyo))r + Z (M, [aVv - 0])e,
TETn e€ER\IS

where we have used the fact that Ay =0 on I',.
By letting A € VohFr such that A\g = —h24V - (aV,,v) on each element T € T;, and
X = hr[aVy,v-n]onee & \TE in (3.17), we arrive at

=Y W7V (@aVw)llF+ > hrl[aVeo-n]|?,
TETh ecER\I'E
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which, together with the definition (3.2) of the norm || - ||, . completes the proof of
(3.15).

As to (3.16), note that A € VO’fFC is given by \g = —h%V-(aV,,v) on each element
T € Ty and Ay = hr[aVy,v-n] on e € &, \T'S. Thus, from the trace inequality (3.6),
the triangle inequality, and (3.2), we have

A= hrtldo = ll3r

Te7—h
<O hptolEe+ D hrtNel
TETh e€&p\I'¢,
< > MRV - (aVud)Zr+ Y hgpt|lhr[aVyw - n])2
TeTh ecEp\T'¢
< DIV (@Vu)F+ > hrll[aVew 0]
TeTh PESh\F“
2
< Cloll3 r,,

which completes the proof of (3.16). O

4. Error Equations. We shall derive an error equation for the primal-dual weak
Galerkin algorithm (2.3)-(2.4). To this end, let u and (up;\n) € VP x VO},LF% be the
solutions of the model problem (1.1) and the primal-dual weak Galerkin algorithm
(2.3)-(2.4), respectively. Note that the exact solution of the Lagrange multiplier \ is
0. Define the error functions by

(4.1) ep = Up — th
(4.2) €p = >\h - Qh)\ = /\h-

LEMMA 4.1. Letu and (up; A\p) € VI x VO}Z’F% be the solutions of the model problem

(1.1) and the primal-dual weak Galerkin algorithm (2.3)-(2.4), respectively. Then, the
error functions ey and €y, defined in (4.1)-(4.2) satisfy the following error equations

(4.3) s(en,v) — b(vyen) = —s(Qpu,v), Yo € Vo}fpd,

(4.4) s(en, w) + blep, w) = L, (w), Yw € Vo}fpfl.

Here,

(4.5) ly(w) = Z (aVu-n— Qp(aVu) - n,wp — wo)ar.
TeTh

Proof. Subtracting s(Qpu,v) from both sides of (2.3) yields
s(up, — Qpu,v) — blv, A\p) = —s(Qnu, v).
This gives

S(€h7 U) - b('l}, eh) = _S(Qhuv U)v
which completes the proof of (4.3).
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Next, by subtracting b(Qpu, w) from both sides of (2.4) we have for any w € VO’ch
that ’

s(An — QrA, w) + b(up — Qpu, w)
=(f,wo) + (g2, wp)r, — b(Qnu,w)

(46) :(_v : (a‘vu)a wO) + <avu - n, wb>Fn - Z (avw(Qhu)a vww)T
TeTh

=(=V - (aVu),wo) + (aVu - m,wp)r, — > (aQn(Vu), Vyw)r,
TeTh

where we used Lemma 2.2 in the last line.

Now, by letting ¥ = aQp(Vu) in (2.2) and using the usual integration by parts,
we obtain

(4.7)
> (aQn(Vu), Vyw)r
Te7—h
=) (aQn(Vu), Vwo)r + Y (aQn(Vu) - n,wy, — wo)or
TETh TETh
= Z (aVu, Vwo)r + Z (aQn(Vu) - n,w, — wo)or
T€eTh TETh
= Z (aVu),wo)r + (aVu - n,wo)ar + (aQx(Vu) - n, wy — wo)or
Te7—h
= Z (aVu),wo)r + (aVu - n,wy — wy)or + (aQn(Vu) - n,wy — wo)or
TeTh
+ Z (aVu - n,wp)e
eCl'y,
= Z (aVu),wo)r + {(aVu-n —aQp(Vu) - n,wg — wp)or
T€7—h
+ Z (aVu - n,wp)e,
eCl'y,

where we used wp, = 0 on I'¢ on the sixth line. Substituting (4.7) into (4.6) completes
the proof of (4.4). O

5. Error Estimates in a Scaled Residual Norm. The goal of this section is
to derive an error estimate for the solution of the primal-dual weak Galerkin algorithm
(2.3)-(2.4). First of all, let us recall the following error estimates for the L? projection
operator.

LEMMA b5.1. [12] Let Ty, be a finite element partition of 2 satisfying the shape
regqular assumption gien in [12]. Then, for any 0 < s <2 and 1 <m <k, one has

(5.1) S ¥ lu— Qoull? 1 < CRA D w2,
TeThH
(5.2) S h%lu— Quul® < CR2™ w2,

TETh
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Using Lemma 5.1 and the error equation derived in the previous section we arrive
at the following result:

THEOREM 5.2. Fork > 1, let (up; \p,) € VP x V()},ch be the numerical approzima-
tion of the elliptic Cauchy problem (1.1) obtained from the primal-dual weak Galerkin
algorithm (2.3)-(2.4). Assume that the exact solution w of (1.1) is sufficiently reqular

such that uw € H*1(Q). Let the error functions ey, and ey, be given in (4.1) and (4.2).
Then, the following error estimate holds true:

(5-3) llenlly v, + Nlenlly e < CR*ullksr-

Proof. 1t is easy to verify that e, € Vo’?rd and €, € VOITFC. By letting v = ey, in
(4.3) and w = €, in (4.4) and then summing (4.3) with (4.4) we obtain

(5.4) s(eh,eh) —I—S(eh,ﬁh) = —s(theh) —|—€u(€h).

Now from the Cauchy Schwarz inequality, the trace inequality (3.5), (4.5), and the
estimate (5.2) we have

|Cu(en)

= ‘ Z (aVu-n— Qp(aVu) -n,e — €0>8T‘
TeTh

(5.5) ( Z hrllaVu-n — Qp(aVu) - n||3T> ( Z h 1||€b—eo||aT)§
TeTh TETh

<C( Y IVu— Qu(Vu)llf + 131V — Qu(Vu)[3r) " s(en, )
TETh

< Oh"|Jullks15(en, en) .

=

Next, we use the Cauchy-Schwarz inequality, the trace inequality (3.5), and the esti-
mate (5.1) to obtain

’ Qnu, eh‘—’th Qou — bU7€0_€b>8T’
TeTh
1 1
4 2 _ 2
< (32 1 Qou—ul3e) " (2 hrtlleo — eslidr)
TETh TeTh,
(50) <e( 3 h1Quu - ulr) sten,en)?
TeTh

1

< (3 h?lQuu — ullh + [Quu —ull ) s(en, )

TeTh

1
< Ch*||ullks15(ens en)?.

Combining (5.4) with (5.5) and (5.6) gives rise to

=

s(ensen) + s(en, en) < Ch |[ullur(s(en, en)? + s(en, en)

);
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which leads to

(5.7) s(en, en) + s(ens en) < CR**|Jullf .

Next, from (4.4) we have
(5.8) blep,w) = £y, (w) — s(ep, w) Yw € VOITF%.

Using the generalized inf-sup condition in Lemma 3.5, there exists a w € VOIfFC such
that \"

(5.9) ben,w) > Cillenlly r, — Coslen, en).
Thus, with this particular w, we have from (5.8) and (5.9) the following estimate:

(5.10) llenllh r, < 1u(w)] + |s(en, w)| + Cas(en, en)-

Now from (5.5) we have
[u(w)] < CRF|fu1s(w, w) %,
and from the Cauchy-Schwarz inequality,
|5(en,w)| < sen,en)? s(w, w)*.
Substituting the above two inequalities into (5.10) yields
llenls r, < Ch*ullirs(w,w)* + s(en, n)¥s(w, w)* + Cos(en, en).
Thus, it follows from the estimate (5.7) that
1
(5.11) llenlls r, < CR*ullirs(w;w)? + CRF[lullf ;.
Recall that, from (3.16), this particular w satisfies
(5.12) s(wyw)z < C|||eh|”h,1“d'
Substituting the above into (5.11) gives
2
llenlls.r, < Ch*lullisallenllyr, +Ch*|lullf s,

which leads to the following

(5.13) lleallyr, < Ch*[[ullsr-

As to the estimate of |||€h”|h,1“,,g’ we have from (4.3) that
(5.14) b(v,ep) = s(en,v) + s(Qnu,v) Yo € VO}de.
From Lemma 3.4, there exists a particular v € Vo}fm such that

(5.15) b(v,€n) = Cillenlli pe — Cas(en, en).
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Combining (5.14) with (5.15) gives
(5.16) Cillenlls, vy < (e, v) + 5(Qnu,v) + Cas(en en)-
From (5.6) we have
|5(Qnu,v)| < CRF[|ullg415(v,0) 2,

and from the Cauchy-Schwarz inequality,

=
NI

|s(en,v)| < s(en,en)2s(v,v)2.

Combining the above two inequalities with (5.7) and (5.16) yields

(5.17) llenlls re < CREulliss(v,v)% + Ch*|ulf.,.

Notice that from (3.13), the following estimate holds true for this particular v:
(5.18) 5(v,0)% < Cllenlly g -

Thus, substituting (5.18) into (5.17) gives

(5.19) llenlln v < CH¥uflir.

Finally, the theorem is proved by combining (5.13) with (5.19). O

6. Error Estimate in a Weak L? Topology. This section is devoted to the
establishment of an error estimate for the weak Galerkin finite element solution wuy,
in a weak L? topology. To this end, consider the auxiliary problem which seeks an
unknown function ® satisfying

-V - (aV®) =n, in Q,
(6.1) ¢ =0, on I,
aV® - -n =0, on I'Y,

where n € L?(Q2) and 'S = 9Q \ I';. Denote by X, the set of all functions n € L*(2)
so that the problem (6.1) has a solution with the H'*7-regularity in the sense that

(6.2) [@]l14~ < Cllnll,

1

where v € (3,1] is a parameter.

THEOREM 6.1. For k > 1, let (up;An) € VP x V{'r. be the solution of the
primal-dual weak Galerkin equations (2.3)-(2.4). Assume that the exact solution is
sufficiently reqular such that v € H*1(Q). Then, there exists a constant C such that

(6.3) sup |(Q0U — Uo, TI)|

< R s
wex, Il
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Proof. By testing (6.1) with eg on each element T € Tj,, we obtain from the usual
integration by parts that

(n.e0) = D (=V - (aVP),e0)r

TeTh
(6.4) =Y (aVe, Veg)r — (aVe - n,ep)or
TETh
= Z (aV®,Veo)r — (aVP -n,eq — ep)or,
TETh

where we have used the homogeneous boundary condition in (6.1) and the fact that
ep = 0 on I'y on the third line.

It follows from (2.5) and (2.2) with ¥ = Q,aV® that

(avweh, Vw(QhCI)))T (Vweh, QhaVCI))T
=(Veo, QnaV®)7r — (eo — €5, QnaV® - n)or

(aVeo, V®)r — {(eg — ep, QraVP - n)gr,

which leads to

(aVeo, V@)1 = (aVyen, Vi (Qnr®))r + (€0 — ey, QnaVe® - n)or,

from which, (6.4) can be rewritten as follows

(7]7 60)

= Z (avwem Vu(Qh(I)))T + <60 — €p, QhaV@ . Il>3T — (aV<I> ‘n,ep — eb>8T
(6.5)  7eT;

= Z ((vaem Vu‘(Q;ﬁI)))T -+ <€0 — €p, (QhaV@ — aV(I)) . 1’1>3T.
TeTh

Let us deal with the first term on the last line of (6.5). Note that Q,® = 0 on I'§,
due to the Dirichlet boundary condition in (6.1). By setting w := QP = {Qo P, Q»P}
in the error equation (4.4), and then using the triangle inequality, the Cauchy-Schwarz
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inequality, the trace inequality (3.5), (5.1), (5.2), (6.2) and (5.3), we obtain

(6.6)
| S (@Vuen, Vu(@n®)r|
TE7—h
2’ > (aVu-n— Qu(aVu) -1, Qp® — Qo®)or — hi' (€0 — €5, Qu® — Qo)
TeTh
2 % —1 2 %
<(\ 3 melvu— Qu(Vu)lidr)” (3 A7t - Qoell3r)
TETh T€eTh
+ (D2 hrtleo = alldr) (Y A7t IQo® — Qul3r)”
TeTh TeTh
<(' 3 IVu— Qu(Va)l3 + 13 Vu - Qu(Vu)lir)”
TeTh
(2 h e = Qo)+ llenllrs (D0 b7 IQ0® < @3, )
TETh T€eTh
<CHM fullesi (D2 h721Qo® — @ + Qo — @[3 1)”
TETh

<Ch*||ul[k+1h"[| @] 14+
<CR* ||ullgs1 7]

For the second term on the second line of (6.5), it follows from the Cauchy-Schwarz
inequality, the trace inequality (3.5), (5.2), (6.2) and (5.3) that

| > (eo — eb, (QnaV® —aV®) - m)or|

TeTh
—1 2 % 2 %
<('X na'leo—elzr) (32 hell(Quave - ave) -nl3;)
TeTh TET
(6.7) 1
<Cllenllr, (Y2 1200 = T0[3 + 3@,V — VO3 1)

TeTh
<CR*|[ullis1h? | @]y 4+
<CR* [l 1]l

Finally, substituting (6.6) - (6.7) into (6.5) yields

(1, €0)| < CH*Jullis |1,

which completes the proof of the theorem. O

7. Numerical Experiments. In this section, we shall report some numerical re-
sults to demonstrate the computational performance of the primal-dual weak Galerkin
scheme (2.3)-(2.4) for the elliptic Cauchy problem (1.1). The goal is to numerically
verify the convergence and stability theory established in the previous sections.

For simplicity, the numerical tests are conducted for the second order elliptic
equation with diffusion coeffcient @ = 1 on the unit square domain 2 = (0,1)? with
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uniform triangular partitions. The uniform triangular partitions are obtained by
first partitioning the unit square domain 2 into n X n uniform sub-squares and then
dividing each square element into two triangles by a diagonal line with a negative
slope. The numerical tests are implemented for the lowest order element (i.e., k = 1).
The local weak finite element spaces for both the primal variable u; and the Lagrange
multiplier (dual variable) \;, are thus given by

V(1,T)=4{v={vo,vp}: vo € P (T),vp € Pi(e),V e C IT}.

The action of the discrete weak gradient operator on any v = {vg,vp} € V(1,T) is
computed as a constant-valued vector on 1" satisfying

(Vpv,w)p = —(vo, V- W) + (vp, W - D) a7, vw € [Py(T)]>

Since the test function w is a constant-valued vector on each element T' € Ty, the
above equation can be simplified as

(Vwv,w)r = (v, W - n)or, Yw € [Po(T))>.

In the numerical tests, the load function f = f(z,y) and the Cauchy boundary
data in the model problem (1.1) are computed by using the given exact solution u =
u(x,y). The numerical results are demonstrated for the error function ey = ug — Qou
measured in the following L? norm

1
leollo = (D lleoll?)*

TeThH

For the error function e, = up — Qpu, we use the following scaled residual norm to
measure its magnitude:

1

2
lewlle, = (D2 B3IV - (Vuer)lfit Y ArlllVuen - nll2 +s(enen)) .
TETh ecER\I'e

Tables 7.1 - 7.2 demonstrate the correctness and reliability of the code using
the computational results for the elliptic Cauchy problem with the exact solution
u =1+ x +y. Note that the numerical solutions are coincide with the exact solution
for this test case. Table 7.1 shows the numerical results for the case when both
the Dirichlet and Neumann boundary conditions are set on the horizontal boundary
segment (0,1) x 0. Table 7.2 illustrates the performance of the numerical scheme
when the vertical boundary segment 0 x (0,1) is used to set the Cauchy boundary
data. It can be seen from Tables 7.1 - 7.2 that the errors are in machine accuracy,
especially for relatively coarse grids. The numerical results are perfectly consistent
with the mathematical theory. Tables 7.1 - 7.2 inform us on the correctness of the
code for the PD-WG algorithm (2.3)-(2.4). However, it should be pointed out that
the error seems to deteriorate when the mesh becomes finer and finer. We conjecture
that this deterioration might be caused by two factors: (i) the ill-posedness of the
elliptic Cauchy problem, and (ii) the poor conditioning of the discrete linear system.



TABLE 7.1
Numerical error and order of convergence for the exact solution uw = 1 + x + y with Dirichlet
and Neumann data set on (0,1) x 0.

1/h | |IVeollo | lleollo | llenlly.r,
1 6.44E-15 | 2.90E-15 | 1.08E-14
2 1.16E-14 | 7.97E-15 | 1.16E-14
4 2.06E-14 | 7.72E-15 | 1.03E-14
8 3.95E-13 | 1.53E-13 | 9.86E-14
16 | 2.10E-12 | 7.69E-13 | 2.62E-13
32 | 2.44E-11 | 7.97E-12 | 1.52E-12

TABLE 7.2
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Numerical error and order of convergence for the exact solution u = 1 + x + y with Dirichlet
and Neumann data set on 0 x (0,1).

Lh | IVeollo | lleollo | lleally.r,
1 [ 1.69E-15 | 8.88E-16 | 3.38E-15
2 | 1.I0E-14 | 6.37E-15 | 1.I0E-14
4 | 342E-14 | 1.63E-14 | 1.71E-14
8 | 5.66E-13 | 2.56E-13 | 1.42E-13
16 | 3.41E-12 | 1.I7E-12 | 4.26E-13
32 | 2.22E-11 | 7.33E-12 | 1.39E-12

Tables 7.3-7.5 illustrate the performance of the numerical scheme when the bound-
ary conditions are set as follows: (i) both Dirichlet and Neumann boundary conditions
on two boundary segments (0, 1) x0 and 1x (0, 1), (ii) Dirichlet boundary condition on
the boundary segment 0 x (0, 1), and (iii) Neumann boundary condition on the bound-
ary segment (0, 1) x 1. Tables 7.3-7.5 demonstrate the numerical results for the exact
solutions given by u = cos(x) cos(y), u = 30zy(1 — z)(1 — y) and u = sin(7z) cos(my),
respectively. The convergence rate in the usual L? norm for the approximation of
Vug arrives at the order of O(h). For the approximation of ug, the convergence rate
in the usual L? norm arrives at the order of O(h?). The convergence rate for e, in
the residual norm arrives at the order of O(h). The numerical results are in great
consistency with the theory established in the previous sections.

TABLE 7.3
Numerical error and order of convergence for the exact solution u = cos(z) cos(y) with Dirichlet
and Neumann on (0,1) X 0 and 1 x (0,1), Dirichlet on 0 x (0,1), and Neumann on (0,1) x 1.

1/h | [[Veollo | order leallo order | |lenll,, r, | order
1 0.07776 0.1114 1.989
2 0.03747 1.053 | 0.02574 | 2.113 | 0.7639 1.380
4 0.01941 | 0.9487 | 0.006305 | 2.030 | 0.3685 | 1.051
8 0.009981 | 0.9598 | 0.001566 | 2.010 | 0.1823 1.015
16 | 0.005069 | 0.9775 | 3.90E-04 | 2.004 | 0.09097 | 1.003
32 | 0.002555 | 0.9884 | 9.75E-05 | 2.002 | 0.04546 | 1.001
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TABLE 7.4
Numerical error and order of convergence for the exact solution u = 30zy(1 — z)(1 — y) with
Dirichlet and Neumann on (0,1)x0 and 1x (0, 1), Dirichlet on 0% (0, 1), and Neumann on (0,1)x 1.

1/h | [|Vegllo | order lleollo order | [lenll,, r, | order
1 1.343 0.8688 29.53
2 0.9050 | 0.5740 | 0.2569 | 1.758 11.32 1.383
4 0.4523 1.001 0.07225 | 1.830 5.344 1.083
8 0.2251 1.006 | 0.01915 | 1.916 2.634 1.020
16 0.1113 1.017 | 0.004913 | 1.963 1.313 1.005
32 | 0.05504 | 1.016 | 0.001243 | 1.983 | 0.6557 | 1.001

TABLE 7.5
Numerical error and order of convergence for the exact solution u = sin(mwz)cos(mwy) with
Dirichlet and Neumann on (0,1) x 0 and 1 x (0,1), Dirichlet on 0 x (0,1), and Neumann on
(0,1) x 1.

1/h | ||Veollo | order lleallo order | [len|l, r, | order
1 1 1.573 9.263
2 0.4908 | 1.680 | 0.1849 | 2.271 | 5.086 | 0.8651
4 0.2187 | 1.166 | 0.04623 | 1.999 2.489 1.031
8 0.1052 | 1.056 | 0.01151 | 2.006 | 1.237 1.009
16 | 0.05193 | 1.018 | 0.002872 | 2.003 | 0.6172 | 1.002
32 | 0.02587 | 1.005 | 7.17E-04 | 2.001 | 0.3085 | 1.001

Tables 7.6-7.8 demonstrate the performance of the PD-WG algorithm when the
boundary conditions are set as follows: (i) Dirichlet on two boundary segments (0, 1) x
0 and 0 x (0,1), and (ii) Neumann on the other two boundary segments 1 x (0, 1)
and (0,1) x 1. Note that this is a standard mixed boundary value problem with no
Cauchy data given on the boundary. The purpose of the tests is to show the efficiency
of the PD-WG algorithm (2.3)-(2.4) for the classical well-posed problems of elliptic
type. Tables 7.6 - 7.8 show the numerical results for the exact solutions given by
u = cos(x) cos(y), u = sin(z) sin(y), and u = 30zy(1 — x)(1 — y), respectively. The
convergence rate in the usual L? norm for the approximation of Vug arrives at the
order of O(h). The convergence rate for the approximation of ug in the usual L? norm
arrives at the order of O(h?). The convergence rate for e, in the scaled residual norm
arrives at the order of O(h). All the numerical results are in consistency with the
theory established in the paper.

TABLE 7.6
Numerical error and order of convergence for the exact solution u = cos(z) cos(y) with Dirichlet
data on (0,1) x 0 and 0 x (0,1), and Neumann data on 1 x (0,1) and (0,1) x 1.

1/h | [[Veollo | order leallo order | |lenll,, r, | order
1 0.05119 0.1929 1.664
2 0.03565 | 0.5218 | 0.04513 | 2.096 | 0.7543 1.141
4 0.01949 | 0.8709 | 0.01097 | 2.040 | 0.3671 | 1.039
8 0.01006 | 0.9541 | 0.002712 | 2.016 | 0.1823 1.010
16 | 0.005099 | 0.9806 | 6.75E-04 | 2.007 | 0.0910 | 1.003
32 | 0.002564 | 0.9917 | 1.68E-04 | 2.004 | 0.04546 | 1.001
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TABLE 7.7
Numerical error and order of convergence for the exact solution u = sin(x) sin(y) with Dirichlet
data on (0,1) X 0 and 0 x (0,1), and Neumann data on 1 x (0,1) and (0,1) x 1.

1/h | |IVeollo | order lleollo order | |lenll; r, | order
1 0.06759 0.05271 0.7650
2 0.03395 | 0.9932 | 0.01664 | 1.663 | 0.3056 | 1.324
4 0.01814 | 0.9044 | 0.004519 | 1.881 | 0.1408 1.118
8 | 0.009424 | 0.9448 | 0.001156 | 1.967 | 0.0687 | 1.034
16 | 0.004785 | 0.9778 | 2.91E-04 | 1.991 | 0.03416 | 1.009
32 | 0.002407 | 0.9915 | 7.28E-05 | 1.997 | 0.01705 | 1.002

TABLE 7.8
Numerical error and order of convergence for the exact solution u = 30zy(l — z)(1 — y) with
Dirichlet data on (0,1) x 0 and 0 x (0,1), and Neumann data on 1 x (0,1) and (0,1) x 1.

1/h | ||Veollo | order lleollo order | [len]l, , | order
1 1.1234 0.8635 29.39
2 0.6085 | 0.8845 0.2094 2.044 11.27 1.383
4 0.3133 | 0.9578 | 0.06780 | 1.627 5.337 1.078
8 0.1604 | 0.9654 | 0.01908 | 1.829 2.634 1.019
16 | 0.08045 | 0.9959 | 0.004955 | 1.945 1.312 1.005
32 | 0.04015 | 1.003 | 0.001251 | 1.986 | 0.6557 | 1.001

Tables 7.9-7.10 demonstrate the performance of the PD-WG algorithm (2.3)-(2.4)
for the elliptic Cauchy problem where the Cauchy boundary conditions are given at
two horizontal boundary segments (0,1) x 0 and (0,1) x 1. Tables 7.9-7.10 show
the numerical results when the exact solutions are given by u = cos(z) cos(y) and
u = 30xy(l — x)(1 — y), respectively. The convergence rate for the approximation of
up in the usual L? norm seems to arrive at the order of O(h'-?) which is a little bit
lower than the optimal order O(h?). For the exact solution u = 30zy(1 — z)(1 — y),
the convergence rate in the usual L? norm for the approximation of Vug seems to
arrive at the order of O(h'-?) which is better than the expected order of O(h). The
convergence rates for the rest of the numerical results are consistent with what the
theory has predicted. Readers are invited to draw their own conclusions for the
numerical performance of this set of the numerical results.

TABLE 7.9
Numerical error and order of convergence for the exact solution u = cos(z) cos(y) with Dirichlet
and Neumann data on (0,1) x 0 and (0,1) x 1.

1/h | [[Veollo | order leallo order | |lenll,, r, | order
1 0.08163 0.1600 1.669
2 0.04400 | 0.8917 | 0.04077 | 1.972 | 0.7546 1.145
4 0.02211 | 0.9925 | 0.01014 | 2.007 | 0.3671 | 1.039
8 0.01105 1.000 | 0.002615 | 1.955 | 0.1823 1.010
16 | 0.005425 | 1.027 | 6.79E-04 | 1.946 | 0.09097 | 1.003
32 | 0.002664 | 1.026 | 1.81E-04 | 1.906 | 0.04546 | 1.001
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Numerical error and order of convergence for the exact solution u = 30zy(1 — z)(1 — y) with

TABLE 7.10

Dirichlet and Neumann data on (0,1) X 0 and (0,1) x 1.

1/h | [|Vegllo | order lleollo order | |lep|l, r, | order
1 1.073 0.8591 29.41
2 0.9207 | 0.2208 | 0.2340 1.876 11.28 1.383
4 0.7489 | 0.2979 | 0.2518 | -0.1053 | 5.346 1.077
8 0.2628 1.511 0.06500 1.954 2.634 1.021
16 0.1049 1.325 | 0.01836 1.824 1.312 1.005
32 | 0.04540 | 1.208 | 0.004975 | 1.884 0.6557 | 1.001

Tables 7.11-7.12 demonstrate the performance of the PD-WG algorithm (2.3)-
(2.4) where both the Dirichlet and Neumann boundary conditions are set on two
vertical boundary segments 0 x (0,1) and 1 x (0,1) for the exact solutions u = zy
and u = cos(z) sin(y), respectively. For the exact solution u = xy, the convergence
rate of eg in the usual L? norm seems to arrive at the order of O(h%®) and the
convergence rate of ej, in the residual norm seems to arrive at the order of O(h?),
which are much better than the optimal order of O(h?) and O(h). For the exact
solution u = cos(z)sin(y), the convergence rate of Vey in the L? norm seems to
arrive at the order of O(h'?) which is a little bit higher than the expected order of
O(h); and the convergence rate of eg in the L? norm seems to arrive at the order of
O(h*?) which is a little bit lower than the optimal order of O(h?). The convergence
rates for the rest of the numerical results are in good consistency with the established
theory. The interested readers are invited to draw their conclusions for the numerical
performance.

TABLE 7.11
Numerical error and order of convergence for the exact solution u = xy with Dirichlet and
Neumann data on 0 x (0,1) and 1 x (0,1).

1/h | |IVeollo | order lleollo order | |len]l, r, | order
1 0.07206 0.05211 0.5185
2 0.04750 | 0.6013 | 0.007597 | 2.778 | 0.1462 | 1.826
4 0.02360 | 1.009 | 0.001270 | 2.581 | 0.03830 | 1.933
8 0.01116 1.080 | 2.34E-04 | 2.441 | 0.009749 | 1.974
16 | 0.005356 | 1.060 | 3.94E-05 | 2.570 | 0.002457 | 1.988
32 | 0.002612 | 1.036 | 6.74E-06 | 2.546 | 6.17E-04 | 1.994
TABLE 7.12

Numerical error and order of convergence for the exact solution u = cos(z) sin(y) with Dirichlet
and Neumann data on 0 x (0,1) and 1 x (0, 1).

1/h | |[Veollo | order leollo | order | [len]l,, p, | order
1 0.1225 0.1062 0.8855
2 0.03975 | 1.624 | 0.02636 | 2.011 0.4474 | 0.9848
4 0.01623 | 1.292 | 0.006923 | 1.929 | 0.2231 1.004
8 0.006297 | 1.366 | 0.001745 | 1.988 | 0.1114 1.002
16 | 0.002683 | 1.231 | 4.66E-04 | 1.907 | 0.05567 | 1.001
32 | 0.001210 | 1.149 | 1.25E-04 | 1.898 | 0.02783 1.000
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Table 7.13 demonstrates the performance of the PD-WG algorithm (2.3)-(2.4) for
the exact solution u = cos(z) cos(y) when the boundary conditions are set as follows:
(i) both Dirichlet and Neumann data on the boundary segment (0, 1) x 0; (ii) Dirichlet
only on the boundary segment (0, 1) x 1. The convergence rates in the usual L? norm
for Veg and eq arrive at the order of O(h) and O(h?), respectively. The convergence
rate for ej, in the scaled residual norm arrives at the order of O(h). The numerical
results are in perfect consistency with the theory established in the previous sections.

TABLE 7.13
Numerical error and order of convergence for the exact solution u = cos(z) cos(y) with Dirichlet
and Neumann data on (0,1) x 0, and Dirichlet only on (0,1) x 1.

1/h | ||Veollo | order leallo order | |lenll,, r, | order
1 0.07672 0.2065 1.667

0.04154 | 0.8850 | 0.04355 | 2.246 | 0.7542 1.145

4 0.02206 | 0.9132 | 0.01240 | 1.812 | 0.3671 1.039

8 0.0105 1.073 | 0.003102 | 1.999 | 0.1823 | 1.010

16 | 0.005245 | 0.9997 | 8.27E-04 | 1.906 | 0.0910 | 1.003

Table 7.14 demonstrates the performance of the PD-WG algorithm (2.3)-(2.4)
when the Dirichlet and Neumann boundary conditions are set on the boundary seg-
ment (0,1) x 0. These numerical results illustrate that the convergence rate for the
solution of the primal-dual weak Galerkin algorithm in the residual norm is at the
rate of O(h), which is in great consistency with the theory established in this paper.

TABLE 7.14
Numerical error and order of convergence for the exact solutions w1 = sin(z)sin(y), us =
cos(x) cos(y) and us = cos(z) sin(y) with Dirichlet and Neumann data on (0,1) x 0.

% ”|eh|”h,1“d for uq | order |||eh”|h.1"d for us | order ”|eh|”h,1“d for us | order
1 1.006 1.657 0.9056

2 0.3357 1.584 0.7572 1.130 0.4490 1.012
4 0.1599 1.070 0.3678 1.042 0.2241 1.003
8 0.07354 1.121 0.1825 1.011 0.1116 1.006
16 0.03563 1.045 0.09102 1.003 0.05573 1.001
32 0.01751 1.025 0.04548 1.001 0.02785 1.001

8. Concluding Remarks. In conclusion, the numerical approximations arising
from the primal-dual weak Galerkin finite element scheme (2.3)-(2.4) are convergent
to the exact solution at rates that are consistent with the theoretical predictions in
the scaled residual norm. In some of the numerical test cases, their convergence
rates in the usual L? and H' norms seem to be slightly lower than the optimal
order. It should be pointed out that the convergence estimate in Theorem 6.1 was
established in a weak L? topology which may not be the same as the usual L? error
estimate due to the limited solvability of the auxiliary problem (6.1) for arbitrary
input function 1. We conjecture that the loss on the rate of convergence in L? and
H' norms might be caused by the ill-posedness of the elliptic Cauchy problem or the
poor conditioning of the discrete linear system resulted from the scheme (2.3)-(2.4).
Nevertheless, the PD-WG finite element method (2.3)-(2.4) does provide meaningful
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numerical solutions even if the original elliptic Cauchy problem is not well-posed or
does not have a solution. This numerical approximation is theoretically convergent
to the exact solution in a mesh-dependent scaled residual norm. Overall, we are
confident that the primal-dual weak Galerkin finite element method is a reliable and
robust numerical method for the ill-posed elliptic Cauchy problem.

The numerical scheme (2.3)-(2.4) developed in this paper is based on the weak
formulation (1.2) for the elliptic Cauchy problem. The gradient operator is the prin-
cipal player in (1.2) so that a reconstructed gradient (i.e., weak gradient) is crucial
in the weak Galerkin finite element scheme (2.3)-(2.4). In contrast, the PD-WG fi-
nite element method developed in [10] was based on a weak form principaled by the
Laplacian operator so that a reconstructed weak Laplacian played a key role in the
construction of the numerical scheme. The two numerical methods are thus sharply
different from each other, and each has its own advantage in theory and practical
computation. For the numerical scheme presented in [10], the lowest order PD-WG
element assumes piecewise quadratic functions (i.e., k = 2), while the lowest order
PD-WG element for (2.3)-(2.4) enjoys piecewise linear functions (i.e., & = 1) with
less number of degrees of freedom (dof). For the new scheme (2.3)-(2.4) with k& = 2
on a triangular element T € Tp, ug € Po(T) has 6 dof, uy € Pa(e) has 3 x 3 =9
dof, and the primal variable uj thus has 15 dof on T’; so does the dual variable \.
For the numerical scheme in [10], up € P2(T") has 6 dof, u; € Py(e) has 3 x 3 =9
dof, u, € Pi(e) has 2 x 3 = 6 dof, and the primal variable u; thus has 21 dof on
each triangular element T' € Tp; while the dual variable A € Py(T) only has 1 dof on
each triangular element. As to the approximation accuracy, the new PD-WG scheme
(2.3)-(2.4) arrived at the optimal order of O(h*) in the residual norm while the one
in [10] has the optimal order of O(h*~!) in a similar residual norm. The new PD-
WG method in this paper is more accurate than the one in [10], but with the cost
of using more dof than the one in [10] when the comparison is made with k = 2 for
both. However, for the new scheme (2.3)-(2.4) with & = 1 (which is not allowed for
the numerical scheme in [10]) on a triangular element T' € T, ug € P1(T') has 3 dof,
up € Py(e) has 3 x 2 = 6 dof, and the primal variable wu, thus has 9 dof on T'; so does
the dual variable A. Therefore, the new scheme (2.3)-(2.4) represents a good saving
on the computational complexity when the lowest order of PD-WG finite element is
employed.

As to the future work of the PD-WG finite element methods, there are some PDE
problems we are interested in: (1) the linear transport problem; (2) the constrained
PDE problem; and (3) the system of first-order PDEs, such as the div-curl system.
We conjecture the PDWG will work well for the above-mentioned PDE problems.
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