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a b s t r a c t

In recent papers (see e.g. Ruas (2020a) and Ruas (2020b)) a nonparametric technique
of the Petrov–Galerkin type was analyzed, whose aim is the accuracy enhancement of
higher order finite element methods to solve boundary value problems with Dirichlet
conditions, posed in smooth curved domains. In contrast to parametric elements, it
employs straight-edged triangular or tetrahedral meshes fitting the domain. In order
to attain best-possible orders greater than one, piecewise polynomial trial-functions are
employed, which interpolate the Dirichlet conditions at points of the true boundary. The
test-functions in turn are defined upon the standard degrees of freedom associated with
the underlying method for polytopic domains. As a consequence, when the problem
at hand is self-adjoint a non symmetric linear system has to be solved. This paper is
primarily aimed at showing that in this case, an efficient symmetrization of the solution
procedure can be achieved by means of a fast converging iterative method. In order
to illustrate the great generality of our nonparametric approach, experimentation is
presented with a finite element method having degrees of freedom other than nodal
values. More specifically we consider a nonconforming quadratic element in the solution
of the three-dimensional Poisson equation. The performance evaluation however is
conducted as well for two versions of the classical conforming quadratic method,
namely, the nonparametric Petrov–Galerkin formulation considered in Ruas (2020b) and
the standard isoparametric one. The study of this symmetrization is completed by an
optimal error estimation in the broken H1-norm for the nonparametric version of the
nonconforming method, which had not been addressed in previous work.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades Petrov–Galerkin formulations of boundary value problems showed to be a powerful tool to
vercome difficulties brought about by the space discretization of certain types of partial differential equations. A
ignificant illustration is provided by the families of methods proposed by Franca and Hughes and collaborators in the
ate eighties for the finite-element modeling of various problems in Continuum Mechanics, in particular as a popular
lternative to Galerkin methods for viscous incompressible flow (see e.g. [1]). The outstanding contributions in the
eventies of Babuška (see e.g. [2]) and Brezzi [3], among other authors, were decisive to provide a theoretical background
hat allowed to formally justify the reliability of Petrov–Galerkin formulations, namely, the so-called inf–sup condition.
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In a series of papers published since 2017 (cf. Ruas [4,5] and Ruas and Silva Ramos [6]) a nonparametric technique
f the Petrov–Galerkin type was introduced, in order to enhance the accuracy of higher order finite element methods
o solve boundary value problems with Dirichlet conditions, posed in smooth curved domains. In contrast to parametric
lements, it employs straight-edged triangular or tetrahedral meshes fitting the domain. In order to attain best-possible
rders greater than one, piecewise polynomial trial-functions are employed, which interpolate the Dirichlet conditions at
oints of the true boundary. In the two-dimensional case this kind of trial-functions is similar to the one also employed
s test-functions by the method known as interpolated boundary conditions studied in [7]. However, in spite of being very
ntuitive and known since the seventies (cf. [8] and [9]), the lack of an extension to three-dimensional problems seems
o have inhibited its use among practitioners. In contrast, the test-functions for our method are defined upon the degrees
f freedom associated with the underlying finite element method for the mesh forming a polytope equal to the union of
traight-edged simplexes. This polytope fits the curved domain in such a manner that all of its vertexes lie on the boundary
f the latter. In doing so the integration domain is restricted to this polytope, thereby rendering method’s implementation
traightforward in both two- and three-dimensional geometries. Moreover only polynomial algebra is necessary, while
est-order approximations can be obtained for non-restrictive choices of boundary nodal points.
Generally speaking, the Petrov–Galerkin methodology studied in this work is designed to enforce Dirichlet conditions

n the form of prescribed boundary degrees of freedom of various types, in connection with methods of order greater
han one in problem’s natural norm, for a wide spectrum of boundary value problems. According to numerous numerical
xperiments reported in previous papers, including those cited above, it showed to be fully reliable in different contexts.
t also appeared to be superior to well known techniques to tackle the same kind of problem, in case they exist. For
nstance in [10] and [11] comparisons of this method with the isoparametric version of the finite element method for
econd order boundary value problems revealed that the former is more accurate than the latter. As a matter of fact, as
ar as the authors can see, the new method’s only real demerit is the fact that non symmetric linear systems have to be
olved, even when the problem at hand is self-adjoint. The primary aim of this paper is to show that, in such a case, an
fficient symmetrization of the solution procedure can be achieved by means of a fast converging iterative method.
So far the nonparametric approach considered in this work was only studied as applied to finite elements, which

re conforming in the case of polytopic domains. However our technique to handle Dirichlet conditions prescribed on
urved boundaries has a wide scope of applicability. This feature is exemplified here by applying such a symmetrization
rocedure to the solution of the three-dimensional Poisson equation by a nonconforming quadratic finite element with
egrees of freedom other than nodal values. This method is based on the same type of piecewise quadratic interpolation
s the one introduced in [12], in order to represent the velocity in the framework of the stable solution of incompressible
iscous flow problems. Actually the corresponding velocity representation enriched by the quartic bubble-functions of
he tetrahedra combined with a discontinuous piecewise linear pressure in each tetrahedron, is a sort of nonconforming
hree-dimensional analog of the popular conforming Crouzeix–Raviart mixed finite element [13] for solving viscous flow
roblems in two-dimension space. After carrying out a numerical validation of the Petrov–Galerkin approach combined
ith the symmetrization procedure for a nonparametric version of this nonconforming quadratic method, its efficiency
s compared to the isoparametric and nonparametric versions of the conforming quadratic element is examined. An error
stimation in the broken H1-norm for the nonconforming method in the case of a curved domain completes these studies.
An outline of the paper is as follows. Section 2 is devoted to some preliminaries, in which we first recall the model

oisson equation in a smooth three-dimensional domain and present some pertaining notations; several definitions,
otations and assumptions related to the finite element meshes are also introduced therein. In Section 3 we describe
ur technique to handle the Dirichlet boundary conditions for the model problem, in connection with the nonconforming
uadratic finite element method; the underlying approximate problem is posed and corresponding stability and well-
osedness results are given. In Section 4 we address the symmetrization solution procedure and validate the resulting
umerical scheme. In Section 5 the performance of such a scheme is compared with the one of the asymmetric solution
rocedure, both extended to the standard conforming quadratic Lagrange element. Error estimates for the nonconforming
ethod in the Petrov–Galerkin formulation to treat curved boundaries are given in Section 6. Finally in Section 7 we draw
ome conclusions from the whole work.

. Preliminaries

In this section we specify the model problem considered in this work and supply some material to be used in the
equel.

.1. The model problem and pertaining notations

Let us consider as a model the Poisson equation with Dirichlet boundary conditions in a three-dimensional domain Ω

ith boundary Γ having suitable regularity properties, that is,{
−∆u = f in Ω

u = g on Γ ,
(1)

here f and g are given functions defined in Ω and on Γ .
2



V. Ruas and M.A.S. Ramos Journal of Computational and Applied Mathematics 394 (2021) 113523

u
o
t
d

t
s
W

2

e
t
Ω

m
q
W
f

t
i
o
L

R
h
s

e
o
w
c
δ

o
u
i
o
m

c

A
M

A
a

t

For quadratic finite element methods our technique is most effective in case u ∈ H3(Ω). In order to make sure that
possesses such a regularity property we shall assume that f ∈ H1(Ω) and g ∈ H5/2(Γ ) (cf. [14]). We observe that,
wing to the Sobolev Embedding Theorem [14], g is necessarily continuous. We must further assume that Γ is at least of
he C1-class. Actually, more than this, we make the assumption that the principal curvatures of Γ (cf. [15]) are uniquely
efined almost everywhere. Notice that in doing so we are not requiring that Γ be of the C2-class.
Throughout this article ∥·∥0 stands for the standard norm of L2(Ω). Furthermore ∥·∥r,D and |·|r,D represent, respectively,

he standard norm and semi-norm of Sobolev space Hr (D) (cf. [14]), for r ∈ ℜ
+ with H0(D) = L2(D), D being any bounded

ubset of ℜ
3. We also denote by ∥·∥m,p,D the usual norm of Wm,p(D) for m ∈ N∗ and p ∈ [1, ∞]\{2} with W 0,p(D) = Lp(D).

henever D is Ω the subscript ,D is dropped.

.2. Meshes and related notions

Let us be given a mesh Th consisting of straight-edged tetrahedra satisfying the usual compatibility conditions (see
.g. [16]). Every element of Th is to be viewed as a closed set. Moreover this mesh is assumed to fit Ω in such a way
hat all the vertexes of the polyhedron ∪T∈ThT lie on Γ . We denote the interior of this union set by Ωh and define
˜ h := Ω ∩ Ωh together with Ω ′

h := Ω ∪ Ωh. The boundaries of Ωh and Ω̃h are respectively denoted by Γh and Γ̃h and
oreover Γ ′

h := Ω̄h∩Γ . Th is assumed to belong to a regular family of partitions in the sense of [16], though not necessarily
uasi-uniform. The boundary of every ∀T ∈ Th is represented by ∂T , while hT is the diameter of T and h := maxT∈Th hT .
e make the non essential and yet reasonable assumption that any element in Th have at most either one edge or one

ace contained in Γh.
Let Sh be the subset of Th consisting of tetrahedra having one face on Γh and Rh be the subset of Th \ Sh consisting of

etrahedra having exactly one edge on Γh. We further set Oh := Sh ∪Rh. Notice that, owing to our initial assumption, the
nterior of any tetrahedron in Th \ Oh has an empty intersection with Γh. For every T ∈ Sh we denote by OT the vertex
f T not belonging to Γ . Finally we introduce the notations ∥ · ∥0,h (resp. ∥ · ∥0̃,h) for the standard norm of L2(Ωh) (resp.
2(Ω̃h)).

emark 1. Even though for practical purposes this is by no means necessary, in all the constructions and analyzes given
ereafter, we shall assume that the mesh is sufficiently fine. We refer to [11] for a precise quantification of the assumed
mallness of h. ■

We also need some definitions and auxiliary results regarding the set (Ω \ Ωh) ∪ (Ωh \ Ω).
With every edge e of the mesh contained in Γh we associate a closed plane set δe containing e, delimited by Γ and

itself. The plane of δe can be arbitrarily chosen about e. However for better results it should be close to the bisector
f the faces of the pair of elements in Sh intersecting at e, which can eventually be a face shared by both. Such a choice
ill be assumed throughout this work. We also define δ̃e := δe ∩ Ω . In Fig. 1 we illustrate one out of three plane sets δe
orresponding to the edges of the faces FT and FT ′ contained in Γh of tetrahedra T and T ′ belonging to Sh. More precisely
e is depicted for the edge e common to FT and FT ′ .
Further, for every T ∈ Sh, we define a closed set ∆T delimited by Γ , ∂T and the plane sets δ̃e associated with the edges

f FT , as illustrated in Fig. 1. In this manner we can assert that, if Ω is convex, Ωh is a proper subset of Ω and Ω̄ is the
nion of the disjoint sets Ωh and ∪T∈Sh∆T . Otherwise Ωh\Ω is a nonempty set containing subsets of T ∈ Sh whose volume
s an O(h4

T ) and subsets of T ∈ Rh whose volume is an O(h5
T ), both types of subsets corresponding to non-convex portions

f Γ . Whatever the case, the above configurations are of merely academic interest and carry no practical meaning, as
uch as the sets T∆ := T ∪ ∆T ∀T ∈ Sh or T∆ := T ∪ δe ∀T ∈ Rh, T̃ := T ∩ Ω ∀T ∈ Oh and ∆′

T := ∆T \ Ω .
Referring to Figs. 2 and 3 for illustrations in particular cases, Th is supposed to fulfill the following reasonable

onditions:

ssumption+: h is small enough for the intersection P with Γ of the half line s with origin at OT passing through any point
∈ FT to be uniquely defined ∀T ∈ Sh.

ssumption++: h is small enough for the intersection Q ∈ δe with Γ of the half line r perpendicular to e with origin at
ny point N ∈ e to be uniquely defined.
We recall a result formally established in [11], according to which there exists a mesh-independent constant CΓ such

hat length(MP) ≤ CΓ h2
T and length(NQ ) ≤ CΓ h2

T .

3. A nonconforming method with mean-value degrees of freedom

In this section we apply our technique to handle Dirichlet conditions on curved boundaries to a nonconforming method
with degrees of freedom other than function nodal values. Incidentally we note that for many well known nonconforming
finite element methods the construction of an isoparametric counterpart brings no improvement. This does not prevent
suitable parametric elements from being successfully employed in this case. However to the best of author’s knowledge
studies in this direction are incipient. This fact motivates us to show here that our technique for handling curvilinear
boundaries can be optimally extended in a straightforward manner to finite element methods, which are nonconforming
3
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Fig. 1. Sets ∆T , ∆T ′ , δe for T , T ′
∈Sh having a common edge e and a tetrahedron T ′′ inRh .

Fig. 2. P := intersection with Γ of the line joining vertex OT to the centroid M of FT ⊂ Γh .

ven in the case of polytopes. We use such a nonconforming approach to solve the model problem (1), confining ourselves
o the case of homogeneous boundary conditions for the sake of simplicity, though without any loss of essential aspects.

To begin with we recall the space Vh of test-functions defined in Ωh, associated with the method under consideration.
F and e being a face and an edge of a tetrahedron T ∈ Th respectively, we denote by M the centroid of F , by A and B

he end-points of e and by N the mid-point of e. Now any function v ∈ Vh restricted to every T is a polynomial of degree
less than or equal to two, defined upon the following set of degrees of freedom:

• The four values µF (v) of v at the centroids M of F ;
• The six mean values νe(v) along e, where νe(v) = 0.4v(N) + 0.3[v(A) + v(B)].

∀v ∈ Vh and ∀F and e, we require that both µF (v) and νe(v) coincide for all tetrahedra of the mesh sharing the face F
or the edge e; moreover we require that both µF (v) and νe(v) vanish whenever F or e is contained in Γh. Clearly enough
these requirements are not sufficient to ensure the continuity in Ωh of a function in Vh, and hence this space is not a
subspace of H1(Ω ).
0 h

4
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Fig. 3. Q := intersection with Γ ∩ δe of the plane orthogonal to e containing its mid-point N .

The set of local canonical quadratic basis functions in a tetrahedron T ∈ Th associated with the above degrees of
freedom can be found in [12]. It is noteworthy that the gradients of all of them are an O(h−1

T ). This is a key property for
the proof of Lemma 3.1 hereafter.

Similarly to the case of the standard Lagrangian piecewise quadratic elements, we define the trial-function space Wh
in the same way as Vh, except for the fact that the degrees of freedom associated with faces F and edges e contained in
h are modified as follows: For a given function w ∈ Wh, µF (w) is replaced by µ′

F (w) defined to be the value of w at
he point P lying in the nearest intersection with Γ of the perpendicular to F passing through the centroid M of F as
epicted in Fig. 2; referring to Fig. 3, νe(w) is replaced by ν ′

e(w) := 0.4w(Q ) + 0.3[w(A) + w(B)], where Q is the nearest
ntersection with Γ of the perpendicular to e in δe passing through N . ∀w ∈ Wh we require that both µ′

F (w) and ν ′
e(w)

anish for every face F or edge e contained in Γh.
It is convenient to extend to Ω̄ \ Ω̄h any function w ∈ Wh in such a way that its polynomial expression in T ∈ Oh

lso applies to points in T∆ \ T . In doing so the distinct expressions of w in δe are those in the tetrahedra belonging to Oh
haring the edge e.
Notice that the sets ∆T , T∆ enable the extension of w ∈ Wh to Ω̄ \ Ω̄h, but play no role, neither in the definition, nor

n the practical implementation of our method, as seen below.
Next we prove,

emma 3.1. Provided h is small enough, ∀T ∈ Sh (resp. ∀T ∈ Rh), given a set of m real values bi, 1 ≤ i ≤ m, with m = 6
resp. m = 9), there exists a unique function wT ∈ P2(T ) such that µ′

F (wT ) = 0 and ν ′
e(wT ) = 0 if F and e are a face or an

dge of T contained in Γh, and such that µF (wT ) and νe(wT ) take the assigned value bi, if neither F nor e is a face or an edge
f T contained in Γh.

roof. We first consider the case of an element in T ∈ Rh. Referring to Fig. 3, let us extend the vector b⃗ := [b1, b2, . . . , b9]
f ℜ

9 into the vector of ℜ
10 still denoted by b⃗, by adding the component b10 = 0 standing for the mean value ν ′

e, e ⊂ Γh.
f Q were replaced by the mid-point N of e, it is clear that the result would hold true, according to the properties of the
nterpolation under consideration (cf. [12]). The vector a⃗ of coefficients ai for i = 1, 2, . . . , 10 of the underlying canonical
asis functions ϕj ∈ P2(T ) for 1 ≤ i ≤ 10 would be precisely bi for 1 ≤ i ≤ 10. Denoting the associated degrees of freedom
for a straight-edged tetrahedron) by πi, where πi is some µF for 1 ≤ i ≤ 4 and πi is some νe for 5 ≤ i ≤ 10, we assume
hat the corresponding canonical basis functions ϕi are numbered accordingly. This means that the matrix K whose entries
re kij := πi(ϕj) is the identity matrix. Let π ′

i = πi if 1 ≤ i ≤ 9 and π ′

10(w) be given by 0.4w(Q )+0.3[w(A)+w(B)] for any
∈ P2(T ), where A and B are the end-points of e ⊂ Γh. We must establish that the 10 × 10 linear system of algebraic

quations K ′a⃗ = b⃗ is uniquely solvable, where K ′ is the matrix with entries k′

ij := π ′

i (ϕj). Clearly we have K ′
= K + EK ,

here the entries of EK are eij := π ′

i (ϕj) − πi(ϕj). At this point we recall the constant CΓ depending only on Γ specified
t the end of Section 2.2, such that the length of the segment NQ is bounded above by CΓ h2

T . From Rolle’s Theorem it
ollows that ∀ i, j, |eij| ≤ 0.4CΓ h2

T∥grad ϕj∥0,∞,T∆ .
From Lemma 3.2 of [11] we know that ∥grad ϕj∥0,∞,T∆ ≤ C∞∥grad ϕj∥0,∞,T for a suitable mesh-independent constant

∞. Moreover from standard arguments we know that the latter norm in turn is bounded above by another mesh-
ndependent constant times h−1. In short we have |e | ≤ C h ∀ i, j, where C is independent of T . Hence the matrix
T ij E T E

5
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K ′ equals the identity matrix plus an O(hT ) matrix EK . Therefore K ′ is an invertible matrix, as long as h is sufficiently
mall.
The case of an element T ∈ Sh can be dealt with as a mere variant of the above argument, and in this respect we also

refer to Lemma 3.3 of [11]. ■

Lemma 3.1 allows us to assert that Wh is indeed a nonempty function space, whose dimension equals the one of Vh.
Before pursuing we introduce the broken gradient operator gradh for any function w defined in Ωh which is

continuously differentiable in every T ∈ Th, given by [gradhw]|T ≡ grad w|T ∀T ∈ Th.
Now if u is a function in H2(Ω) ∩ H1

0 (Ω), we can define Ih(u) ∈ Wh to be the function given by µF (Ih(u)) = µF (u) and
e(Ih(u)) = νe(u) for all the faces F and edges e of tetrahedra in Th not contained in Γh. From standard interpolation results
t is not difficult to establish that Ih enjoys the following property:

There exists a mesh-independent constant CP such that ∀u ∈ H3(Ω) ∩ H1
0 (Ω) it holds,

∥gradh(u − Ih(u))∥0̃,h ≤ CPh2
|u|3. (2)

Extending f by zero in Ωh \ Ω and still denoting the resulting function by f , the following problem is considered to
pproximate (1):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ Wh such that ah(uh, v) = Lh(v) ∀v ∈ Vh,

where
ah(w, v) :=

∫
Ωh

gradhw · gradhv, for w ∈ Wh + H1(Ωh), v ∈ Vh

and
Lh(v) :=

∫
Ωh

f v ∀v ∈ Vh.

(3)

he matrix associated with (3) is a sparse band matrix whose sparsity structure is the same as for the standard Galerkin
EM, in which the spaces of trial functions and test functions coincide. However here such a matrix is non symmetric,
ince the basis functions of Wh and Vh are the same only for nodes not belonging to elements in Oh. Hence the stability
nd well-posedness of problem (3) are not trivial issues, which we next address.

roposition 3.2. If h is sufficiently small there exists a constant α > 0 independent of h such that,

∀w ∈ Wh ̸= 0, sup
v∈Vh\{0}

ah(w, v)
∥gradhw∥0,h∥gradhv∥0,h

≥ α. (4)

roof. Given w ∈ Wh, let v be the unique function in Vh such that all its degrees of freedom attached to a face or an edge
f the mesh not contained in Γh coincide with those of w. Notice that by construction µF (v) = 0 and νe(v) = 0 as long
s F or e is contained in Γh.
For a given T ∈ Oh we denote by mT the number of degrees of freedom {π T

i }
mT
i=1 of Vh attached to a face F or an edge

contained in Γh. Clearly enough we have

ah(w, v) =

∑
T∈Th

∫
T
|grad w|

2
−

∑
T∈Oh

∫
T
grad w · grad rT (w), (5)

here rT (w) =
∑mT

i=1 π T
i (w)ϕT

i , ϕT
i being the canonical basis function of the space P2(T ) associated with the degree of

reedom π T
i .

Now from standard results it holds ∥grad ϕT
i ∥0,T ≤ Cϕh

1/2
T where Cϕ is a mesh independent constant. Referring to Figs. 2

nd 3, since w(P) = µ′

F (w) = 0 (resp. 0.4w(Q ) + 0.3[w(A) + w(B)] = ν ′(w) = 0), where F (resp. e) generically represent
face (resp. an edge) of T contained in Γh, in accordance with the definition of Wh, a simple Taylor expansion about P

resp. Q ) allows us to conclude that |w(M)| (resp. |w(N)|) are bounded above by l∥grad w∥0,∞,T∆ , where l = length(PM)
resp. length(QN)), or yet that |w(M)| (resp. |w(N)|) is bounded above by CΓ h2

T∥grad w∥0,∞,T∆ . On the other hand from
Lemma 2.2 of [11] it holds ∥grad w∥0,∞,T∆ ≤ CJh

−3/2
T ∥grad w∥0,T for a mesh-independent constant CJ . Plugging all those

estimates into (5), since mT ≤ 4, we obtain:

ah(w, v) ≥

∫
Ωh

|gradhw|
2
− 4CϕCJCΓ h

∑
T∈Oh

∥grad w∥
2
0,T . (6)

Then it holds with

c := 4CϕCJCΓ , (7)

ah(w, v) ≥ (1 − ch)∥gradhw∥
2
0,h. (8)
6
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Now using arguments in all similar to those employed above, we easily conclude that

∥gradhv∥0,h ≤ ∥gradhw∥0,h + ∥gradhv − gradhw∥0,h ≤ (1 + ch)∥gradhw∥0,h. (9)

Combining (8) and (9), provided h ≤ (2c)−1 we establish (4) with α = 1/3. ■

Proposition 3.3. Provided h is sufficiently small, problem (3) has a unique solution.

Proof. From well-known results (cf. [2,3] and [17]) this is an immediate consequence of Proposition 3.2 and of the fact
that Vh and Wh have the same dimension. ■

4. Symmetrization of the solution procedure

Since (3) is not a symmetric problem we can use the following iterative procedure to solve it as a sequence of symmetric
problems.

First of all let nh be the dimension of both Vh and Wh, that is the total number of degrees of freedom of both spaces
not assigned to zero beforehand. Let also ∥ · ∥0,∞,h be the norm of either Vh or Wh defined to be the maximum absolute
alue of their nh degrees of freedom. For every v ∈ Vh we denote by ΠW (v) the function of Wh whose degrees of freedom

coincide with those of v. Similarly for every w ∈ Wh we denote by ΠV (w) the function of Vh whose degrees of freedom
coincide with those of w.

Now we consider the following symmetric problem,{
Find ū0

h ∈ Vh such that
ah(ū0

h, v) = Lh(v) ∀v ∈ Vh,
(10)

which is clearly uniquely solvable.
Defining

u0
h := ΠW (ū0

h) ∈ Wh, (11)

solve successively for n = 1, 2, . . . the problems,⎧⎪⎨⎪⎩
Find un

h ∈ Wh := ΠW (ūn
h)

where ūn
h ∈ Vh is the unique solution of

ah(ūn
h, v) = ah(ūn−1

h , v) − ah(un−1
h , v) + Lh(v) ∀v ∈ Vh,

(12)

ntil ∥un
h − un−1

h ∥0,∞,h is less than a small tolerance ε.
Since the matrix associated with (12) is a symmetric positive definite matrix for the standard Galerkin FEM, the stability

nd well-posedness of (12) is guaranteed. It is also a band matrix with the same sparsity structure within its band as the
atrix associated with (3).
Let us study the convergence of the above iterative procedure. With this aim we first set ūh = ΠV (uh) and note that,

ah(ūh, v) = ah(ūh, v) − ah(uh, v) + Lh(v) ∀v ∈ Vh. (13)

n ≥ 0, let wn
h := un

h − uh ∈ Wh and w̄n
:= ūn

h − ūh ∈ Vh. Combining (12) with (13) we have:

ah(w̄n
h, v) = ah(w̄n−1

h , v) − ah(wn−1
h , v) ∀v ∈ Vh. (14)

e next establish that, provided h is sufficiently small, ∥gradhw
n
h∥0,h tends to zero roughly as fast as b(h)(2ch)n as n goes

o infinity, where c fulfills 2ch ≤ 1 and b(h) is an O(h).
Since w̄n−1

h only differs from wn−1
h in elements in Oh we have,

ah(w̄n−1
h , v) − ah(wn−1

h , v) =

∑
T∈Oh

∫
T
grad(w̄n−1

h − wn−1
h ) · grad v. (15)

sing the same arguments leading to (6) together with (7), we obtain successively,

ah(w̄n−1
h , v) − ah(wn−1

h , v) ≤ ch
∑
T∈Oh

∥grad wn−1
h ∥0,T∥grad v∥0,T , (16)

ah(w̄n−1
h , v) − ah(wn−1

h , v) ≤ ch∥gradhw
n−1
h ∥0,h∥gradhv∥0,h. (17)

aking v = w̄n
h in both (14) and (17) we come up with,

∥grad w̄n
∥ ≤ ch∥grad wn−1

∥ (18)
h h 0,h h h 0,h

7
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Table 1
Number of iterations m such that ∥um

h − um−1
h ∥0, ∞, h < 10−5 using Cholesky’s method.

p −→ 2 4 8 12 16
m −→ 7 5 4 4 3
∥um

h − um−1
h ∥0,∞,h −→ 0.62431E−5 0.51154E−5 0.56915E−5 0.12739E−5 0.92735E−5

Table 2
Number of iterations m such that ∥um

h − um−1
h ∥0,∞,h < 10−7 using the CG method.

p −→ 4 8 12 16 24
m −→ 9 13 19 37 95
∥um

h − um−1
h ∥0,∞,h −→ 0.14937E−7 0.42120E−7 0.24374E−7 0.93131E−7 0.65410E−7

Now noting that ∀m ≥ 0 ∥gradhw
m
h ∥0,h ≤ ∥gradhw̄

m
h ∥0,h + ∥gradh(wm

h − w̄m
h )∥0,h, similarly to (17), as long as h is less

han 1/c , we easily conclude that

∥gradhw
m
h ∥0,h ≤ (1 − ch)−1

∥gradhw̄
m
h ∥0,h ∀m ≥ 0. (19)

lugging (19) with m = n − 1 into (18) we establish that,

∥gradhw̄
n
h∥0,h ≤ ρ(h)∥gradhw̄

n−1
h ∥0,h ∀n > 1 with ρ(h) = ch/(1 − ch). (20)

ssuming that h < 1/(2c) the fraction ρ(h) will be less than one, and hence the quantity ∥gradhw̄
n
h∥0,h will decrease by

factor of ρ(h) at every iteration. Actually using again (19), this time with m = n, and noting that 1 − ch ≥ 1/2 by
ssumption, we have,

∥gradhw
n
h∥0,h ≤ σ (h)(2ch)n with σ (h) := ∥gradh(ū

0
h − ūh)∥0,h/2 ∀n > 1. (21)

bserving that ū0
h − ūh = (ū0

h − u) + (u − uh) + (uh − ūh) and that the orders of magnitude of the norms ∥gradh · ∥0,h
f the terms in parentheses on the right hand side are respectively O(h3/2), O(h2) and O(h), we can assert that σ (h) is
ounded above by a coefficient b(h), whose order of magnitude is at most an O(h). All this advocates in favor of a faster
onvergence of the iterations (12), the smaller h.
Let us check the efficiency of the iterative symmetrization procedure (10)–(11)–(12) by solving a test-problem with

uccessively refined meshes. The solution of the linear system resulting from (12) is computed by means of both
holesky’s method with BMS (band matrix storage) and the CG (conjugate gradient) method by storing only the non
ero coefficients of the matrix, i.e., with VSMS (very sparse matrix storage). In the model problem Ω is the ellipsoid of
quation x2/a2 + y2/b2 + z2 < 1 in a cartesian coordinate system (x, y, z), whose origin is its center, with a = 0.6 and
= 0.8. We take an exact solution given by u(x, y, z) = (1− x2/a2 −y2/b2 − z2)(1− x2/b2 −y2/a2 − z2), so that f = −∆u.
he computations are carried out only for the octant corresponding to non negative values of the coordinates, with a
amily of quasi-uniform meshes consisting of 6p3 tetrahedra for an integer p ≥ 1. For each value of p the mesh of the
llipsoid is the transformation of the uniform mesh of a unit cube with 6p3 tetrahedra having edges parallel to the line
= y = z, by suitably mapping the set of vertexes of the latter given in cartesian coordinates into the one of the actual
esh expressed in spherical coordinates. In this manner we have h ≃ p−1.
In Tables 1 and 2 we show the number of iterations m necessary to satisfy tolerances of ε = 10−5 and ε = 10−7, for

ncreasing values of p, using the Cholesky and the CG solver, respectively. The smaller value of ε in the latter case is due
o the observation that this tolerance must be compatible with the necessarily small one in the convergence test of the
G method.
According to Table 1 the number of iterations necessary for convergence of the symmetrization procedure decreases

ndeed with the mesh size. Table 2 in turn points in the opposite direction, but this effect can be credited to the
ombination of two iterative procedures. Nevertheless such a behavior is far from being a drawback, as seen in the next
ection.

. Comparative study

In this section we further investigate the iterative solution procedure of symmetric problems posed in the nonpara-
etric Petrov–Galerkin variational form of the type (12). More particularly we carry out a comparative study thereof
ith the direct solution of the underlying non symmetric linear system. In this framework two approaches are assessed:
he direct solution of the non symmetric system performed by either Crout’s method with partial pivoting and BMS or
he GMRES method with VSMS; the iterative solution with a symmetric positive definite matrix performed by either
holesky’s method with BMS or the CG method with VSMS, resp. Additionally we extend such numerical comparisons to
he classical conforming quadratic finite element in both nonparametric Petrov–Galerkin and isoparametric form.

A Lenovo T440s laptop was employed in all the computations reported below.
8
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Table 3
CPU time for solving (3): nr. of iterations (12) using Cholesky’s method vs. Crout’s method.
p −→ 4 6 8 12 16
Iterative solution (Cholesky’s method) −→ 4.36 s 17.35 s 420.78 s 10,689.93 s 92,061.36 s
Direct solution (Crout’s method) −→ 19.00 s 136.92 s 1846.89 s 26,837.75 s 230,274.28 s

Table 4
CPU time for solving (3): nr. of iterations (12) using the CG method vs. GMRES method.
p −→ 6 8 12 16 24
Iterative solution (CG method) −→ 3.88 s 18.35 s 184.59 s 1076.87 s 13,794.24 s
Direct solution (GMRES method) −→ 8.11 s 27.71 s 288.48 s 2453.89 s 44,973.59 s

Table 5
Errors, nr. of iterations using Cholesky’s method and DOF count for the nonconforming FEM.
p −→ 2 4 8 16
∥u − uh∥0,h −→ 0.64013E−2 0.88793E−3 0.11467E−3 0.14585E−4
∥gradh(u − uh)∥0,h −→ 0.11549E+0 0.34444E−1 0.91569E−2 0.23477E−2
∥u − uh∥0,∞,h −→ 0.27816E−1 0.39244E−2 0.62257E−3 0.85775E−4
m −→ 7 5 4 3
M −→ 218 1,468 10,712 81,712

Table 6
Errors, nr. of iterations using Cholesky’s method and DOF count for the conforming FEM.
p −→ 2 4 8 16
∥u − ǔh∥0,h −→ 0.70568E−2 0.95648E−3 0.12203E−3 0.15445E−4
∥gradh(u − ǔh)∥0,h −→ 0.11772E+0 0.353106E−1 0.94375E−2 0.24253E−2
∥u − ǔh∥0,∞,h −→ 0.36064E−1 0.69394E−2 0.10616E−2 0.14339E−3
m̌ −→ 6 5 4 3
M̌ −→ 125 729 4,913 35,937

5.1. Iterative vs. direct solution of (3)

First of all we compare the performance of the nonconforming quadratic method studied in Sections 3 and 4 to
pproximate (1) using both solution strategies. With this aim we take the same test-problem as in the previous section.
epending on whether the iterative symmetrization procedure is employed or not, in this comparison we use both direct
olvers with BMS, namely, Cholesky’s method and Crout’s method, and the iterative solvers GC and GMRES with VSMS.
We supply in Table 3 the total processing (CPU) time in seconds for successively refined meshes, using direct solvers

or both the iterative symmetrization procedure with a tolerance equal to 10−5 and the direct solution.
Similarly, we display in Table 4 the total CPU time in seconds for successively refined meshes for both the scheme (12)

and the direct solution, using now the iterative solvers and a tolerance equal to 10−7 for all iterative procedures.
From the above results we infer the great superiority of the iterative symmetrization strategy over the direct solution,

since the CPU time to run the former is much smaller than the CPU time required by the latter. This effect is even more
noteworthy in case direct solvers are used, in which unreasonable processing times for barely intermediate meshes are
reported (cf. Table 3). On the other hand, the fact that an increasing number of iterations is necessary for convergence
of the procedure (12) as the mesh is refined (cf. Table 2), is probably the cause of a lesser discrepancy of CPU times in
case iterative solvers are used, as one can see in Table 4. Notice however that in spite of these observations, the drastic
reduction of matrix storage for iterative solution methods advocates in favor of them, as compared to direct ones.

5.2. Additional comparisons involving second order finite-element methods

Keeping the same test-problem as above, we pursue the performance evaluation of our iterative scheme as compared
to the direct solution, taking also classical conforming quadratic finite elements. In order to have better insight on the
merits of the nonparametric Petrov–Galerkin formulation, such comparisons are extended to isoparametric finite elements
of the same order in standard Galerkin formulation.

Referring to [11], let ǔh represent the approximate solution of (1) related to mesh Th obtained by the nonparametric
etrov–Galerkin approach, in connection with conforming Lagrange quadratic finite elements.
To begin with we illustrate the strength of the nonconforming approach, by displaying in Tables 5 through 8 data

elated to uh and ǔh, respectively, for different values of p, that is h. Besides the errors measured in three different
anners, we supply a degree of freedom (DOF) count for both FEMs. The number of iterations necessary to satisfy the
top criterion for the iterative scheme of the type (12) is still denoted by m for the nonconforming method and by m̌ for

ˇ
the conforming method. The corresponding total number of DOFs are denoted by M and M respectively. Similarly to the

9
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Table 7
Errors, number of iterations using the CG method and DOF count for the nonconforming FEM.
p −→ 3 6 12 24
∥u − uh∥0,h −→ 0.20505E−2 0.26893E−3 0.34373E−4 0.56906E−5
∥gradh(u − uh)∥0,h −→ 0.58245E−1 0.15976E−1 0.41403E−2 0.10525E−2
∥u − uh∥0,∞,h −→ 0.82123E−2 0.13700E−2 0.19521E−3 0.41366E−4
m −→ 10 8 19 95
M −→ 657 4,662 35,028 271,368

Table 8
Errors, nr. of iterations using the CG method and DOF count for the conforming FEM.
p −→ 3 6 12 24
∥u − ǔh∥0,h −→ 0.22262E−2 0.28733E−3 0.36439E−4 0.48589E−5
∥gradh(u − ǔh)∥0,h −→ 0.59516E−1 0.16437E−1 0.42741E−2 0.10872E−2
∥u − ǔh∥0,∞,h −→ 0.13889E−1 0.23689E−2 0.33214E−3 0.43462E−4
m̌ −→ 7 6 6 5
M̌ −→ 343 2,197 15,625 117,649

Table 9
CPU time for solving (1) with the conforming FEM via direct solvers.
p −→ 4 6 8 12 16
Iterative solution (Cholesky’s method) −→ 0.26 s 1.64 s 21.18 s 235.38 s 3013.57 s
Direct solution (Crout’s method) −→ 0.51 s 6.54 s 212.45 s 2617.61 s 40226.10 s

Table 10
CPU time for solving (1) with the conforming FEM via iterative solvers.
p −→ 6 8 12 16 24
Iterative solution (CG method) −→ 1.09 s 4.70 s 38.77 s 399.29 s 2189.46 s
Direct solution (GMRES method) −→ 2.76 s 8.16 s 78.18 s 426.18 s 4234.10 s

previous subsection in the stop criterion the tolerance ε applies to the maximum absolute value of the difference between
DOFs in two successive iterations.

The results given in Tables 5 and 6 were obtained with a Cholesky solver for ε = 10−5.
As one infers from Tables 5 and 6 the methods under experimentation are both of the third order in L2(Ωh) and of the

econd order in the broken (semi)norm of H1(Ωh) as expected or predicted either in [11] or in Section 6 hereafter. Both
ethods are also fairly equivalent from the point of view of accuracy in these norms. On the other hand there is a clear
dvantage of the nonconforming method over the conforming method in terms of DOF (‘‘pointwise’’) errors.
The results in Tables 7 and 8 were obtained by using a CG solver with VSMS. Here we took ε = 10−7, which is also

he tolerance employed in the stop criterion for the CG method.
Tables 7 and 8 confirm roughly the same orders of both FEM observed in Tables 5 and 6, and the slightly better accuracy

f the nonconforming method except for the L2-norm of the error for the finest mesh. Notice that the number of iterations
ecessary for convergence of the conforming method decreases smoothly as the mesh is refined, as expected, in contrast to
he nonconforming method. This could explain the more significant deterioration of the accuracy in the L2-norm observed
for the latter method, as compared to the former. Whatever the case, such an effect advocates in favor of direct solvers,
since in this case there is no need to adjust a tolerance to optimally fit the one of the iterative symmetrization scheme
itself. However it turns out that iterative solvers are in principle less time consuming for a given mesh, while requiring
much less storage.

It is also interesting to watch the behavior of both methods in terms of CPU time, when the direct and the iterative
solving approaches are employed. Tables 9 and 10 supply the CPU times for the conforming quadratic method with
successively refined meshes, similarly to Tables 3 and 4 respectively, for the nonconforming method.

It is noticeable here again the great superiority of the iterative approach from the point of view of processing time. A
quick comparison of Tables 3 and 4 with Tables 9 and 10 also indicates that the nonconforming method is much more time
consuming than the conforming method. However this is no surprise since there are more than twice as many degrees
of freedom for the latter with respect to the former for the same mesh.

Next we compare the nonparametric Petrov–Galerkin formulation for the conforming quadratic element with the
corresponding isoparametric formulation, whose optimal second order in the H1-norm was established in [18]. We denote
y ũh the approximate solution to (1) determined by the isoparametric technique for the same mesh as ǔh. Naturally
nough ũh is computed using the Cholesky’s method with BMS and the CG method with VSMS. However for a more
air comparison with the nonparametric approach in terms CPU time, we also compute the isoparametric solution using
rout’s method and the GMRES method, without taking into account symmetry. This is because in the case of non
ymmetric problems the use of both Cholesky’s method and the CG method has to be discarded.
CPU times necessary to determine ũ with direct solvers are displayed in Table 11.
h

10
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Table 11
CPU time for solving (1) with the isoparametric quadratic FEM via direct solvers.
p −→ 4 6 8 12 16
Cholesky’s method −→ 0.20 s 1.69 s 14.87 s 289.66 s 3552.16 s
Crout’s method (with ∂ pivoting) −→ 0.58 s 6.55 s 202.04 s 2248.96 s 39128.77 s

Table 12
CPU time for solving (1) with the isoparametric quadratic FEM via iterative solvers.
p −→ 6 8 12 16 24
CG method −→ 0.99 s 4.09 s 42.96 s 230.94 s 2560.18 s
GMRES method −→ 1.87 s 8.96 s 82.78 s 500.15 s 4829.93 s

Table 13
Errors for the conforming quadratic FEM in isoparametric formulation.
p −→ 2 4 8 16
∥u − ũh∥0,h −→ 0.75220E−2 0.10564E−2 0.13173E−3 0.16185E−4
∥gradh(u − ũh)∥0,h −→ 0.13931E+0 0.39089E−1 0.10015E−1 0.25061E−2
∥u − ũh∥0,∞,h −→ 0.40980E−1 0.79148E−2 0.12384E−2 0.16897E−3

Table 14
Key storage data for the symmetric band matrices handled by Cholesky’s method.
p −→ 2 4 8 16
NC FE: HBW × NU (=TNE) −→ 86 × 152 322 × 1, 216 1, 250 × 9, 728 4, 930 × 77,824
C FE: HBW × NU (=TNE) −→ 43 × 64 147 × 512 547 × 4, 096 2, 115 × 32,768

Table 15
Key storage data for the symmetric sparse matrices handled by the CG method.
p −→ 3 6 12 24
NC FE: TNE/NU (≃ λNC ) −→ 4, 563/513 41,526/4, 104 353,268/32,832 2,912,328/262,656
C FE: TNE/NU (≃ λC ) −→ 2, 125/216 21,052/1, 728 186,400/13,824 1, 566,856/110,592

An iterative-solver counterpart in terms of CPU time is supplied in Table 12.
It is no surprise that Tables 11 and 12 confirm the great superiority in terms of CPU time, of methods whose use is

restricted to symmetric positive definite matrices, over methods applying to any regular matrix. In particular Cholesky’s
method is much better than Crout’s method as shown in Table 11. Moreover, resorting to Tables 9 and 11, it turns
out that both approaches are fairly equivalent in terms of CPU, with a slight advantage of isoparametric elements over
nonparametric elements. This contradicts observations in the opposite sense in the two-dimensional case (cf. [4]). On the
other hand, if one compares the solutions using Cholesky’s method, isoparametric elements perform a little better only
for the coarser meshes, while the contrary occurs in an increasingly significant manner as the mesh is refined. Such a
behavior is noteworthy taking into account that iterations are necessary for the nonparametric approach, in contrast to the
isoparametric approach. This seems to advocate in favor of the former, and could be due to its better matrix conditioning.

We push further our numerical study by comparing the solutions determined by the nonparametric and the isopara-
metric approaches in terms of accuracy. In Table 13 the errors for the isoparametric solution computed by Cholesky’s
method are given in three different measures.

Comparing the results displayed in Tables 6 and 13, we figure out that the nonparametric approach is a little more
accurate than the isoparametric approach in all respects. Taking into account the previous observations, together with
the two-dimensional experiments reported in [4] we are inclined to conclude that the former is superior to the latter.

To conclude we comment on the cost of storage in the experiments reported in this section.
First we note that the DOFs were numbered in a standard sequential manner for uniform meshes of a cube. In doing so

the number of unknowns (NU) for the nonconforming method and the conforming method are 19p3 and 8p3, respectively.
his also leads to band matrices for both methods, whose half band width (HBW) for large values of p is asymptotically
qual to 19p2 for the nonconforming method and to 8p2 for the conforming method. It follows that the direct solvers
andle arrays whose total number of entries (TNE) are roughly 192p5 and 82p5, respectively. This explains the growing

discrepancy in CPU time to run direct solvers for both methods with the same mesh, as p increases (cf. Tables 7 and 8).
On the other hand, in case iterative solvers are used, arrays with TNE asymptotically equal to 19λNCp3 and 8λCp3 are
handled for the nonconforming method and the conforming method, where λNC ≃ 11 and λC ≃ 14 and the subscripts
C and C stand for nonconforming and conforming. This is the reason why the ratios between CPU times to run both
ethods with the same mesh using iterative solvers are smaller, as shown in Tables 9 and 10. Just to give an overview
f the matrix storage required to run both finite element methods, we supply in self-explanatory Tables 14 and 15 the
bove key figures as p varies, for direct and iterative solvers, respectively.
11
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6. Error estimates

In this section we establish error estimates for problem (3). Akin to [11] we distinguish the convex case from the
on-convex case.
First we have:

heorem 6.1. Assume that f ∈ H1(Ω) and g ≡ 0. As long as h is sufficiently small, if Ω is a convex domain smooth enough
for the solution u of (1) to belong to H3(Ω), there exists a constant C(f ) depending only on f such that the solution uh of (3)
atisfies:

∥gradh(u − uh)∥0,h ≤ C(f )h2. (22)

roof. According to [17], using Proposition 3.2 we can write:

∥gradh(u − uh)∥0,h ≤
1
α

[
∥gradh(u − Ih(u))∥0,h + sup

v∈Vh\{0}

|ah(u, v) − Lh(v)|
∥gradhv∥0,h

]
. (23)

roof. Taking into account (2), all we have to do is to estimate the sup term on the right hand side of (23). As a matter of
act such an issue was basically addressed in [12]. More precisely the required estimate is a consequence of the fact that
he L2-projection of the trace on a face F of the mesh of any function v ∈ Vh onto the space P1(F ), is a linear combination
f the values µF (v) and νe(v), where e here generically represents the edges of F . This property implies the existence of
mesh-independent constant CR such that,

|ah(u, v) − Lh(v)| ≤ CRh2
|u|3∥gradhv∥0,h. (24)

hen (22) directly follows from (23), (2) and (24). ■

Before pursuing we introduce Ω ′ as a smooth domain of ℜ
3 close to Ω but strictly containing both Ω and Ωh for all

small enough to conform to our assumptions on the meshes. According to Stein et al. [19] there exists an extension u′

f u to Ω ′ such that u′
∈ H3(Ω ′) and u′

≡ u in Ω .
Now we prove

heorem 6.2. Assume that u ∈ H3(Ω). Provided h is sufficiently small, there exists a mesh-independent constant C̃ such that
he unique solution uh to (3) satisfies:

∥gradh(u − uh)∥0̃,h ≤ C̃h2
∥u′

∥3,Ω ′ , (25)

′
∈ H3(Ω ′) being the regular extension of u to Ω ′ constructed in accordance to Stein et al. [19].

roof. First of all combining (3) with Proposition 3.2 we can write:

∥gradh(uh − Ih(u′))∥0,h ≤
1
α

sup
v∈Vh\{0}

|ah(u′, v) − Lh(v)| + |ah(u′
− Ih(u′), v)|

∥gradhv∥0,h
. (26)

he first term in the numerator of (26) can be estimated in the following manner.
Following the same steps as in Theorem 5.9 of [11], we denote by Qh the subset of Oh consisting of elements T such

hat T̃ ̸= T . Next we apply First Green’s identity to ah(u′, v). Noticing that v is not continuous across the inter-element
oundaries, and recalling the notations ∆′

T = ∆T \ Ω and ∂T for the boundary of T ∈ Th and denoting by ∂(·)/∂nT the
ormal derivative on ∂T oriented outwards T we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ah(u′, v) − Lh(v)| = ch(u′, v) + dh(u′, v)
where

ch(u′, v) =

∑
T∈Th

∫
∂T

v
∂u′

∂nT

and

dh(u′, v) = −

∑
T∈Qh

∫
∆′

T

∆u′v.

(27)

ch(u′, v) can be estimated by means of standard arguments for nonconforming finite elements. More specifically in the
case under study (cf. [12]) an estimate of the same nature as (24) applies to ch, i.e.,

c (u′, v) ≤ C h2
|u′

| ∥grad v∥ . (28)
h R 3,Ωh h 0,h

12
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As for bilinear form dh first we observe that,

dh(u′, v) ≤

∑
T∈Qh

[volume(∆′

T )]
1/2

∥∆u′
∥0,∆′

T
∥v∥0,∞,∆′

T
. (29)

ince µF (v) = 0 for all faces F contained in Γh, there exists a mesh-independent constant C ′

Γ such that

∥v∥0,∞,∆′
T

≤ ∥v∥0,∞,T ≤ C ′

Γ hT∥grad v∥0,∞,T . (30)

sing the well-known inverse inequality (see e.g. [20]),

∥w∥0,∞,T ≤ CIh
−3/2
T ∥w∥0,T ∀w ∈ P2(T ), (31)

here CI is a mesh-independent constant, like in Theorem 5.8 of [11], the following result derives from (30),

∥v∥0,∞,∆′
T

≤ C ′

Γ CIh
−1/2
T ∥grad v∥0,T . (32)

oticing that volume(∆′

T ) is bounded by h4
T multiplied by a constant CΩ depending only on Ω , for both T ∈ Sh ∩ Qh and

∈ Rh ∩ Qh, from straightforward calculations it follows that,

∥∆u′
∥0,∆′

T
≤ [CΩ ]

1/4hT

[∫
∆′

T

(∆u′)4
]1/4

∀T ∈ Qh. (33)

hen combining (29), (30), (32) and (33), applying the Cauchy–Schwarz inequality to the summation over T , and setting
S := [CΩ ]

3/4C ′

Γ CI we come up with,

dh(u′, v) ≤ CSh2

⎧⎨⎩ ∑
T∈Qh

hT

[∫
∆′

T

(∆u′)4
]1/2

⎫⎬⎭
1/2

∥gradhv∥0,h. (34)

pplying again the Cauchy–Schwarz inequality to the summation on the right hand side of (34) we readily obtain,

dh(u′, v) ≤ CSh2

⎛⎝ ∑
T∈Qh

h2
T

⎞⎠1/4 ⎡⎣ ∑
T∈Qh

∫
∆′

T

(∆u′)4

⎤⎦1/4

∥gradhv∥0,h. (35)

oticing that there exists a constant ĈΓ such that⎡⎣ ∑
T∈Qh

h2
T

⎤⎦1/2

≤ ĈΓ independently of h, (36)

e come up with,

dh(u′, v) ≤ CS[ĈΓ ]
1/2h2

∥∆u′
∥0,4,Ωh∥gradhv∥0,h. (37)

ince H1(Ω ′) is continuously embedded in L4(Ω ′) (cf. [14]), from (37) we infer the existence of a mesh-independent
onstant CR such that

dh(u′, v) ≤ CRh2
∥∆u′

∥1,Ω ′∥gradhv∥0,h, (38)

ow we plug (28) and (38) into (27), and then the resulting inequality into (26). Finally using the trivial variant of (2)
ccording to which

∥gradh(u
′
− Ih(u′))∥0,h ≤ C ′

Ph
2
|u′

|3,Ω ′ (39)

or a suitable mesh-independent constant C ′

P together with the triangle inequality, the result follows. ■

. Conclusions

The authors believe to have undoubtedly demonstrated that the nonparametric Petrov–Galerkin formulation studied
n this work is a very efficient universal tool to solve boundary value problems posed in curved domains with Dirichlet
oundary conditions. This assertion is supported by several evidences presented throughout the article.
The conclusions of the experimentation carried out in this work can be summarized as follows:

1. First of all we emphasize that, although the nonparametric formulation leads to non symmetric linear systems,
even when the problem at hand is self-adjoint, in practical terms this fact is not a real demerit. Indeed, we saw
that an easy-to-implement iterative procedure can be used to solve the system, thereby generating a fast-converging

sequence of solutions of symmetric systems with a fixed matrix (to be factorized once for all before it starts, in the
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case of a direct solver). It turns out that this solution procedure is much less time consuming than the direct solution.
Moreover we observed that it can perform better with respect to methods whose system matrix is symmetric
anyway, such as the isoparametric formulation of self-adjoint problems.

2. Error estimates for the nonparametric formulation can be proved using the well established theory of linear
variational problems. We should emphasize that this is not at all restricted to the nonconforming method studied
in Section 6. Indeed a similar analysis applies to many other classes of methods, such as Lagrange FEM of any order
higher than one, as shown in [10] and [11], or yet Hermite FEM for biharmonic equations (cf. [10]).

3. The use of nonparametric shape and test functions allows for flexible constructions, in the sense that they are well
adapted to several types of degrees of freedom, in contrast to classical formulations. In this work this property
was exemplified more particularly for mean-value degrees of freedom associated with a nonconforming quadratic
tetrahedral element, which adds to many other cases already addressed in [5,6,11] and [10].

4. The nonparametric Petrov–Galerkin formulation appeared to be more accurate than classical techniques for the
same purpose, such as the isoparametric version of the finite element method, in case the latter exists.

Finally we note that some observations listed above had already been reported in the validation sections of previous
publications such as [4–6,10] and [11]. However here the authors focused on a systematic efficiency study of the
nonparametric formulation. Nevertheless they are aware of the fact that more experimentation with this new technique
is necessary, in order to evaluate it in contexts other than those considered in this article. For this reason they intend to
push further this kind of study in future work.

Remark 2. Besides direct methods known for roughly one hundred years or more, the numerical experimentation in this
work was carried out by means of two iterative methods widely in use to solve linear systems, namely, the conjugate
gradient method and the GMRES method. As a by-product of our studies, the globally great superiority of iterative methods
over direct methods was highlighted once more. This is particularly due to the fact that, in principle, the former are
significantly less time consuming than the latter, while enabling practitioners to work with much finer meshes. In the
authors’ view, both advantages largely make up for the eventual need to adjust numerical parameters or to call on side
techniques for improving the convergence and/or the accuracy of iterative methods. Among them lies preconditioning,
but we declined to use this technique here in order to avoid deviation from our main validation and comparison goals.
This is also because preconditioning may fail, depending on the kind of technique and the FEM in use, or yet bring
about little improvement of performance, owing to a substantial increase of computational effort. But nothing prevents
one from testing and comparing countless techniques for enhanced linear system solving, focusing on special situations.
For example, it might be interesting to check the performance of the modification of the conjugate gradient algorithm
proposed in [21] for consecutive linear systems. Eventually this technique could further reduce CPU time, in the framework
of the iterative solution procedure of the type (12) experimented here, as long as the problem to solve is self-adjoint and
positive definite. ■
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