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Abstract: In this paper we introduce a new market disequilibrium model in a spatial economic setting, which 
genemlizes a recent spatial disequilibrium model to the asymmetric case. We derive two alternative variational 
inequality formulations of the market conditions, in the case of price rigidities and/or controls, and discuss existence 
and uniqueness properties. We then propose a decomposition algorithm which resolves the variational inequality 
problem into three distinct and simpler variational inequality subproblems with special structure, which are then 
solved in sequential fashion. Any appropriate algorithm can then be used to solve the individual subproblems. The 
first variational inequality subproblem, however, is identical to the one governing the well-known spatial price 
e&tilibritmt problem and, hence, a plethora of algorithms are available for its solution. We conclude with computa- 
tional experience with the decomposition algorithm on large-scale market examples. 

This work bridges the study of disequilibrium and equilibrium problems via the theory of variational inequalities. 

Kepor&: Disequilibrium, spatial equilibrium, economics, variational inequalities. 

1. Introduction 

In this paper we show that the theory of variational inequalities can be utilized for the study of 
economic market problems in disequilibrium. The analysis is conducted for a new economic 
model in a spatial setting. 

Heretofore, the methodology of variational inequalities has been used exclusively in the 
formulation and solution of a spectrum of equilibrium problems, in which the markets clear. 
Examples of such applications in economics and operations research include: the traffic network 
equilibrium problem (see, e.g., [1,3,5-7,18,33]), spatial price equilibrium problems 
[8,11,17,19,24,28-301, oligopolistic market equilibrium problems [13,20,21,26], and general eco- 
nomic equilibrium problems [4,8,37]. For an overview of the thmry and applications, see [9] and 
1251. 

Recently, Thore [36] introduced the concept of spatial disequilibrium and showed that in the 
special case of separable supply and demand price functions, and fixed transportation cost 
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functions, the wellknown [32] optimization reformulation of the spatial price equilibrium 
problem wuld be extended to handle the case of disequilibrium caused by rigid prices and/or 
price controls. However, in the case of asymmetries in the governing functions, such an approach 
&d no longer be used. The concept of disequilibrium had been studied in general, rather than 
partial economic systems, by, amongst others, Dreze [15], Malinvaud [23], and Artus, Laroque 
and [2]_ Thompson and Thore [35] present both optimization and complementarity 
formulations for models of economic disequilibrium. 

&r goal, hence, is to bridge the study of equilibrium and disequilibrium problems through the 
uni@ing framework of variational inequalities. 

ISI Section 2, we introduce an economic market model in which there are several producers 
and several consumers which can, in general, be spatially separated. The supply price at a supply 
market may depend upon the total supplies of the commodity at every supply market. Similarly, 
the demand price at a demand market may depend upon the total demands of the commodity at 
every demand market. The transaction cost between a pair of supply and demand markets is 
surcharged with a unit transaction cost, which also includes the transportation cost. The 
transaction cost may depend upon the commodity shipments between every pair of supply and 
demand markets. 

In this model the supply price at a supply market can be regulated by a fixed minimum price 
level, whereas the demand price at a demand market can be regulated by a fixed maximum 
demand price level. Such regulatory instruments of price floors and ceilings are used by, for 
example, govemments in the case of agricultural commodities and energy resources. We then 
state the market conditions governing disequilibrium and give alternative variational inequality 
(VI) formulations of the problem. 

In section 3, we discuss the qualitative properties of the market disequilibrium model and give 
conditions for existence and uniqueness. 

In Section 4, we present a decomposition algorithm and establish conditions for convergence. 
The decomposition algorithm resolves the original VI problem into three simpler and distinct VI 
subproblems which are then solved in sequential fashion. This decomposition algorithm, there- 
fore, allows one the f!exibility of selecting any appropriate algorithm for the computation of the 
individuai variational inequality subproblems. The 5rst VI subproblem, however, has a structure 
identical to the one characterizing the spatial price equilibrium problem and, hence, is particu- 
larly amenable to solution by any of the existing algorithms developed especially for this 
problem with special structure (cf. [14,24,25,303). The second and third VI subproblems reflect, 
respectively, the excess supply and excess demand side conditions and possess a simple special 
structure. 

In Section 5, we provide computational results for the decomposition procedure for large-scale 
market problems. We conclude with a summary and discussion in Section 6. 

2 tmodel 

In this section we introduce a generalized version of the There [36] model of spatial 
uihbrium which also generalizes the market model of Dafermos and Nagurney [12] (see, 

also, [24D to the case of disequilibrium. 
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We assume that a certain commodity is produced at 111 supply markets and is consumed at n 
demand markets. We denote a typical supply market by i and a typical demand market by j. Let 
si denote the total supply associated with supply market i, di the total demand associated with 
demand market j, and let Qij denote the nonnegative commodity shipment between the pair of 
supply and demand markets (i, j). We group the supplies Si into a column vector s in R”, the 
demands dj into a column vector d in IW’, and the commodity shipments Q, into a column 
vector Q in IKIm”. We let Ui denote the nonnegative possible excess supply at supply market i and 
uj the nonnegative possible excess demand at demand market j. We then group the excess 
supplies into a column vector u in Rm and the excess demands into a cohnnn vector u in R”. 

The following equations must hold: 

si=xQii+q i=l,..., m, 0) 
j 

and 

dj=CQij+Vjl j=l,...,n. (2) 

The feasible iet K1 = (s, d, Q, u, u) is then defined such that (I) and (2) hold. 
We further associate with each supply market i a supply price q and with each demand 

market j a demand price pi. We also assume that there is a fixed minimum supply price 3 for 
each supply market i and a fixed maximum demand price pi at each demand market j. Thus 3 
represents the price floor imposed upon the producers at supply market i, whereas Pi represents 
the price ceiling imposed at the demand market j. We group the supply prices and demand 
prices int:t respective row vectors Q in 08” and p in OR”. Similarly, we group the supply price 
floors into a row vector z in 08” and the demand price ceilings into a row vector i;; in R”. We 
also define the vector ii in 08”” consisting of m vectors, where the ith vector, { iii }, consists of n 
components { q } . Similarly, we define the vector 8 in Rmn consisting of m vectors { fii} in R” 
with components { pl, pz,. . . , p,}. 

The unit transaction cost, which includes the tranportation cost, associated with the market 
pair (i, j) is denoted by cii. The costs are then grouped into a row vector c in R”“. 

The economic market conditions for the above model, assuming perfect competition, take, cf. 
Thore [36], the following form: For alI pairs of supply and demand markets (i, j), i = 1,. . . , m, 
j= l,...,n: 

rri + cij 
= Pj. if Qii > 0, 

2 Pj, if Q,,=O, 

if ui > 0, 

if ui =0, 
(4) 

i 

= pi9 if ui > 0, 
Pj - 

G Pj, if ui=O. 
(5) 

Conditions (3) are the well-known Samuelson [32], Takayama and Judge [34] equilibrium 
conditions. Conditions (4) state that the supply price at each supply market i must be greater 
than or equal to the imposed supply price floor at i. If there is an excess supply at i, then the 
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supply price must be equal to the supply price floor at i. Conditions (5) state that the demand 
price at each demand market j cannot exceed the demand price ceiling at j. In the case of excess 
demand at j, then the demand price must be equal to the demand price ceiling at j. 

In the absence of price floors and price ceilings, where (4) and (5) are absent, the above model 
&lapses to the model of Dafermos and Nagurney [12] which had been solved in [24]. 

We now discuss the supply price, demand price, and transaction cost structure. We assume 
that the supply price associated with any supply market may depend upon the total supply of the 
commodity at every supply market, that is, 

a=a(s), (6) 

where P is a known smooth function and, similarly, the demand price associated with any 
demand market may depend upon the total demand for the commodity at every demand market, 
that is, 

P’P(d), (7) 

where p is a known smooth function. 
The transaction cost between a pair of supply and demand markets may depend, in general, 

upon the shipments of the commodity between every pair of markets, that is, 

c = c(Q), (8) 
where c is a known smooth function. 

Note that the level of generality of the governing functions ia identical to that in general 
spatial price equilibrium problems (cf. [11,12,17]). 

In the special case where the number of supply markets m is equal to the number of demand 
markets n, the supply price and the demand price functions B and p are assumed to be 
separable, and the transaction cost c are assumed to be fixed and equal to the transportation 
cost, the above model collapses to the one introduced in [36]. In l tis symmetric case, as was 
shown therein, there is an equivalent optimization formulation of conditions (3), (4) and (5). 

We further define the vectors 8 = Q E R”, and fi = p E R”. In view of the feasibility condi- 
tions (1) and (2), we can express ?i and 6 in the following manner: 

G=e(Q, U) and jS=a(Q, u). (9) 
We also define the vector $ E R”” consisting of m vectors, where the ith vector, { zi}, consists 

of n components { i; } and the vector 3 E IV’” 
components (S,, A,-A&n). 

consisting of m vectors { &} E W” with 

AS mentioned in the Introduction, a spectrum of equilibrium problems has been formulated 
and studied as variational inequality problems. We now show that the above system (3), (4), and 
(5) of equilibrium/disequilibrium conditions can also be formulated as a variational inequality 
problem. 

Theorem 1, A pattern of total supplies, total demcmds, commodity shipments, excess supplies and 
excess &ma& (s, d, Q, u, u) E K’ satisfies inequalities (31, (4), und (5) governing the disequi- 
librium market problem if and only if it satisfies the variational inequality 

(IS(s)+c(Q)-~(d))~(Q’-Q)+(~(s)-_~r)~(u’-u)+(~-p(d))~(u’-u)>,O 

for ail (s’, d’, Q’, u’, u’) E K’, (10) 
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or, equivalently, the variational inequality 

185 

(:tQ, u) + c(e) - &Q, d) . (Q’ - Q) + (+tQ, u) - 3) - (ut - u) + (p - g(Q, v)) 

. v’-v)aO t forall(Q’,u’, v')EK~=BP~~xBB@JxR~. 01) 

Proof. Assume that a (s, d, Q, u, v) E K’ 
and any Qij 2 0: 

satisfies (3), (4), and (5). Then for each pair (i, j), 

(~(s)+Cij<e>-~j(d)).(Q~j-Qij)>,o. 02) 
Summing over all pairs (i, j) we have that 

(G(s) + c(Q) - B(d)). (Q’ - Q) 3 0. (13) 
Using similar arguments, we obtain 

(IT(s) -g) l (ul- u)>,O and (P-p(d)).(v’-v)>,O. (14) 

Summing then the inequalities (13) and (14), 

6(s) + c(e) - i?(d)). (Q’ - Q) + (~(4 - 7~) = b’ - u) + (5 - ~(4) 
. VI ( - v) 2 0. 09 

Analogously, by definition of 13 and 8, we obtain that if (Q, u, v) E K 2 satisfies (3), (4), (5), 
then 

(i(Q, 4 + c(Q) - 6!e, ~1) n (Q’ - Q) + (e(Q, u) -z) l b’ - u) + 6 - fi(e, ~1) 
. VI ( - u) >, 0. 06) 

Assume now that VI (10) holds. Let u’ = u and v’ = v. Then 

(s(s) + c(Q) - P(d)) l CQ’ - Q) 2 0, (17) 
which, in turn, implies that (3) holds. 
hold. 

By definition, we can establish the 
and NQ, 0). •I 

Similar arguments demonstrate that (4) and (5) also then 

same inequalities, when we utilize the functions 9(Q, u) 

3. Properties of the disequilibrium solution 

We have shown in Section 2 that the spatial market disequilibrium problem can be cast into a 
variational inequality problem (11) over the unbounded Cartesian product set K2 = K1 X K2 X 

K3, where K1 = WTn, K, = IRT, and K3 = BP:. This variational inequality is usually an asymmet- 
ric variational inequality. In this section we will study several properties of the disequilibrium 
solution (Q, u, v), in particular, existence and uniqueness. 

We first establish the existence conditions. 
Denote the row vector F(Q, u, v) by 

F(Q, u, 4 = (it&, u) + c(Q) - B<Q, 4, +(Q, u) -E, F - B(Q, 0)). 08) 
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It is well known (see [22]) that variational inequality (11) admits at least one solution provided 
at the function F(Q, u, u) is coercive. More precisely, we have the following theorem. 

2 Assume that the jknction F(Q, u, v) is coercive, i.e., there exists a point (Q’, u”, v”) 
EKP, such that 

Q-Q" 

(F(f2, U, 4 - F(QO, ~0, ~0)) I 1 u - uo 

lim 
II(Q.~~~) II + 00 ,,(Q- Q", u-u’, u-u’,;, - u” 

=oo 

for all (Q, u, 3) E K2. (19) 
variational iquality (11) a&nits at least one solution or, equivalently, a disequilibrium 

on exists. 

One of the sufficient conditions ensuring (19) in Theorem 2 is that the function F(Q, u, u) is 
strongly monotone, that is, the following inequality holds: 

for A (Q', ul, VI), (Q2, u2, v’) E ~2, 

I 
d 2 

(20) 

where Q is a positive constant. 
Under the same condition (20) uniqueness of the solution pattern (Q, u, u) is guaranteed. 
We are able to show through the subsequent lemmas, that strong monotonicity of F(Q, u, u) 

is equivalent to the strong monotonicity of the transaction cost c(Q), the supply price n(s), and 
the demand price p(d) tictioq which is a commonly imposed condition in the study of the 
spatial prke equilibrium problem (see, e.g., [6,8,11,25,303). 

?. Let (Q, s, d) be a vector associated with (Q, u, v) E K2 via (1) G& (2). fiere exist 
pcaritive constats m1 and m2 such that: 

11 [Q, u, u)‘&+-+” < ml 11 (Q, s, d)T l&n+ol+l (21) 
and 

11 (Q, s d)r I&.+m+m 6 m, 11 (Q, U, u)’ &+m+n, 

- 11 R& denotes the norm in the space BSk. 

(22) 

For any (Q, u, v)~ E K2 we &we: 

1, (Q, u, 0)’ ,,&+m+n = II Q ll& + II u II& + II 0 II& (23) 
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Substituting (1) and (2) into (23) yields: 

There exists an m, > 1 such that: 

and 

A combination of (24), (25), and (26) yields: 

II (Q, u, ulT II&-+n G m, II Q II& + II s II,‘- + II d II& 

<mm, [ 11 Q II& + II s II,‘- + II d I&] = ml II(Q, s, dJT II&*=-- 
m 

Similarly, we cm prove that (22) holds for large enough m 2. ‘J?x proof is complete. q 

We now state the fofiowing lemma. 

Lemma 4. F(Q, u, v) is a strong& monotone function of (Q, u, v), if and on& if w(s), c(Q), and 
- p(d) are strongly monotone functions of s, Q, and d, respectiveIy. 

Proof. We always have the following relationships: 

Q' Q2 

[F(Q', ul, d) - F(Q', u2, u2)] [I ! I u1 - u2 

2 V2 II (28) 

= [g(Q’, u’) + c(Q') - $(e', d) - 8(Q2, u2) - c(Q') + fi(Q', u')](Q' - Q') 

+b(Q1v U')--+(Q', u2)](u'-u2)+[fi(Q2, U2)-jj(Q1, u’>]<u’-gz) 
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=[+(Q*, d)-+(Q*, u*)](s’-u’-s*+u*)+ [c(Q')-c(Q*)](Q"-~~) 

+ [$( Q*, o*) - j3( Q', d)] (d’ - u’ - d2 + u’) 

+[+(Q*, ul)-6(Q*, u*)](u’-u*)+!fi(Q*, u’)-fi(Q1, d)](d-u*) 

= [*(sl) -T@)](s’ - s*) + [dQ*) - &‘)](Q’ - Q’) 

-[p(d’) -p(d’)](d’-d*). (2% 

If p(s), c(Q), and -p(d) are strongly monotone functions of s, Q, and d, respectively, we have 
that 

(q(s’) - &2])(s’ - s*] + (c(Q’) - dQ’))(Q’ - Q*) + (p(d*) - @‘))(d’ - d*) 

>,q]](Q’-Q”, z&u*, &u*)‘]], (30) 

where al > 0. Recalling expressions (21) and (29), we obtain: 

[ F(Q', u’, 0’) - F( Q*, u*, (31) 

which implies that F(Q, u, u) is a strongly monotcne function of (Q, u, u). 
Conversely, if F(Q, u, u) is a strongly monotone function of (Q, u, u), we have that 

[ F( Q', & 2) - F(Q', u*, u’)][ [ ::$)]>a2 [ :!4) *, (32) 

where a2 > 0. Substituting now (22) into (32) and recalling (29), we obtain 

[~(s’)-~(s~)](s’-s~)+[~(Q~)-~(Q~)](Q~-Q~)+[p(d~)-~(d~)](d~-d~) 

, (33) 

-p(d) are strongly monotone functions of s, Q, and d, 
cl 

At this point, we arrive at the following proposition. 

hpsition 5. Assume that T(S), c(Q), and -p(d) are strong& monorone functions of s, Q, and 
d, respectioeiy. men there exists precisely one disequilibrium point (Q, u, u) E K *. 

.Furthermore, it is well known (cf. 1221) that a variational inequality admits at most a single 
solution if the function entering the variational incquahtv is strictly monotone. Using formula 
(29) we, hence, obtain the following lemma. 
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a 6. F( Q, u, v) is strict& monotone if and only if W(S), c(Q), and - p(d) are strictly 

monotone functions of s, Q, and d, respective&. 

It is now clear that the following statement is true. 

Theorem 7. Assume that a(s), c(Q), and - p(d) are strictly monotone in s, Q, and d, 
respectively. Then the disequilibrium solution (Q, u, v) E K 2 is unique, if one exists. 

By further observation, we can see that if r(s) and - p(d) are monotone, then the 
disequilibrium commodity shipment Q is unique, provided that c(Q) is a strictly monotone 
function of Q. 

Existence and uniqueness of a disequilibrium solution (Q, u, v), therefore, crucially depend 
on the strong (strict) monotonicity of the functions c(Q), m(s), and -p(d). If the Jacobian 
matrix of the transaction cost function c(Q) is positive definite (strongly positive definite), i.e., 

xTvc(Q)x>O forall XEIR~“, QE&, x#O, (34) 

~~vc(Q)x>/arIIx11~, (x)0, forall XE(FB~~, QE&, (35) 

then the function c(Q) is strictly (strongly) monotone. Monotonicity of c(Q) is not economically 
unreasonable, since the transaction cost cii from supply market i to demand market j can be 
expected to mainly depend upon the shipment Qii which implies that the Jacobian matrix 
VC( Q) is diagonally dominant; hence, VC( Q) is positive definite. 

Next we explore the economic meaning of monotonicity of the supply price function W(S) and 
the demand price function p(d). 

Lemma 8. Suppose that f : D + V is continuously differentiable on set D. Let f 1 : V + D be the 
inverse function off, where D and V are subsets of R k. of(x) is positive definite for all x E D if 
and only if V( f ‘( y )) is positive definite for all y E V. 

Proof. Since vf( x) is positive definite, we have that 

wTVf(x)w>O, forall WEIRS, XED, WPO. 

It is well known that 

(36) 

v(f- ‘)=‘(vf)_*. (37) 
(36) can be written as: . 

wT(vf)T(vf)-l(vf)w>O, forall WER’, LED, w#O. (38) 

Letting z = vf l w in (38) and using (37), we obtain 

zTV(f’(y))z>O, forall zEIRk, z#O, yE V. (39) 

Thus, V( f ‘( y)) is positive definite. Observing that each step of the proof is convertible, we can 
easily prove the converse part of the lemma. C! 

Denote the inverse of the supply price function n(s) by 7r-l and the inverse of the demand 
price function p(d) by p-l. Then 

S =T -l IT ( 1 3 d=p-l(p). (W 
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By virtue of Lemma 8, n(s) is a strictly (strongly) monotone function of s, provided that v,,s( W) 
is positive definite (strongly positive definite) for all QT E IRT. Similarly, -p(d) is a strictly 
(strongly) monotone fun&n of d provided that - V,d( p) is positive definite (strongly positive 
definite) for ail p E R:. In reality, the supply si is mainly affected by the supply price 4, for 
each supply market i, i = 1,. . . , n, and the demand di is mainly affected by the demand price pi 
foreachdemandmarket j, j=l,..., n. Thus, in most cases, we can expect the matrices V,s(lr) 
and - vPCq( p) to be positive definite (strongly positive definite). 

In this section we describe the decomposition algorithm for the computation of the disequi- 
librium sohnion and give conditions for convergence. 

Making the observation the variational inequality governing the market disequilibrium prob- 
lem is defined on the Cartesian product set K* = KI X K2 X KS, we decompose variatioual 
inequality (11) into three simpler variational inequality problems in lower dimensions. 

The algorithm computes a sequence (Q’, u”, u’), (Q*, u’, u’), . . . , by solving three variational 
inequalities sequentially, and converges to the solution of (11). 

The statement of the decomposition algorithm is as follows. 

Step 0. Start with any ( uO, u”) E K, X Ks_ 
Step 1. (t = 0,1,2,. . .) Solve the following variational inequality 

[a(Q, u’)+c(Q)-j(Q, v’)](Q’-Q)>O, fora.llQ’EKr. 

The solution to (41) is termed Qt. 
(41) 

Step 2. (t = 0,1,2,. . _) Solve the variational inequality 

[+(Q’, u)-_R](u’-u)BO, forall z/E&_ (42) 
The solution to (42) is a’+‘. 
Step 3. (t =O, 1,2 ,... ) Solve the variational inequality 

$-$(Q’, c)](~‘- ti)>-O. forall u’EK~. (43) 
The solution to (43) is d+*_ Lett=t+l,andgotoStepl. 

Variational inequalities (41), (42), and (43) will admit a solution Q’, zP1, and u’+l, respec- 
tively, provided that the functions c(Q), T(S). and --p(d) are strongly monotone. Thus, this 
sequence ((Q’, U: d)}, t = 1,2,. . . , is well defined and can be obtained by applying any 
appropriate algorithm for the computation of the individual variational inequalities (41), (42), 
and (43). In par&&r, VI (41) is identical to the variational inequality governing the much-studied 
spatial price &librium problem and, hence, a plethora of algorithms are available for its 
solution (see, e.g., [14,16,17,24,25]). 

In order to simplify the notation, for purposes of establishing convergence, let us denote: 

A _ @(Q, ~1 + c(Q) - i$Q, d] 
aQ 

z+--_ ac,, aPj 
k aQk, ad,, k k=L . . . . m, j, I-1 ,..., n , 

1 



air 
B=,U= 

aP c= -i&y 
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i 
alri 

Lo, 4 j=L L.., m , 1 
ap+ = [ -m,i, j=l,2 ,..., n 

i 
, 1 

R = a[%29 4 + 42) -&Q, 41 
au 

= 

s = a[+(Q, u) + c(Q) - b(Q, u)] = 
a0 

T= a+(Q, u) = 
aQ 

L 

Us- W(Q, 4 = 
aQ 

3% 
as, . . 
ai1 

as, 
. . 

ai 

-g 
. . 

a; 

TGy 
aP* -- 
a4 
. 

iPn 
a4 
. . . 

_ap. 
a4 

. . . 

. . . 

aPl 
ad, 
. 
. 

jh_ 
ad” 

. . . 

. . . 

. . . 

. . . 

..I 

. . . 

. . . 

. . . 

air, 
as, 
. . 

ai 

Tg 
. . . 

. . . 

aP _“L 
ad, 

% 
..I as, 

alT 
..Y 111 

%n I , mXmn 

4P, - -“- 

3d, 
. . . 

aP* -- 
a4 
. 

_ap, 
a4 

191 

(45) 

(46) 

(47) 

(48) 

(491 

-I 

_tlXtttll 

(50) 
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Then 

A R S 
V&.,#lQ* u, u) = T B 0 

[ 1 U 0 C (mn+m+n)x(mn+m+n) 
(51) 

Wenowdefinethe(mn+m+n)x(mn+m+n)matrix 

(52) 
0 A-- ‘/2& 1/2 A- ‘/2& ,/2 

QE- p-‘/2@ l/2 0 0 9 
c’-- 1/2(‘,+ 112 0 0 I 

where 

A= ;(A + A”), (53) 

i=$i(Ii+B’), (54) 

c’= j(c+ CT). (55) 

For any x f W-+m+n, we further define the block OO-norm as: 

IIxIl”=m={ II~JllP~ IIx,IIR”~ llX,llld~ (56) 

where x1 E IIP”“‘, x E LR”, and xj E R” are partitions of the vector x and II- 11 Rk is the standard 
2-norm in the space Rk, k = mn, m, n. 

Associated with the so-defined block norm, we define the block CD-norm on the matrix M as: 

where iM,, M,, and MS are partitions of the matrix M, i.e., 

Ml 
M= M, . 

I I J4 

We are now ready to state our convergence results (see, e.g., [31]). 

Theorem 9 (Local Convergence Theorem). Suppose that (Q, u, v) is a solution to the disequi- 
hbrium probiem (11). 

Assume that the matrikes A, B, C, defined in (44), (45), and (46) are positive definite and that 
II 52 11 o < 1 at point (Q, u, I)). Then there exists a neighborhood of (Q, u, D) such that whenever 

the initial iterate (Q*, u*, v*) is chosen in it, the sequence {(Q’, u’, v’)} generated by the 
algorithm will conuerge to the iocafiy unique solution (Q. u, v). 

ition 10. Assume that the matrices A, B, and C are positive definite at the point (Q, u, u). 
Assume also that the following inequafities hold at the disequilibrium solution (Q, u, v ): 

~lii-‘2((-I(~-1’211- (IRI( +, IIP’2[(. IIP’2II- IIT(( (1, 

II &l/2 iI* Ipq- Ilu;: -=I, 

i 0 ‘. 
\-‘;r 

where 11. II denote the norm associated with the standard 2-norm on a matrix. 
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The sequence (( Qt, u’, v’)) generated by the algorithm then converges 
unique solution ( Q, u, v). 

Proof. Denote by 

Ml = (0, K -1’2R&1’2, A--1’2SC-1’2),,,nx~mn+m+n), 

M,=(k 1’2T~-1’200)mX(mn+m+n), 

M3=(C- 1’2~~-1’200)nx(mn+m+~~= 

By virtue of (57) and the definition of matrix 9, we have: 

193 

locally to the locally , 

(60) 

(60 

(62) 

IIOII”=max 1 ,, yycl 11 Mix II R”“‘, ,, ‘ff& II M2x. 11 R’“, max 
X X IlXll”=l 

II M3x I! Rn} l (63) 

Observing that 

,, yF= 1 II M2x 11 R”’ G II k-1’2TA- 1’2 11, 
X 

WI 

max 
llxlloo=l 

II M3x II R” < II C-1’2UA-1/2 II (6% 

and 

,, ;?-I II M,x II& = max 
x - 11x11*=1 

[ II d-1/2RB-1/2x1 II,‘- + II A-1/2sC-1/2X2 i&] 

\( 112 --1/2u-1/2 11 2 + II Al--1/2Sc-1/2 II 2 

< max( 2 11 ~-1/2Rk1’2 11 2, 2 II A-1/2SC-1/2 II 2 ) , (66) 
we obtain 

II Q II * d max( fi II A-1/2Rii-1’2 11, fi 11 A-1’2sC’-1’2 11, 11 iF2TA +I2 11, 

II e-- 1/2u& 1/2 
. (67) 

From assumption (58), we see that II 52 II O” c 1. Therefore, all of the conditions in Theorem 9 
are satisfied. Hence, the algorithm converges, The proof is complete. 0 

Theorem 11 (Global Convergence Theorem). Assume that the matrices A, B, and C defined in 
(44), (43, and (46) are positive definite for all (Q’, u’, v’) E K ‘. If there exists a scalar b, where 
0 < b < 1, such that 

II 82II” < b for all (Q’, u’, v’) E K2, (68) 

then for any initial vector (Q’, uO, v’) E K 2, the sequence ((Q’, u’, v’)) generated by the 
algorithm will converge to the unique disequilibrium solution (Q, u, v). 

In a manner similar to the one followed in the proof of Proposition 10, we can prove the 
following. 

, 
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l2. Assume that the matrices A, B, and C are positive definite for all (Q’, u’, v’ ) E K 2. 
Assum a&o that the foilowing inequalities hold for all (Q’, u*, v’) E K 2: 

11 li-“2 II* 11 iw2 II- 11 T 11 Q 6, 

(69) 
II&q-‘/* II- II~-II- IISII + 11 A+” 11 - 11 c-1’2 11 - 11 v 11 6 b, 

where b is a constant with 0 < b < 1. 
lihen the sequence ((Q’, u’, 0’)) generated by the algorithm converges to the unique disequi- 

librium soktion (Q, u, v). 

In this section we consider the market model outlined 2~ Section 2 and we provide computa- 
tional experien~ with the decomposition algorithm proposed in Section 4. 

Recall that the decomposition algorithm resolves the solution of variational inequality (11) 
into the solution of three simpler and distinct variational inequality problems, which are then 
so&d in sequential fashion. Hence, this decomposition algorithm allows one the flexibility of 
selecting any appropriate algorithm for the computation of the individual variational inequality 
problems, which have special structure. 

Note, however, that the first VI problem (41) to be solved is identical to the VI governing the 
well-known spatial price equilibrium problem (cf. [24]D, whereas the second and l &ird VI 
problems (42) and (43) govern, respectively, the possible excess supply and excess demand side 
conditions. 

Hence, for the computation of VI (41) we utilize the Gauss-Seidel type serial decomposition 
algorithm by demand markets introduced in [24] which has performed well in practice (see, also 
(28,29D. For the solution of the embedded quadratic progr amming problem encountered at each 
step we utilize the demand market equilibration algorithm proposed in [14] (see, also, [27)), which 
soIves each restricted demand market equilibrium subproblem exactly, rather than iteratively. 
For a theoretical analysis of such progessive equilibration algorithms, see 1161. We emphasize, 
however, that a plethora of algorithms can be applied to solve problem (41). For alternative 
algorithms and a list of references, see [25]. 

Variational inequalities (42) and (43) also have a special structure. Observe that the Gauss- 
Seidel serial linearization aIgorithm (akin to the decomposition algorithms over Cartesian 
products of sets in [24J). can be easily adapted to solve each of these problems. The resulting 
subproblem is a one-variable minim&&on problem in either an excess supply or excess demand 
variable which can be solved explicitly in closed form. 

For all of the numerical examples, we, hence, utilized the above described algorithms for the 
solution of the individual variational inequality problems. 

As an illustration of how the decomposition algorithm performs computationally, we consider 
market problems with linear asymmetric functions. Here we assume that the supply price 
functions are given by 

q=q(s)=&si+ti=i;i(Q, u)=&@Qjk+uj)+ti, 
i i k 

(70) 
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Table 1 
Computational experience on large-scale market problems 

Number of cross terms = 5; CPU-time in seconds ( *, * * ) 

On, n) g=o, ~-1000 z=lSO, 3=250 

(45945) 2.59(0,0) 9.09(0,18) 
(60,601 7.53(0,0) 18.91(0,28) 
(75,751 15.13(0,0) 27.89(0,31) 

(90,90) 29.52(0,0) 38.36(0,35) 

* Number of supply markets wit% excess supply. 
* * Number of demand markets with excess demand. 

‘ir=175,5=200 

15.33(20,23) 
37.64(19,33) 
60.14(11,37) 
93.43(1,49) 

the demand price functions are given by 

Pi”P#) = -Cmjkdk+gj-ri,cQ, v)= -Cms(CQik+o*) +qj m 
k k i 

and the transaction cost functions are given 3y 

C ij= cii(QJ = CgijkrQk1-k hij, 
kl 

1721 

where the not necessarily symmetric Jacobians of the supply price and transaction cost functions 
are positive definite, whereas the Jacobian of the demand price functions is negative definite. 

In this section we considered randomly generated market problems in which the supply price 
(701, demand price (71), and transaction cost functions (72) were generated uniformly in the 
same manner as described in 1241. In particular, the function term ranges were as follows: 
rii E [3, 101, ti E [lo, 251, -mjj E [ - 1, - 51, qj E [150, 6501, gijij E [l, 151, h, E [lo, 251, i = 
1 ,...,m, j=l,..., PI. The remaining 'ij, - mjk, and gijkl terms were generated to ensure that 
the Jacobian matrices were strictly diagonal dominant and, hence, positive definite. We set the 
number of supply markets m equal to the number of demand markets n and varied the problem 
sizes from 45 supply markets and 45 demand markets (90 markets total) to 90 supply markets 
and 90 demand markets (180 markets total) in increments of 15 markets. These problems are 
larger than those considered in [24]. 

In Table 1 we fixed the number of cross terms in the functions (70), (71), and (72) to 5, 
whereas in Table 2, we fixed the number of cross terms to 10. The termination criterion utilized 
WaS Ilrri+ Cij -pjl ~&=5, if Qij>O, Ed 4+cij-pi~ -e if Qij=O, and Vi>%, pj<Fj, and 

Table 2 
Computational experience on large-scale market problems 

Number of cross terms = 10; CPU-time in seconds ( *, * *) 

(m, n) Ir=o, ~=lOoo ~=L50, ii=250 

(45,451 5.32(0,0) 16.26(0,19) 

(60,60) 17.12(0,0) 32.66(0,24) 

(75975) 27.78(0,0) 49.41(0,30) 

@0,90) 22.60(0,0) 65.78(0,32) 

* Number of supply markets with excess supply. 
** Number of demand markets with excess demand. 

g-175, ii=200 

29.92(12,20) 
64.17(16,28) 

104.64(8,38) 
147.79(5,45) 
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(00, - %)I+ < 5, ( Fj - pj) Uj 6 5. Since verification of converge,., --Fe can in itself be computationally 
time-consuming, especially in large-scale examples, we verified convergence for VI (41) after 
every other iteration. Overall verification was implemented after every other so&c9 of the three 
VI problems. 

The algorithm was coded in FORTRAN and compiled using the FORTVS compiler, optimiza- 
tion level 3 on the IBM 4381-14 mainframe at the Cornell National Supercomputer Facility. The 
CPU-times reported in Tables 1 and 2 are exclusive of input and output. The initial pattern was 
set at Qij =Oforalliandj, ui = max(0, (3 - ri)/qi), for all i, and Uj = max(0, ($j - qj)/ - mji) 
for all j. 

In each of the first column examples in Tables 1 and 2, we set 3 = 0 for all i and ~j = 1000 for 
all j. (In view of the generation of functions such price floors and ceilings would generate 
equilibrium solutions in the sense that the excess supplies and excess demand would be equal to 
zero). Hence, the reported CPU-times in these columns reflect the computational time for the 
decomposition algorithm to solve the market model in which all supply and demand markets 
clear. Note that there is overhead present which would not exist in a pure equilibrium code, since 
vezification of convergence for the two additional VI problems is also made. 

To the same problems, we then tightened the bouuds in cohmm 2 of each table where now 
g = 150 and jj = 250. We also report the number of supply and demand markets in disequi- 
librium or, equivalently, those with excess supply and/or demand. In column 3 of each table we 
further tightened the bounds to z= 175 and p = 200 and report the number of supply and 
demand markets in disequilibrinm. 

As can be seen from Tables 1 and 2, the decomposition algorithm was robust, converging for 
all the examples- Although the CPU-time for the computation of the disequilibrium examples 
exceeded that for the equilibrium examples, this is not unexpected. Finally, the algorithm can 
solve a greater spectrum of problems than heretofore was possible, thus expanding the potential 
scope of applications for policy analyses. 

4 Smnmsuy and amdnsiuns 

In this paper we introduced a market model in a spatial setting which can also handle price 
rigidities and/or controls imposed on the supply price and demand price functions. This model 
generalizes the model of There 1363 to the asymmetric case and brings the same level of 
generality to the study of disequilibrium problems, as had been realized by equilibrium problems. 
We then showed that the market conditions governing the disequilibrium state-in which the 
markets need 30 longer clear- can be formulated as a variational inequality problem over a 
Cartesian product of sets. We established existence and uniqueness of the disequilibrium solution 
under certain monotonicity conditions. A decomposition algorithm which resslves the variational 
inequality problem into three simpler and distinct variational inequality subproblems was 
proposed, and convergence conditions established. Finally, computational results were provided 
on large-scale examples. 

This contribution bridges the study of disequilibrium and equilibrium through the unifying 
framework of variational inequalities. 
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