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Abstract: In this paper we introduce a new market disequilibrium model in a spatial economic setting, which
generalizes a recent spatial disequilibrium model to the asymmetric case. We derive two alternative variational
inequality formulations of the market conditions, in the case of price rigidities and /or controls, and discuss existence
and uniqueness properties. We then propose a decomposition algorithm which resolves the variational inequality
problem into three distinct and simpler variational inequality subproblems with special structure, which are then
solved in sequential fashion. Any appropriate algorithm can then be used 10 solve the individual subproblems. The
first variational inequality subproblem, however, is identical to the one governing the well-known spatial price
equilibrium problem and, hence, a plethora of algorithms are available for its solution. We conclude with computa-
tional experience with the decomposition algorithm on large-scale market examples.

This work bridges the study of disequilibrium and equilibriumn problems via the theory of variational inequalities.
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1. Introduction

In this paper we show that the theory of variational inequalities can be utilized for the study of
economic market problems in disequilibrium. The analysis is conducted for a new economic
model in a spatial setting.

Heretofore, the methodology of variational inequalities has been used exclusively in the
formulation and solution of a spectrum of equilibrium problems, in which the markets clear.
Examples of such applications in economics and operations research include: the traffic network
equilibrium problem (see, e.g., [1,3,5-7,18,33]), spatial price equilibrium problems
[8,11,17,19,24,28-30], oligopolistic market equilibrium problems [13,20,21,26], and general eco-
nomic equilibrium problems [4,8,37]. For an overview of the theory and applications, see [9] and
[25].

Recently, Thore [36] introduced the concept of spatial disequilibrium and showed that in the
special case of separable supply and demand price functions, and fixed transportation cost

* ".ns author’s research was supported by NSF Grant RII-8800361 under the sponsorship of the NSF VPW
program while the author was visiting MIT.
** Present address: Department of Mathematics, State University of New York, College at Old Westbury, Old
Westbury, NY 11568-0210, USA.

0377-0427,/90,/303.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)



182 A. Nagurney, L. Zhao / Disequilibrium and variational inequalities

functions, the well-known [32] optimization reformulation of the spatial price equilibrium
problem could be extended to handle the case of disequilibrium caused by rigid prices and/or
price controls. However, in the case of asymmetries in the governing functions, such an approach
could no longer be used. The concept of disequilibrium hkad been studied in general, rather than
partial economic systems, by, amongst others, Dreze [15], Malinvaud [23], and Artus, Laroque
and Michel [2]. Thompson and Thore [35] present both optimization and complementarity
formulations for models of economic disequilibrium.

Our goal, hence, is to bridge the study of equilibrium and disequilibrium problems through the
unifying framework of variational inequalities.

In Section 2, we introduce an economic market model in which there are several producers
and several consumers which can, in general, be spatially separated. The supply price at a supply
market may depend upon the total supplies of the commodity at every supply market. Similarly,
the demand price at a demand market may depend upon the total demands of the commodity at
every demand market. The transaction cost between a pair of supply and demand markets is
surcharged with a unit transaction cost, which also includes the transportation cost. The
transaction cost may depend upon the commodity shipments between every pair of supply and
demand markets.

In this model the supply price at a supply market can be regulated by a fixed minimum price
level, whereas the demand price at a demand market can be regulated by a fixed maximum
demand price level. Such regulatory instruments of price floors and ceilings are used by, for
example, governments in the case of agricultural commodities and energy resources. We then
state the market conditions governing disequilibrium and give alternative variational inequality
(VI) formulations of the problem.

In Section 3, we discuss the qualitative properties of the market disequilibrium model and give
conditions for existence and uniqueness.

In Section 4, we present a decomposition algorithm and establish conditions for convergence.
The decomposition algorithm resolves the original VI problem into three simpler and distinct VI
subproblems which are tien solved in sequential fashion. This decomposition algorithm, there-
fore, allows one the flexibility of selecting any appropriate algorithm for the computation of the
individual variational inequality subproblems. The first VI subproblem, however, has a structure
identical to the one characterizing the spatial price equilibrium problem and, hence, is particu-
larly amenable to solution by any of the existing algorithms developed especially for this
problem with special structure (cf. [14,24,25,30]). The second and third VI subproblems reflect,
respectively, the excess supply and excess demand side conditions and possess a simple special
structure.

In Section 5, we provide computational results for the decomposition procedure for large-scale
market problems. We conclude with a summary and discussion in Section 6.

2. The market model

In this section we introduce a generalized version of the Thore [36] model of spatial
disequilibrium which also generalizes the market model of Dafermos and Nagurney [12] (see,
also, [24]) to the case of disequilibrium.
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We assume that a certain commodity is produced at m supply markets and is consumed at n
demand markets. We denote a typical supply market by i and a typical demand market by j. Let
s; denote the total supply associated with supply market i, d; the total demand associated with
demand market j, and let Q,; denote the nonnegative commodity shipment between the pair of
supply and demand markets (i, j). We group the supplies s, into a column vector s in R™, the
demands d; into a column vector d in R", and the commodity shipments Q, ; into a column
vector Q in R™". We let u; denote the nonnegative possible excess supply at supply market i and
v; the nonnegative possible excess demand at demand market j. We then group the excess
supplies into a column vector # in R™ and the excess demands into a column vector v in R".

The following equations must hold:

S.‘Z_Q.-,—"'u.-, i=1,...,m, (1)
J

and
dI=ZQ"J‘+Qi’ j=19---,n- (2)

The feasible set K! = (s, d, Q, u, v) is then defined such that (1) and (2) hold.

We further associate with each supply market i a supply price #; and with each demand
market j a demand price p;. We also assume that there is a fixed minimum supply price #; for
each supply market i and a fixed maximum demand price p; at each demand market j. Thus 7,
represents the price floor imposed upon the producers at supply market i, whereas p; represents
the price ceiling imposed at the demand market j. We group the supply prices and demand
prices int:> respective row vectors w in R™ and p in R”. Similarly, we group the supply price
floors into a row vector  in R™ and the demand price ceilings into a row vector p in R". We
also define the vector # in R™" consisting of m vectors, where the ith vector, { 7, }, consists of n
components {7 }. Similarly, we define the vector 5 in R™" consisting of m vectors {5;} in R”
with components {p,, p5,...,0,}.

The unit transaction cost, which includes the tranportation cost, associated with the market
pair (i, j) is denoted by c;,. The costs are then grouped into a row vector ¢ in R™".

The economic market conditions for the above model, assuming perfect competition, take, cf.
Thore [36], the following form: For all pairs of supply and demand markets (i, j), i=1,...,m,
ji=1...,n:

=0 ifQij>0’
e, 3
7T.+c,,{>pj, o0 )
=q, iifu>0
) -—F? f] b 4
”{>q_r, if u,=0, )
=5, ify>0, .
1\ <5, if y=0.

Conditions (3) are the well-known Samuelson [32], Takayama and Judge [34] equilibrium
conditions. Conditions (4) state that the supply price at each supply market i must be greater
than or equal to the imposed supply price floor at i. If there is an excess supply at i, then the
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commodity at every supply market, that is,
7 =u(s), (6)
where = is a known smooth function and, similarly, the demand price associated with any

demand market may depend upon the total demand for the commodity at every demand market,
that is,

p=p(d), (M
where p is a known smooth function.
The transaction cost between a pair of supply and demand markets may depend, in general,
upon the shipmenis of the commodity between every pair of markets, that is,
c=¢(Q), ®)

where ¢ is a known smooth function.
Note that the level of generahtv of the sovernine functions is

spatial price equilibrium problems (cf [11,12,17)).

In the special case where the number of supply markets m is equal to the number of demand
markets n, the supply price and the demand price functions 7 and p are assumed to be
separable, and the transaction cost ¢ are assumed to be fixed and equal to the transportation
cost, the above model collapses to the one introduced in [36]. In this symmetric case, as was
shown therein, there is an equivalent optimization formulation of conditions (3), (4) and (5).

We further define the vectors # =7 € R™, and p = p € R". In view of the feasibility condi-

tions (1) and (2), we can express # and p in the following manner:
#=4(Q,u) and 5=5(Q,0). (9)
We also define the vector # € R™" consisting of m vectors, where the ith vector, { qzr,. }, consists
of n components {#} and the vector $€R™ consisting of m vectors {p,} €R" with
components { p,, p,...,p,}-
As mentioned in the Introduction, a spectrum of equilibrium problems has been formulated
and studied as variational inequality probiems. We now show that the above system (3), (4), and

(5) of equilibrium/ disequilibrium conditions can also be formulated as a variational inequality
probiem.

entical to that in general

Theorem i. 4 pattern of total supplies, total demands, commodity shipments, excess supplies and

excess demands (s, d, Q, u, v) € K' satisfies inequalities (3), (4), und (5) governing the disequi-
librium market problem if and only if it satisfies the variational inequality

(#(s) +c(Q) - 5(d))-(Q" - Q) +(7(s) —=m) - (v’ —u) + (—p(d))- (V"= 1) 20

forall (s', d’, @', ', v') €K', (10)
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or, equivalently, the variational inequality
(#(Q. 3 +¢(Q) = 5(2, v)) - ("= @) +(#(Q, w) —x) - (u’ —u) + (- B(Q, v))
(V'~0v)=0 forall (Q', u’, ') EK*=R7T"XRTXR™. (11)

Proof. Assume that a (s, d, Q, u, v) €K' satisfies (3), (4), and (5). Then for each pair (i, j),
and any Q;; > 0:

('”.(s) +cij(Q)—pj(d)) '(Qi'j_Qij)>O- (12)
Summing over all pairs (i, j) we have that

(7(s) +¢(Q) —5(d))- (@'~ Q) >0. (13)
Using similar arguments, we obtain

(7(s)—z)-(u'—u)>0 and (5-p(d))-(v'—v)>0. (14)

Summing then the inequalities (13) and (14),
(#(s) +c(Q) = #(d)) - (Q"— Q) + (7(s) — =) - (u’' — u) + (p — p(d))
-(v'-v)>0. (15)

Analogously, by definition of # and p, we obtain that if (Q, u, v) € K? satisfies (3), (4), (5),
then

(7(Q, u) +c(Q) - $(Q, v)) - (@' - Q) +(#(Q, u) — =) - (u’ — u) + (5 — (Q, v))

‘(v =v)=0. (16)
Assume now that VI (10) holds. Let #’ = u and v’ = v. Then
(7(s) +c(Q)-5(d))-(Q'-Q) >0, (17)

which, in turn, implies that (3) holds. Similar arguments demonstrate that (4) and (5) also then
hold.

By definition, we can establish the same inequalities, when we utilize the functions #(Q, u)
and p(Q, v). O

3. Properties of the disequilibrium solution

We have shown in Section 2 that the spatial market disequilibrium problem can be cast into a
variational inequality problem (11) over the unbounded Cartesian product set K2 =K, X K, X
K;, where K, =R7", K,=R"7, and K, = R",. This variational inequality is usually an asymmet-
ric variational inequality. In this section we will study several properties of the disequilibrium
solution (Q, u, v), in particular, existence and uniqueness.

We first establish the existence conditions.

Denote the row vector F(Q, u, v) by

F(Q’ u, U) E(W:(Q9 u) +C(Q) _5(Q’ D), 'ﬁ(Q9 u) —-m, f-’—ﬁ(Q, U)) (18)
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It is well known (see [22]) that variational inequality (11) admits at least one solution provided
that the function F(Q, u, v) is coercive. More precisely, we have the following theorem.

Theorem 2. Assume that the function F(Q, u, v) is coercive, i.e., there exists a point (Q°, u° v°)
€ K2, such that

0

(F(Q’ u, v) _F(Qo’ u’, DO)) u—u’
(1]

D—0
lim = o0
HQ.u.0)ll o (@ —Q°% u—u’, v—2°) ||
forall (Q, u, v) K2 (19)

Then variational incquality (11) admits at least one solution or, equivalently, a disequilibrium
solution exists.

One of the sufficient conditions ensuring (19) in Theorem 2 is that the function F(Q, u, v) is
strongly monotone, that is, the following inequality holds:

Ql QZ Ql — QZ
[F(@\. o, &)= F(@% w, || | - | w2 || 2| -2
o v? ot —0?
for all (Q', ', v'), (Q@?, u?, ¥*)eK?, (20)

where a is a positive constant.
Under the same condition (20) uniqueness of the solution pattern (Q, u, v) is guaranteed.
We are able to show through the subsequent lemmas, that strong monotonicity of F(Q, u, v)
is equivalent to the strong monotonicity of the transaction cost ¢(Q), the supply price 7(s), and
the demand price p(d) functions, which is a commonly imposed condition in the study of the
spatial price equilibrium problem (see, e.g., [6,8,11,25,30)).

Lemma 2. Let (Q, s, d) be a vector associated with (Q, u, v) € K? via (1) and (2). There exist
Dpositive constants my, and m, such that:

Qs u, 0) gmmemen <y I1(Q, 5, d)T f[mnsmsn (21)
and

Qs 5 @) Nimemen <myN(Q, u, 0) Gwemen, (22)
where || - || g« denotes the norm in the space R

Proof. For any (Q, u, v)T € K? we have:

12, 4, 0)" lZmmemen = | QY1 3me + |2 || + (| 012 (23)
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Substituting (1) and (2) into (23) yields:

§H— szlj d,—%,0, ?
(@, ©, ©) f|3mmsmsn = [| @ flgm + + )
Sn — Zijj dn - ZiQin R"
T 2
< NN+ s+ N 13+ | ZQuserrs £ O
J J R"
T 2
+(Z e Tou) (24)
i i R"
There exists an m, > 1 such that:
T 2 -1
(ZeyTew) | <r-non (25)
J J R™
and
T|? m;—1 )
(Zen-Ze.)| <Pgleld. (26)
i i R"

A combination of (24), (25), and (26) yields:
1(Q, u, )T [|Zmmsmen <y | @ l|2mn + WS ll3m + 11 d ll2n

<my [ 1 Q112+ |5 12+ 1 d llge] = my 1(Q, 5, )" ll3mneva.
(27)

Similarly, we can prove that (22) holds for large enough m,. The proof is complete. O
We now state the following lemma.

Lemma 4. F(Q, u, v) is a strongly monotone function of (Q, u, v), if and only if w(s), c(Q), and
—p(d) are strongly monotone functions of s, Q, and d, respectively.

Proof. We always have the following relationships:

Ql Q2
[F(0", w, )~ F(@% 2, )| | | - | 2 )
v v?

= ['l;(Ql, ul) +c(Ql) - 5(Ql, Ul) _é(Qz, uz) —c(QZ) +5(Q2, vz)](Ql - Qz)
+[#(Q", ) - #(0% u?)](u! —u?) +[B(Q%, v*) - 5(Q", V)] (v - v?)
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{ ‘}—'ﬁ'(Qz, w)](s'—ut —s2+u?) +[c(Q') - c{Q
[8(0% v?) - 3(Q", M)](d" —v' —d*+ %)

+[#(@", w') - #(% )] (u' —u?) + [3(Q% 0?) - (@, )](+ -~ v?)
= [=(s") ~ w(s)] (' - s?) + [e(@") - c(@*)](@' - 0%)

'0:.

+ E N

'ID»

~[o(d") - p(d®)](a' - a?). (29)

If ={(s), ¢(Q). and —p(d) are strongly monotone functions of s, Q, and d, respectively, we have
that

(m(s") = a(s?))(s' = s7) + (c(Q") — (@*))(Q" — Q%) + (p(d?) — p(d"))(d" - d?)

>aii(Q - 0% W' ~u?, o =7, (30)

where @, > 0. Recalling expressions (21) and (29), we obtain:
o) o] ffe-e4l

[HEE =

- 1Y
([ e L |}
which implies that F(Q, u, v) is a strongly monotcne function of (Q, u, v).
Conversely, if F(Q, u, v) is a strongly monotone function of (Q, u, v), we have that

2

(8]

[F(@', u, ") - F(Q?, ?, v*)] (31)

!'/Ql_Qq\'l llle__Qz\llz
[F(Q1 i, o) - F(Q?, u? ”2)} ul—uzg 2l ot —u? || > (32)
W= /] flod=2 ]|
where &, > 0. Substituting now (22) into (32) and recalling (29‘, we obtain
[7(s") = #(s)](s* —52) + [e(@") — c(@D))(Q' — @%) + [p(d?) — p(dV)](d* - d?)
2
. |[2-27)]
>l st =s? ’ , (33)
aN __,12

which implies that #(s), <\{s,, and —p(d) are strongly monotone functions of s, Q, and d,
respectively. The proof is compiete. O

At this point, we arrive at the following proposition.

Proposition 5. Assume that 7(s), c¢(Q), and —p(d) are strongly monotone functions of s, Q, and
d, respectively. Then there exists precisely one disequilibrium point (Q, u, v) € K2.

'Furthermore, it is well known (cf. [22]) that a variational inegnality admits at most a single

solution if the function entering the variational inequalitv is stnctly monotone. Using formula
(29) we, hence, obtain the following lemma.
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Lemma 6. F(Q, u, v) is strictly monotone if and only if n(s), c(Q), and —p(d) are strictly
monotone functions of s, Q, and d, respectively.

It is now clear that the following statement is true.

Theorem 7. Assume that w(s), c(Q), and —p(d) are strictly monotone in s, Q, and d,
respectively. Then the disequilibrium solution (Q, u, v) € K2 is unique, if one exists.

By further observation, we can see that if #(s) and —p(d) are monotone, then the
disequilibrium commodity shipment Q is unique, provided that ¢(Q) is a strictly monotone
function of Q.

Existence and uniqueness of a disequilibrium solution (Q, u, v), therefore, crucially depend
on the strong (strict) monotonicity of the functions ¢(Q), #(s), and —p(d). If the Jacobian
matrix of the transaction cost function ¢(Q) is positive definite (strongly positive definite), i.e.,

x"ve(Q)x>0 forall xeR™, Q€K,, x+0, (34)
x"ve(Q)x > a| x]|%, a>0, forall xeR™, Q€Kk,, (35)

then the function c(Q) is strictly (strongly) monotone. Monotonicity of ¢(Q) is not economically
unreasonable, since the transaction cost ¢;; from supply market i to demand market j can be
expected to mainly depend upon the shipment Q,; which implies that the Jacobian matrix
vc(Q) is diagonally dominant; hence, Vc(Q) is positive definite.

Next we explore the economic meaning of monotonicity of the supply price function #(s) and
the demand price function p(d).

Lemma 8. Suppose that f: D — V is continuously differentiable on set D. Let f~! : V — D be the
inverse function of f, where D and V are subsets of RX. vf(x) is positive definite for all x € D if
and only if V(fY(y)) is positive definite for all y € V.

Proof. Since Vf(x) is positive definite, we have that

wivf(x)w>0, forallweR*, xeD, w=0. (36)
It is weil known that

v =(v)" (37)
(36) can be written as: '

wi(vf) (vf) (vf)w>0, foralweR*, xeD, w+0. (38)
Letting z = vf- w in (38) and using (37), we obtain

2'v(f(y))z>0, forallzeR*, z#0, yeV. (39)

Thus, v(f~1(y)) is positive definite. Observing that each step of the proof is convertible, we can
easily prove the converse part of the lemma. O

Denote the inverse of the supply price function m(s) by 7! and the inverse of the demand
price function p(d) by p~1. Then

=7 Ym), d=p"'(p). (40)
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for eaeh demand market Js J 1,...,n. Thus, in most cases, we can expect the matrices V,s(7)
and — v,d(p) to be positive definite (strongly positive definite).
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4. The decomposition algorithm

In this section we describe the decomposition algorithm for the computation of the disequi-
librium solution and give conditions for convergence.

Making ihe observaiion ihe variaiional inequaliiy governing ihe markei disequilibrium proo-
lem is defined on the Cartesian product set K 2—Kl X K, xK3, we decompose variational
inequality (11) into three simpler variational meqiiamy promems in lower dimensions.

The algorithm computes a sequence (Q°, u°, v°), (Q', «, v"),..., by solving three variational
Py Py Py

muqua.uuca au.lucuuau_y, aud wuvclscb I.U u‘ic auluuuu Ul. \1 .l ].
The statement of the decomposition algorithm is as follows.

Step 0. Start with any (% v°) € K, X K.
Step 1. (t=0, 1, 2,...) Solve the following variational inequality
[#(2, ') +c(@) -B(Q, v)](@'- @) >0, forall @'k, (41)
The solution to (41) is termed Q.
Step 2. (=0, 1, 2,...) Solve the variational inequality
[#(Q", #) —z]|(u"—u) >0, forall u’€K,. (42)
The solution to (42) is u‘*!.
Step 3. (=0, 1, 2, ...) Solve the variational inequality
s —p{(0" v)}(v’ -v)20, forall v’ €Kj;.
The solution to (43) is v**!. Let £=¢+1, and go to Step 1.

-

Variational inequalities (41), (4Z), and (43) will admit a solution Q°, u**!, and v+, respec-
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sequence {(Q‘ u', v")}, t=1,2,..., is well defined and can be obtained by applymg an}
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and (43). Ir particular, VI (41) is identical to the vanatlonal inequality governing the much-studied

mahn‘ “ﬂM “l“l!kﬂllm .\,nklam [+ % l‘ k F-X 2 Vo ' ﬂ"l Fas ey l\c ﬂ‘ [ oS .lﬂ*‘ﬁ [~ - .\ Y 'ﬂc‘ l\k‘ﬂ fn- ‘l"l\
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solution (see, e.g., [14,16,17,24,25).
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_3[#(Q, u) +c(@) - B2, v)]
a0

[aw dc,, dp, N . N
anl ad"’ k= 1 ey m, 19151,..-,'1], (44)
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aw am
B=—;=||:§'€’ i .’=112s'°-9m H (45)
3 o, '
C=—'a%=[—5"_;;,l’.’=1’2’---:nj, (46)
[ om o, |
aSI L ‘és—m
am, am
i wre@-B0] |
377,,, aﬂm
am a7,
. JdmaxXm
-~ 7
0 _m
4, dd,
3, ,é'&
[ie wre@ B0 | *  *
T N +c -p s U . °
S (0, u aUQ p(Q _ : : , (48)
_%, . _B
ad, od,,
3, o,
-3 " Tad
| _mn>_<n
r-a'”l om am 8
m U a T
T= 3')1‘(8QQ, u) - ' ' . (49)
Ovr,,, a'”'m a_’r{"_ e a_w"i
—5}; o m—; o asm asm_mxmn
o, e, _my _dou ]
~ 34, od, od,; 9d,
U= _ 380, u) _ :
= 30 .
dp, %, . _%  _0n
~3d T T3d dad, od, | .

(50)



192 A. Nagurney, L. Zhao / Disequilibrium and variational inequalities

Then
A R §
Vio.un F(Qs u, v) = [T B 0] (51)
U 0 Clnn+m+nyx(@mn+m+n)
We now define the (mn + m + n) X (mn + m + n) matrix
0 j-1/2R§-1/2 I;—l/Zsé'—l/Z
Q=| B\214\? 0 0 , (52)
C VU4~ 0 0
where
A=}(4+47), (53)
B=1(B+BY), (54)
C=1i(c+C"). (55)
For any x € R™*™*" we further define the block co-norm as:
Nx )™ = max{ | x; I gmes N2 ll@ms N30 e} (56)
where x; ER™, x €R”", and x; € R" are partitions of the vector x and || - || g« is the standard

2-norm in the space RX, k=mn, m, n.
Associated with the so-defined block norm. we define the block co-norm on the matrix M as:
UMY ~max{ max |[Mx|gm, max |Mox|lge, max [[Msxllg),  (57)
Hxp==1 Ixp==1 itey*=1
where M,, M,, and M, are partitions of the matrix M, i.e.,

M 1
M=|M,|. (58)
M,
We are now ready to state our convergence results (see, e.g., [31)).

Theorem 9 (Local Convergence Theorem). Suppose that (Q, u, v) is a solution to the disequi-
librium problem (11).

Assume that the matrices A, B, C, defined in (44), (45), and (46) are positive definite and that
LU= <1 at point (Q, u, v). Then there exists a neighborhood of (Q, u, v) such that whenever
the initial iterate (Q°, u®, v°) is chosen in it, the sequence {(Q', u', v')} generated by the
algorithm will converge to the locally unique solution (Q, u, v).

Proposition 10. Assume that the matrices A, B, and C are positive definite at the point (Q, u, v).
Assume also that the following inequalities hold at the disequilibrium solution (Q, u, v):

. _ 1 - -
fA~'2)- 4B 2| - | R < =, WAY2Y-WBV2Y - T <1,
V2 50
_ . 1 . . o
WA~ Y2 -8 C 1/2“."S"<——-—,i, A2 1 CV2 Y- U <1,

where || - || denote the norm associated with the standard 2-norm on a matrix.
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The sequence {(Q', u', v')} generated by the algorithm then converges locally to the locally
unique solution (Q, u, v).

Proof. Denote by
Ml = (0, A"—I/ZRE—I/Z, g_l/zscl:—l/z)mnx(mn+m+n): (60)
M2 = (E-l/sz-lﬂOO)mx(mn+m+n), (61)
M3 = (é'_l/ZUJ_l/ZOO)nx(mn+m+n)- (62)
By virtue of (57) and the definition of matrix 2, we have:
Q|| =max{ max ||M;x|gm~, max ||M,x||pm, max [|M.x|lg-}. 63
nei { max |Mxllgm, max |Mpxlle-, max |Msxlla). — (63)
Observing that
max || Myx || g~ < [| BTV, (64)
xj*=
(e[| Moxllar < | CTV2UAT2| (65)
and
max | Myxflgen = max [1A72RE= 2%, || 2 + | A=V/2SC 1 2x, 3]
lxi*= x||*°=
< " A'—I/ZRE—I/Z "2+ “ A"—I/ZSC—"—I/Z "2
<max{2|| A"V2RB2|12, 2| A V3SCV212), (66)
we obtain

| 211*° < max{v2 || A~V>RB~'2||, V2 || A~ V38C~ 12, | B~ 2TA~ /|,
ICV2Ud~2|}. (67)

From assumption (58), we see that || 2] ® < 1. Therefore, all of the conditions in Theorem 9
are satisfied. Hence, the algorithm converges. The proof is complete. O

Theorem 11 (Global Convergence Theorem). Assume that the matrices A, B, and C defined in
(44), (45), and (46) are positive definite for all (Q’, u’, v') € K. If there exists a scalar b, where
0 <b <1, such that

IRIN°<b forall (Q', u’,v")EK?, (68)

then for any initial vector (Q° u° v°) € K2, the sequence {(Q', u', v')} generated by the
algorithm will converge to the unique disequilibrium solution (Q, u, v).

In a manner similar to the one followed in the proof of Proposition 10, we can prove the
following.
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= . I S _ re positive definite for all (0. u’. v’) €
12. Asswme ihai the mairices A, B, and C are Positive qejiniie jorau \Y , U , U jJ <

Assumz also that the following inequalities hold for all (Q’, u’, v’) € K%

- =~ 1 i B
WA 0B 20 IR <bgz. N4 V2 - U BTV UT I < b, {
£9)
_ _ 1 . . \~¥7
LA NEN-ST <bgm, AT ICT AV <0,

where b is a constant with 0 <b < 1.
Thon the seauonce f ( ()‘ ut n‘\l venerated }w the alonnthm converges to the un nique disequi-

& Tewrs RN Swgwersvy OVIITTRSSSE L= o= £ e

librium selution (Q, u, v)

5. Computational results

In this section we consider the market model outlined (= Section 2 and we provide computa-
tional experience with the decomposition algorithm proposed in Section 4.

Recall that the decomposition algorithm resolves the solution of variational inequality (11)
into the solution of three simpler and distinct variational inequality problems, which are then
solved in sequential fashion. Hence, this decomposition algorithm allows one the flexibility of
selccting any appropriate algorithm for the computation of the individual variational inequality
problems, which have special structure.

emencron 4l s al o 2o WY e Ll FATY s L o Tennd S0 S dnntinal 2 sl X o~

h %3 ~ arraanaen e sl
l‘Ulc, UUWCVCI, inat (4114 Iirst V.l proviil (1) W0 v soIvéa b 1UCLiUGal U e Vl. Buvii g i

well-known spatial pnce equilibrivm problem (cf. [24]), whereas the second and third VI
A Y. |

rli'ﬁblcum \42, and (4 \"!J j EOVEITL, u;apwuvta_y, the yuaalblc CXTCSS Si.'lplu_y and excess demand side

conditions.

b

Honra for tha camnntatinn nf VI (A1) wa niiliza tha (rance__Qardal tvnma carial dasAammncitinan
A=CNCT, IO O COMPBIauln OF Va (Fa) WO LaZe Uil [LFalSS—501G WYPe Seiid: GeCOomposiuicn

algorithm by demand markets introduced in [24] which has performed well in practice (see, also

128 201 For the solution of the emhedded anadratic nrosramming nroblem encountered at each

[28,29)). For the solution of the embedded quadratic programming problem encountered at each
step we utilize the demand market equilibration algorithm proposed in [14] (see, also, [27]), which
solves each restricted demand market equilibrium subproblem exactly, rather than iteratively.
For a theoretical analysis of such progessive equilibration algorithms, see [16]. We emphasize,
however, that a plethora of algorithms can be applied to solve problem (41). For alternative

algorithms and a list of references, see [25].

Variational inegualities (42) and (43) also have a special siructure. Observe that the Gauss—

Seidel serial linearization algorithm (akm to the decomposmon algorithms over Cartesian
products of sets in [24]). can be easily adapted to solve each of these problems. The resulting
subproblem is a one-variable minimization problem in either an excess supply or excess demand
variable which can be solved explicitly in closed form.

For all of the numerical examples, we, hence, utilized the above described algorithms for the
solution of the individual variational inequality problems.

As an illustration of how the decomposition algorithm performs computationally, we consider
market problems with linear asymmetric functions. Here we assume that the supply price
functions are given by

F 3

A Y =™ N y 2PN AN = 11—1 ~ .
m=m\Ss) =18t =a\0, ")=L":;\LQ ) L {7
J Jj k

“ar?
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Table 1
Computational experience on large-scale market problems

Number of cross terms = 5; CPU-time in seconds (*, **)

(m, n) 7 =0, p=1000 7 =150, p =250 =175, p=200
(45, 45) 2.59(0, 0) 9.09(0, 18) 15.33(20, 23)
(60, 60) 7.53(0, 0) 18.91(0, 28) 37.64(19, 33)
(75,75) 15.13(0, 0) 27.89(0, 31) 60.14(11, 37)
(90, 90) 29.52(0, 0) 38.36(0, 35) 93.43(1, 49)

* Number of supply markets with excess supply.
** Number of demand markets with excess demand.

the demand price functions are given by

p;= P,-(d) =- Emjkdk +q;=p,(8,v)=— ijk(ZQik + ”k) +g; (n)
k k i
and the transaction cost functions are given by
Cij= cij(Q) = Zgijlekl'*' hij’ (12)
ki

where the not necessarily symmetric Jacobians of the supply price and transactioa cost functions
are positive definite, whereas the Jacobian of the demand price functions is negative definite.

In this section we considered randomly generated market problems in which the supply price
(70), demand price (71), and transaction cost functions (72) were generated unifcrmiy in the
same manner as described in [24]. In particular, the function term ranges were as follows:
r;€[3,10], 1,€[10,25), —m;€[—1, —5], ¢;€[150, 650}, g;;;<[1,15]), h;;€[10,25), i=
1,...,m, j=1,..., n. The remaining r;;, —m, and g;;,, terms were generated to ensure that
the Jacobian matrices were strictly diagonal dominant and, hence, positive definite. We set the
number of supply markets m equal to the number of demand markets » and varied the problem
sizes from 45 supply markets and 45 demand markets (90 markets total) to 90 supply markets
and 90 demand markets (180 markets total) in increments of 15 markets. These problems are
larger than those considered in [24].

In Table 1 we fixed the number of cross terms in the functions (70), (71), and (72) to 5,
whereas in Table 2, we fixed the number of cross terms to 10. The termination criterion utilized
was |7 +c;—p;| <e=5,if Q;;>0,and 7 +¢;;—p;> —¢if Q;;=0, and 7, > 7, p; < p;, and

Table 2
Computational experience on large-scale market problems

Number of cross terms =10; CPU-time in seconds (*, **)

(m, n) 7 =0, p=1000 o =150, p=250 7 =175, p= 200
(45, 45) 5.32(0, 0) 16.26(0, 19) 29.92(12, 20)
(60, 60) 17.12(0, 0) 32.66(0, 24) 64.17(16, 28)
(75, 75) 27.78(0, 0) 49.41(0, 30) 104.64(8, 38)
(90, 90) 22.60(0, 0) 65.78(0, 32) 147.79(5, 45)

* Number of supply markets with excess supply.
** Number of demand markets with excess demand.
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(=, — m)u, <5, (p;— p;)v; < 5. Since verification of convergence can in itself be computationally
time-consuming, especially in large-scale examples, we verified convcrgence for VI (41) after
every other iteration. Overall verification was implemented after every other soluiicn of the three
VI problems.

The algorithm was coded in FORTRAN and compiled using the FORTVS compiler, optimiza-
tion level 3 on the IBM 4381-14 mainframe at the Cornell National Supercomputer Facility. The
CPU-times reported in Tables 1 and 2 are exclusive of input and output. The initial pattern was
setat Q,;=0 for all i and j, u,= max(0, (m; — ¢,)/r;), for all i, and v, = max(0, (p, — ¢;)/— m,;)
for all j.

In each of the first column examples in Tables 1 and 2, we set 7, = 0 for all i and p; = 1000 for

all j. (In view of the generation of functions such price floors and ceilings would generate
equilibrium solutions in the sense that the excess supplies and excess demand would be equal to
zero). Hence, the reported CPU-times in these columns reflect the computational time for the
decomposition algorithm to solve the market model in which all supply and demand markets
clear. Note that there is overhead present which would not exist in a pure equilibrium code, since
verification of convergence for the two additional VI problems is also made.
~ To the same problems, we then tightened the bounds in column 2 of each table where now
« =150 and p=250. We also report the number of supply and demand markets in disequi-
librium or, equivalently, those with excess supply and/or demand. In column 3 of each table we
further tightened the bounds to # =175 and p =200 and report the number of supply and
demand markets in disequilibrium.
. As can be seen from Tables 1 and 2, the decomposition algorithm was robust, converging for
all the examples. Although the CPU-time for the computation of the disequilibrium examples
exceeded that for the equilibrium examples, this is not unexpected. Finally, the algorithm can
solve a greater spectrum of problems than heretofore was possible, thus expanding the potential
scope of applications for policy analyses.

6. Summary and conclusions

In this paper we introduced a market model in a spatial setting which can also handle price
rigidities and /or controls imposed on the supply price and demand price functions. This model
generalizes the model of Thore [36] to the asymmetric case and brings the same level of
generality to the study of disequilibrium problems, as had been realized by equilibrium problems.
We then showed that the market conditions governing the disequilibrium state—in which the
markets need .0 longer clear—can be formulated as a variational inequality problem over a
Cartesian product of sets. We established existence and uniqueness of the disequilibrium solution
under certain monotonicity conditions. A decomposition algorithm which resolves the variational
inequality problem into three simpler and distinct variational inequality subproblems was
propesed, and convergence conditions established. Finally, computational results were provided
on large-scale examples.

This contribution bridges the study of disequilibrium and equilibrium through the unifying
iramework of variational inequalities.
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