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Abstract 

We study the asymptotics of the smallest and largest zeros of the symmetric and asymmetric Meixner-Pollaczek 
polynomials using two techniques. One is a Coulomb fluid technique developed earlier where the primary input is the 
weight function. The second uses the method of chain sequences which supplies inequalities for the largest zeros from the 
knowledge of the recurrence coefficients. An upper bound for the largest zero of Meixner polynomials is also given. 
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1. Introduction 

This note is part of a continuing program of establishing the 'edge' asymptotic behavior of 
special classes of orthogonal polynomials. In order to compute such asymptotics, a rather precise 
knowledge is required on the smallest and largest zeros of the associated orthogonal polynomials. 

It is known from the important work of Ullman, Lubinsky, Mhaskar, Nevia, Rakhmanov, Saff, 
Van Assche, and others, see [14, 15-1 for references and details, that the distribution function of the 
zeros, i.e. the equilibrium distribution, denoted as a(x) is the solution to the minimization problem: 

min F[a]  subject to fs tr(x)dx = N, (1.1) 
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and the functional F is 

F[tr]=fju(x)a(x)dx-fjfja(x)lnIx-yIa(y)dydx. (1.2) 

Here exp [ - u (x)] = w (x) is the weight function and N is the degree of the polynomial orthonormal 
with respect to weight w(x); i.e., the p's satisfy 

fKpM(x)pN(x)w(x) dx = (1.3) 6M, N, 

where K is the support of w and K c ( - oo, oo). It assumed that J c K and determining J is part of 
the minimization problem. 

In this work we shall first focus our attention on the symmetric Meixner-Pollaczek polynomials 
{Pt,~)(x)} whose weight function is [5, 20] 

w(x) = F(2 + ix)F(2 - ix), x e K = ( -  oo, oe), 2 > 0, (1.4) 

and later we also compute the smallest and largest zeros of the nonsymmetric generalization of the 
Meixner-Pollaczek polynomials. In this case J -- ( -  b, b). 

In general when w(x) is even and K is symmetric about the origin then J = ( -  b, b) and b is an 
approximation to the largest zeros of pN(x). Furthermore, the Euler-Lagrange equations of the 
variational problem (1.1)-(1.2) imply that the minimizing function a satisfies a singular integral 
equation, 

u'(x) = 2(P)f  bX--y-a(--Y) dY' (1.5) 

where (P) denotes principal value. The edge parameter b is determined by the normalization 
condition SJ a(x)dx = N. The solution of the integral equation (1.5) is 

1 b - x ( p ,  ~b u'(y) Y~bdy ' x~(-b,b). (1.6) 
y 

The function a(x) given by (1.6) is indeed the potential theoretic approximation of 

N - 1  

w(x) {p.(x)] 2, 
n = 0  

expected to be valid for sufficiently large N. This technique, the Coulomb fluid method, was first 
developed by Dyson on certain random matrix ensembles in the 1960s [6] and has recently seen 
application to other matrix ensembles [1-3]. Some of the details of this approach are in [1, 2]. 
Once the problem is reduced to finding nonnegative solutions a of the Euler-Lagrange equations 
of the variational problem (1.1)-(1.2), one can then take advantage of the extensive theory of 
singular integral equations and boundary value problems as is available, e.g., in Gakhov's excellent 
book [9]. 

In Section 2 we carry out the Coulomb fluid method for the weight function (1.4) and find an 
asymptotic estimate for b. In Section 3 we give an estimate for the largest zero of the symmetric 
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Meixner-Pollaczek polynomials based on our earlier estimate for b. Section 4 contains derivations 
for the bounds of the largest zero of symmetric Meixner-Pollaczek polynomials using chain 
sequences. We also give bounds for the largest zeros of the Meixner polynomials. The Meixner 
polynomials are 

m.(x; fl, c):= (fl),,2Fl(- n, - x; fl; 1 -- c - i ) ,  (1.7) 

[7, Section 10.24]. These polynomials are orthogonal  with respect to a purely discrete measure 
supported on the non negative integers, so their kth smallest zero converges to k - 1, k = 1, 2, . . . .  
Goh  [10] established the Plancherel Rotach asymptotics for the Charlier polynomials from which 
one can get the asymptotics of the largest zeros. Section 5 deals with the extreme zeros of the 
general Meixner-Pollaczek polynomials whose weight function w(x,  ~), see (5.1), is not even. In this 
case J is no longer a symmetric interval and the problem of estimating the largest and smallest 
zeros becomes more complicated. 

In this work we shall use x ~ y to mean y is the first part  of an asymptotic series and the error is 
0 (the first term neglected). On the other hand, we use x ~ y to mean y is an approximation to x. 

An interesting theorem due to Mat6, Nevai and Totik [17] may be stated as follows. 

Theorem 1.1. Let  Q,(z)  be a sequence o f  monic polynomials generated by 

Qo(x):= 1, Qx(x):= x - oh, Q,+l(X) = (x - ~ , )Q.(x)  - f l .Q . - l ( x ) ,  n > 0, (1.8) 

with ~. real and ft. positive. Assume ~. = 0 and 

ft, = cZnaa[1 + 0(n-2/3)], (1.9) 

as n ~ oo and f > O. Le t  

XN, 1 > XN,  2 > "'" > XN,  N (1.10) 

be the zeros o f  QN(z) then 

XN,  k = 2cN~[1 - (~2/36-1/3ikN-2/3 -I- o ( N - 2 / 3 ] ,  (1.11) 

where il < i2 < " ' "  are positive zeros o f  the Airy  function. 

The special case k = 1 of Theorem 1.1 was established earlier by the same authors in [16]. In 
Section 6 we give an equivalent formulation of Theorem 1.1 which covers orthogonal  polynomials 
that arise from birth and death processes. Such polynomials have their zeros in (0, oo) so the ~,'s in 
(1.8) are positive. Our  reformulation of Theorem 1.1 yields results about the very important  Wilson 
polynomials. In fact all classical polynomials, either are birth and death process polynomials or 
limiting cases of such polynomials This will be explored in Section 6. 

Let {p,(z)} be the or thonormal  polynomials associated with the Q,'s of (1.8), so that 

/ (I/V 2- p.(z) := Q.(z)j (1.12) 
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Assume that Q*(x) satisfies the recursion in (1.8) and is given initially by 

Q*(x) := 0, Q*(x) = 1. (1.13) 

It is known that the polynomials B.(z) and D,(z) [19], 

B,+I (z):= I-Q, +1 (z)Q*(O) - O*+ 1 (O)Q,(z)](fll, f12 ... f t . ) -  1, (1.14) 

D. +1 (z) := [Q. +1 (z) a .  (0) - O, + 1 (0) Q, (z)] (ill, f12 ... ft,) - 1, (1.15) 

converge uniformly to entire functions B(z) and D(z), respectively, on compact subsets of the 
complex plane if the moment  problem is indeterminate, [19]. 

In [3] Chen and Ismail conjectured that if the moment  problem is indeterminate and 

:¢. = O, ft. = final1 + o(1)3 (1.16) 

then there is an ~/> 0 such that 

x /XN,  I~'(x)pN(x) = -- N/~ COS(® + Uu/2)[1 + o(1)], (1.17) 

where 

and 

® = O(x) :=  arg[B(x) + ir/D(x)], (1.18) 

and XN, 1 is the largest zero of ps(z). 
Typical cases covered by this conjecture are the Freud weights exp( - Ix[ ~) when 1/g is a positive 

integer. In Section 6 of this paper we confirm a special case of this conjecture. Our result is as 
follows 

with 

Theorem 1.2. Let  

• kl--[, l ( n  + a j) 
=/32. l(n + v)-j" 

f l > 0 ,  2 , > 0 ,  n > 0  and 2 , = 1 + O ( n - 1 - " ) ,  

as n ~ ~ , f o r  a f i xed  positive e. Then (1.17) holds. 

It is tacitly assumed in Theorems 1.1 and 1.2 that fl. > 0 for n > 0. 

n > 0 ,  0 ~ < / < k - 4 .  (1.20) 

(1.21) 

~k' = (1.19) 
B2(x) + D2(x) 
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2. The symmetric  M e i x n e r - P o l l a c z e k  polynomials  

In this section we illustrate the Coulomb fluid approach by applying to the symmetric Meix- 
ner-Pollaczek polynomials. Although the main result of this section follows from the 
Mat6-Nevai-Totik theorem, Theorem 1.1, we nevertheless wish to include our derivation because 
the proof does not suffer from the technical complications of the nonsymmetric Meixner-Pollaczek 
polynomials treated in Section 5. The nonsymmetric Meixner-Pollaczek polynomials are not 
covered by Mat6-Nevai-Totik theorem. 

For the Meixner-Pollaczek polynomials (1.4) gives 

.[-/"(X-ix) r'(2 +ix)~ 
U'(X) = 1L- ~ ix) r(2 ~ i-~_] 

1 1 l 
- . = o  x i ( 2 + n )  + - x + i(2 + n) 

A simple calculation using (1.6) and the above representation gives, 

x2 2 + .  1 

n=ox/b 2 + ( 2 + n )  2 X2 + ( 2 + n )  2' 

where we used 

(2.1) 

The normalization condition now becomes 

N=f~  a(x)dx= ~ ( 1 -  2+n ) 
b ,=0 x/b 2 + (2 + n) 2 " (2.3) 

The next step is to solve the transcendental equation (2.3) and find b as a function of N. This is 
impossible to do directly so we approximate the sum in (2.3). Clearly, 1 - x/x/~ + x z is decreasing 
and convex on (0, ~),  hence 

1 x/b 2 + ( 2 + x )  2 d x <  1 , = a x/b 2 + (2 + n) 2 

The error in (2.4) is at most 

1 ~/b2 + (2 + x) 2 dx < 1. 

2 + x  
<f:(1-x/b2-+--(~-+x)2)dx" (2.4) 

f b (b 2_t2)-1/2 dt _ n b z ~  ~ ,  z¢[ -  b,b]. (2.2) 
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Therefore, by adding the term n = 0 in the sum in (2.4) and compar ing  the result with (2.3) we get 

x /b  2 + (2 + 1) 2 -- 2 

which implies 

b ~ , / N ( N  + 22). 

2 22 2 ~ < N < x / / ~ - + +  - 2 + 1 - ~ ,  

(2.5) 

Since in (2.1) o-( + b) = 0, the parameter  b defines the edges beyond which the density will vanish. 
This b is approximately the largest zero. A further correction to the largest zero can be obtained 
from 

1 = o'(x) dx,  (2.6) 
a 

for sufficiently large N and b. Thus  formula (2.1) supplies the asymptotics  of the largest zero. To see 
how this works, we first determine the behavior  of o(x) for x ~ b- .  This is 

a(x) ~ G ( b ) x / ~ -  x, as x --* b, (2.7) 

hence 

1 ~ z3 G(b)(b - a) 3/2 

and we get 

(_!3 
a ,~ b - \2G(b) ]  " (2.8) 

Therefore in the case under  considerat ion and as b --. oe we get 

rt ,=o [ b2 + (2 + n)2] 3/2 = rc [b  2 -'l- (2 "l- X)2"] 3/2 "1- o(1) 

= x/2b 1 (2.9) 
rC ~ / b  2 -~- 22 

Thus we have established the following approximat ion  to a, the largest zero, 

a ,~ b - b2 + 22"~ 1/3 (3r02/3 (N + 2) 2/3 (2.10) 
~ / = , / N ( N  + 22 / -  ~- [N(N + 22)] 1/6 

The Cou lomb  fluid approximat ion  gives the correct powers of N but  the coefficient in the second 
term is given only as an approximat ion.  In this way we have proved the following theorem. 

Theorem 2.3. The larger zero XN. 1 of the Meixner-Pollaczek polynomial P~a)(x) satisfies 

(N + 2) 2/3 (2.11) 
XN, 1 "~ x / N ( N  + 22) -- Cl [N(N  + 22)] 1/6' 



Y. Chen, M.E.H. Ismail/Journal of Computational and Applied Mathematics 82 (1997) 59-78 65 

where 

Cl ~ 13X2/3. (2.12) 

Let it be the smallest positive zero of the Airy function. In [4-1 we advocated the view that  the 
Cou lomb  fluid me thod  overestimates the second coefficient. In fast Cou lomb  fluid approximat ion  
seems to read 6- t /3i  t as (3x)2/3/2. Indeed the correct value of ct is 

ct = 6 -  1/3i I . (2.13) 

as implied by the Mat6 -Neva i -To t ik  theorem, with c = ½ and 6 = 1. 

3. A further estimate of the largest zero 

In this section instead of extracting the behavior  of o-(x) for x ~ b, we will show using a different 
approach  that  the largest zero given by (2.11) is asymptotically exact. First we compute  a(x) f rom 
(2.1), replace the sum by an integral then evaluate the integral explicitly using Mathemat ica  this 
gives 

l [ 2 b 2 + 2 2 - x 2 + 2 x / ( b 2 + 2 2 ) ( b 2 - x 2 )  1 
~(x) =~-~ ln  x2 + 2  2 , x e ( - b , b ) .  (3.1) 

Now  (2.6) becomes 

1 = Ja ~(x) dx 

= - ~ + ~  - - t a n - *  + - t a n  -1 
g g --  

a a 22 a 2 sx/(b 2 a2)(b a + Xa)]. (3.2) + ~-~ ln(a 2 + 2 2) + ~-~ ln[2b 2 + - + - 

This is an equat ion for a. In the limit under  consideration, put  a = b -  e, and expand 
the r ight-hand side of (3.2) in a series in e t/2. After some computa t ions  using Mathemat ica ,  we 
find 

a t  g3/2 + a2/3 5/2 + 0(/3 7/2) = 1, (3.3) 

where 

2 [ 2b 1 5b 2 - 322 
a t  :=  ~ ~/b2 + 22,  a2 "= 1 5 r % / ~  ( b2 + 22) 3/2. 

Thus substi tut ing e = a~ 2/3 _{_ t~, with I al << l ai- 2/3t for sufficiently large b, we find to first order in 3, 

2a2 1/3). 
= -- 3a7/3 + 5aEa2/3 = O(b-  (3.4) 
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Therefore 

(~)2 /3  ( _~_ ~2)1/3 
/3 = b2 2b + O(b -  1/3). (3.5) 

Here again, as per the discussion at the end of Section 2, it is very likely that  

g = 6 -1 /3 i l  b + O(b-1/3). (3.6) 

4. C h a i n  s e q u e n c e s  

A sequence {a.: 0 < n < N} is a called chain sequence if there exists a parameter  sequence 9., 
such that  

a . = g . ( 1 - - 9 . - 1 ) ,  0 ~ < g o < l ,  0 < g . < l ,  0 < n < N .  (4.1) 

For  detailed information,  see [5]. Here N may be finite or infinite. 

Theorem 4.1. Assume that p,(z) is a sequence o f  monic polynomials 9enerated by 

po(x) := 1, pl(x) := x -- 0~o, 
with o~. real and ft. positive and let 

B := max{x. :  0 < n < N}, 

p . +  l ( x )  = ( x  - - l ( x ) ,  n > O, 

A := min{y , :  0 < n < N}, 

where x .  and y, ,  x ,  >>, y, ,  are the roots o f  

(x - ~,)(x - o~,_ 1)a, = ft,, 

and a. is any chain sequence. Then all the zeros o f  pN(Z) lie in (A, B). 

(4.2) 

(4.3) 

(4.4) 

This is Theorem 2 in [11] and is a variation on the Wall-Wetzel  theorem on cont inued fractions 
[,21]. The case N = oo is essentially in Chihara  [-5], who did not  at tach any names to the theorem. 
It is also known  that  if the zeros of pN(X) are less (greater) than A (respectively B), then 
{fl,/[(e, -- A)(a.-1 -- A)]: 0 < n < N} (respectively {fl./[(B -- e.)(B -- gn-1)]: 0 < n < N}) is 
a chain sequence, [11, 12]. For  the monic  Meixner-Pol laczek polynomials  

~ , = 0  and f l . = ¼ n ( n + 2 2 - 1 ) / 4 .  (4.5) 

With the chain sequence a, = ¼, as was done in [11], we get 

- a = B = x / ( N - -  1 ) ( N  + 2 2 -  2). 

Therefore, XN. 1, the largest zero of Pka)(x), satisfies the inequality 

XN, 1 < x / ( U  -- 1)(U + 22 - 2). (4.6) 

Al though the inequality (4.6) is not  as sharp as the estimate (2.11), it is nevertheless sharper than  the 
first estimate of the Cou lomb  fluid method,  (2.5). One can establish better bounds  by using chain 
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sequences tailored to the case at hand. Let hN, 1 be the largest zeros of the Hermite polynomial 
HN(x). For the Hermite polynomials 0~, = 0 and ft. = n/2 hence n/[2(h 2,1 + e)] is a chain sequence 
and the Wall-Wetzel theorem yields the inequality 

X2, 1~ x/½(N - 2 + 22)hN,~. 

On the other hand, it is known that 

6-1 /3 i l  
h N , ~ < ~ + l  (2N+1)1/6 '  (4.7) 

where ia, as indicated earlier, is the smallest positive zero of the Airy function, see, e.g. [20, (6.32.3)]. 
Thus we have proved the following theorem. 

Theorem 4.2. The largest zero of P~)(x) satisfies 

( 6-2'-1 
Xu,,  < x / ( N -  2 + 22)/2 ~ + 1 (2N + 1)'/6J" (4.8) 

It is worth pointing out that the first two terms in the asymptotic expansion of the right-hand 
side of(4.8) are in agreement with the corresponding terms in (1.9) with c = ½ and 6 = 1. This shows 
that the inequality (4.8) is quite sharp because it gives correctly the first two terms in the asymptotic 
expansion for large N. 

In [8] a formula of the Plancherel-Rotach type was derived for the symmetric Meix- 
ner-Pollaczek polynomials by implicitly assuming the largest zero is of order N + 1. The bound 
(4.8) and the asymptotic formula (2.11) strongly indicate that the order of the largest zero of the 
symmetric Meixner-Pollaczek polynomials depends on 2 and is likely to be N + 2. One can easily 
carry out the analysis in [8] with N + 1 replaced by N + 2 and will similarly obtain a more 
accurate Plancherel-Rotach asymptotic formula. We leave this exercise to the interested reader 
who will be well-advised to first read [8]. 

We now discuss an inequality satisfied by the largest zero of the Meixner polynomials. Let 

mN, l(fl, c ) > m N ,  2(fl, C)> ... >mmN(fl, c ) and lu, l ( e ) > l u , 2 ( e ) >  "" >/N,u(ct) (4.9) 

be the zeros of the Meixner and Laguerre polynomials raN(x; fl, c) and L~)(x), respectively. It is easy 
to see from (1.7) that 

lim mN((1 - c)x/x/~c; fl, c) = n!L~-1)(x), (4.10) 
c'-* 1- 

h o l d s  uniformly on compact subsets of x and fl, fl > 0 [7, Section 10.24]. Therefore one would 
expect the zeros of L~-l)(x) to approximate the zeros of rnN((1- c)c-1/2x;fl, c). Ismail and 
Muldoon [12] studied the rate of approximation and showed that 

1 - c  
lN,j(fl- 1 ) -  fl(1 - v/c) < - - -~mmj( f l ,  c ) 

n - 1 (1 - x/~) 2. (4.11) < 1N, j(fl -- 1 ) -  fl(1 -- x/~) + x//- ~ 
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This provides a sharp es t imate  for mN, j(fl, c) for fixed N and  c close to 1. We now find est imate f rom 
mN, a (fl, c) for large N and  fixed c using the Wal l -Wetze l  theorem,  T h e o r e m  4.1. In  the case under  
considerat ion,  the recursion coefficients of  (4.2) are [5]. 

~, = x/~fl + n(1 + c)/x/~c and  ft, = n(n + fl - 1). (4.12) 

Recall that  

~ ( e )  < (4N + 2~ + 2) 1/z -- 6 - ' / 3 ( 4 N  + 2e + 2)-~/6ij, (4.13) 

holds for ~ > - 1 and  I~1/> 1 [20, T h e o r e m  6.32]. Thus  by T h e o r e m  4.1 we m a y  choose 

n(n + ~) 0 < n < N,  
a. = [e + IN, 1(~) -- (2n + ~ + 1)][e + 1N, x(~) -- (2n + c~ -- 1)] '  

(4.14) 

for any  e > 0 and  a = fl - 1. It is easy that,  with a, as in (4.14), the largest roo t  of  (4.4) increases with 
n, hence (1 - c)mN, l(fl, c) is less than  the largest roo t  of  (4.4) with n = N - 1. Since this holds for 
any  e > 0 we can let e ~ 0 and  obtain  the upper  b o u n d  

(1 - c )  1 + c  

4---~ + [ln,~ (fl -- 1) -- 2N - fl + 2] [In,, (fl -- 1) -- 2N - fl + 4] 

The quan t i ty  under  the square  roo t  is 

(4.15) 

[lN, l(fl -- 1) - -  2N - fl + 3] 2 + - -  
(1 - c )  2 

4c 

Since  ~ / a  2 q- B 2 < [hi + In[ for AB v~ 0 we find f rom (4.15) tha t  

( l - c )  l+C(N 1 - c  
- - - - ~ m s ,  l(fl, c )<x /~ f l+  x~ ~ - ~ ) + - ~  +lN, l ( f l - 1 ) - 2 N - f l +  3, (4.16) 

for fl > 0. Observe  that  (4.16) is sharp  in its dependence  on  c since bo th  sides converge  to 
lN, l(fl -- 1) as c ~ 1- .  Subst i tute  for 1N, ~(fl -- 1) f rom (4.13) into (4.16) to arrive at the inequal i ty  

(1 - (1 - v @  
x//-~ mN, 1 (fl, c) < (1 + x//-c)fl + x//- ~ N 

( 1 -  w/ 'c)(2w/-c- 1 ) x / ~  2 ( 2 N ;  + . . . .  fl/1/3i,, (4.17) ) 

for /?  > 0 and  I/3 - I I />  ¼, tha t  is/? > 0 and  fl¢(~4, ¼). 
It  is expected tha t  (4.17) is sharp  for large N in the sense that  the coefficients of  N and  N '/3 on the 

r igh t -hand side of (4.17) agree with the cor responding  coefficients in the large N asympto t ic  
deve lopment  of the lef t -hand side of (4.17). 
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It is important  to note that uniform asymptotic expansions of Meixner polynomials were 
established in [10] and later considerably extended by Jin and Wong in their work [13]. Building 
on this important  work of Jin and Wong may lead to asymptotic developments of all zeros of 
Meixner polynomials of fixed rank, i.e., mN, 1 (fl, c) for fixed k. Ismail and Li [11] gave lower bounds 
for mN, N(fl, C). 

5. The zeros of general Meixner-Pollaczek polynomials 

With the introduction of an extra parameter, c~, where 0 < 0~ < n, the potential of the asymmetric 
Meixner-Pollaczek polynomials is 

u(x, ~) :-- - In w(x, ~) 

= ( n - 2 ~ ) x - l n [ F ( 2 + i x ) F ( 2 - i x ) ] ,  - o e < x < o o ,  2 > 0 ,  0 < c ~ < r t .  (5.1) 

Note that u(x, ~/2) reduces to the potential for the symmetric Meixner-Pollaczek polynomials 
considered in the previous sections. It is clear that since the potential is no longer an even function 
of x, then Theorem 1.1 is not applicable and the density function, o-(x), will not be supported in an 
interval which is symmetric about the origin. In this case the integral equation for a ( ' )  reads, 

u'(x, ~ ) . -  du(X,dx ) _ 2(P) f~  xa(X)- Y dy, a < x < b. (5.2) 

The solution of (5.2) is again required to satisfy the normalization condition, 

= f f  a(x)dx. (5.3) N 

In this case there are two quantities, a and b, to be determined in terms of the degree N and the 
parameters 0~ and 2. Recall that the integral equation arose from a minimization problem. It is 
appropriate here to assume 

a(a) = a(b) = 0. (5.4) 

The general solution of (5.2) involves C(b 2 - x 2)- 1/2 and (5.4) will imply C = 0. Technically, one 
can carry the term C(b 2 - x2) - 1/2 through and at the end from requiring a(x) >/0 on ( - b, b) and 
minimizing F [a] we can show that C -- 0. This point will be discussed in the future paper using 
arguments based on computing the free energy of the system of N particles under external field. 
With condition (5.4) the minimization problem at hand is equivalent to a scalar Riemann-Hilbert  
problem with index )~ = - 1. From the standard theory described in Gakhov [9], the unique 
solution subject to the boundary condition is given by 

f] u'(y,e) zrc (y Z ~R-(y) dy (5.5) 

with the supplementary condition 

f ]  u'(y, ~) 
R(y----~ dy = O, (5.6) 
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where 

R(x) := x/(b - x)(x - a), xe(a,  b). (5.7) 

The branch of R(x) is chosen in such a way that R(x) > 0, for a < x < b. Using (5.3) and (5.6), we 
can determine the parameters a and b, to be seen later. Thus in a crude estimate a and b will be the 
smallest and largest zeros, respectively. We first deal with (5.3). Substituting 

u'(y, c 0 = (rt - 2~) + - -  + c.c. , 
, = o + icn 

into (5.6) gives, 

- -  = + C . C .  , 

.=o (a + c.)(b + icn) 
(5.8) 

where we have used c.c. to denote complex conjugate and used the evaluation 

f ]  = (5.9) 
dy 

R(y)(y +_ ic,) x/(a _+ ic,)(b ___ ic,) '  

to arrive at (5.8). Now approximating the sum over n by an integral gives 

i(2~ - n ) =  I n [  22 + i(a + b) + x/(2 + ia)(2 + ib)l  
122 - i(a + b) + x/(2 - ia)(2 - ib)_] + o(1), 

or equivalently 

ei(~_rq2)  = ~ + ia + ~ + ib (5.10) 
x / ~ - -  ia + v / 2 - -  ib 

With the introduction of 2/3 := ~ - ~/2, formula (5.10) can be recast in a useful form 

ela(v/2 - i a  + x/2 - i b ) =  e-iP(x/~- + ia + ~ + ib), 

which upon squaring leads to 

a sin2fl - x / / -~  + a 2 = b s in2 f l  - x / / ~  + b E = : -  e ,  (5.11) 

say, where now a and b are parameterized by E. Therefore (5.11) shows that a and b, are the roots of 
the equation 

X z cos 2 2fl - 2EXsin2f l  + 22 - E2 = 0. (5.12) 

This implies 

a + b = 2 E t a n 2 f l s e c 2 f l ,  ab = (22 - 32 ) sec22 f t .  (5.13) 

W e  now determine E from the normalization condition; thus 

f f  u ' (y ,~ ) (  1 f f  R(x)']. N =  d y ~  ~ 2  (P) dx (5.14) 
y -- x /  
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From the partial fraction decomposition, 

(b - x)(x - a) 
= (x - -  a) + ( y -  b) + 

y - - x  

we find 

~b R(x) dx (P) 
L y - - x  

(y - b)(a - y) 

x - a + y - b  

y - - x  

= 2 ( b - a ) +  rc (y -b ) ,  ye(a,b),  

where we have used, 

dx 
(P) (y - x)R(x) 

to arrive at (5.16). Using the 
becomes, 

27tN = ~b yu'(y, Ct__) dy, Ja R(y) 

i.e., 

- O, y ~ ( a , b ) ,  

2rcN = 

(5.15) 

(5.16) 

supplementary condition (5.6), the normalization condition (5.3) 

(5.17) 

b dy [ ( ic, ic,_ ) 1 
R--~ y ( r~-  2~)+  ~ 2 -- + 

. = o y + -ic. y - i c . / d "  
(5.18) 

(5.20) 

Evaluating the t integral using Mathematica, we find, 

2N = (rt/2 - c0(a + b) 

- 22 + x/(2 - ia))(2 - ib) + x/(2 + ia)(2 + ib) 

[~22 - ia + w/'2--ibl + i(a + b)In + ia + ~ /  + o(1). 

f ; (  t t ) ) d t  + o(1). 
+ 2 ~/(t - ia)(t - ib) - ~/(t + ia)(t + ib 

(5.19) 

One referee pointed out that (5.6) and (5.17) are special cases of general results in [18]. In the case 
under consideration, they just follow from the theory described in the much older book by Gakhov 
[9]. Approximating the sum in (5.18) by an integral gives 

2N = 0t/2 - c0(a + b) 
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Note  tha t  f rom (5.10), the sum of the first and  last t e rm in (5.20) is zero. We have, finally, 

2N = - 22 + x/(2 + ia)(2 + ib) + x/(2 - ia)(2 - ib). (5.21) 

Clearly, 

(2 + ia)(2 + ib) = 22 + i2(a + b) - ab 

= (Z, + i2 sin 2//) 2 see 2 2/3, 

where  we have used (5.13). Thus  (5.21) yields 

E = (N + 2) cos 2//. (5.22) 

Fur the rmore ,  

a = (N + 2) tan  ~ - x / N ( N  + 22) sec ct < 0, (5.23) 

b = (N + 2) tan  ~ - ~ / N ( N  + 22) sec ~ > 0. (5.24) 

To de termine  the smallest and  the largest zeros, we simply adap t  the p rocedure  described in Sec- 
t ion 1. Therefore,  

a(x) ,.~ n x / - x  - a, as x ~ a, (5.25) 

a(x)  ~ G x / ~  - a, as x -o b, (5.26) 

where  

1 l 27t .=0 (c, + ia) 3/2 ~ +  + c.c. 

a[f; 1 
2n (t + ia) 3/2 x / t  + ib - -  + c.c. 1 + o(1) 

- n i ~  - 17/2 4 ~ ' ~ ' ~ }  + o(1), 

and  

x / ~ - a  ~, ~ 1 1 
G 

" -  2n ,=02"LiCn + ib) 3/2 %/Cn + ia 
+ c.c.] 

a[;; 1 
2rt (t + ib) 3/2 x / t  + ia 

- -  + c.c.] + o(1) 

1 (; ia 
=~i b,~/F-~-a ~ ,,/T~-~/+o(1). 

(5.27) 

(5.28) 
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Meix- 

H - n ~  ~-~ +-~) ~2 + a 2 [  , (5.31) 

X/~ E(22 + a2~ 1/2 ,~2+abll /2  
G = n ~  ~ + ~ )  22+a2j • (5.32) 

Thus (5.29) and (5.30) become 

d ~ a + c t ( b - a y / 3  -~ +a2 ) 2 2 + ~  , (5.33) 

and 

c ~ b - c~(b - a) 1/3 --ff + - ~  22 + b2 j . (5.34) 

where 

cl ~ ½ (3n) 2/3. (5.35) 

Here again we believe the correct value of cl is 6-1/3i 1. We next summarize the above findings in 
the form of a theorem, as suggested by a referee. 

Theorem 5.1. The largest and smallest zeros XN, 1 and Xs ,  N of  a Meixner-Pollaczek polynomial of  
order N are asymtotically given by 

XN, l "~ b - cl(b - a) l/a -~ + b2 ) 

and 

XN, s " ~ a + c l ( b - - a )  1/3 ~ +a2 j 

•2 .~_ abl-1/3 
/~2 _[_ ~ J  (5.36) 

)]2 + a~]-1/3 
22 -]- , (5.37) 

for some constant cl,  where a and b are given by (5.23) and (5.24), respectively. 

Note for u(x, n/2) reduces to the potential - ln([F(,~ + ix)l) 2 and the previous results on the 
largest zero of the symmetric Meixner-Pollaczek polynomials are recovered. 

Therefore following Section 1, the smallest and the largest zeros of the asymmetric 
ner-Polaczek polynomials are, respectively, 

~ 3 ~  2/3 
d ~ a + \~-~] (5.29) 

(3W 
c ~ b - \~-~) , (5.30) 

where c.c denotes the complex conjugate of the quantity on the same line. The following convenient 
form for H and G can be obtained by squaring and extracting a square root, 



74 Y. Chen, M.E.H. lsmail/Journal of Computational and Applied Mathematics 82 (1997) 59-78 

6. On Theorems 1.1 and 1.2 

We first indicate a proof of Theorem 1.2. 

Proof of Theorem 1.2. Recall that {p,(x)} are the orthonormal polynomials associated with the 
Q,'s. From (1.8) and (1.13) it follows that 

Q2,+1(0) = Q*.(0) = 0, Q2,(0) = ( - 1)" 11 /~2k-1, (6.1) 
k = l  

0".+1 = (--1)" f i  //2k- 
k = l  

Therefore (1.15) gives 

D(z) = lira (--1)"Q2.+1(z) f i  {flzk-1) 

In terms of the pN'S the above relationship is 

R 1 / 2  ~ N 1/2 1/2 IJ2N+II~2N+I(Z) = ( - -  1) D(z) (fl21 /fl2j-1) [1 + o(1)3. 
\ j = l  / 

Similarly (6.1), (6.2) and (1.14) imply 

P2N(Z) (--1)N+IB(z)( [-[ ¢ o l / 2  /A1/2,x~ = t p z j - 1 / V Z j  , j  [1 + o(1)]. 
j = l  

In the case when the/~,'s are given by (1.20), we apply 

r(a + z)/r(b + z) = na-b[1 + o(1)] 

and find 

jff-Ilfl2J-1 N(1-k)/2( ~ ~2J-'~ 
• = /~2j - M j=l  22j J [1 + o(1)3, 

where 

M : =  [I~I F((1 +ai)/2!l [ [-I F ( I +  bff2)l 
j= 1 F(1 + aj/2) _] s=l F(1 + b - -~]"  

In view of the assumptions (1.21) it follows that the infinite product 

f i  )~2j - - c o n v e r g e s  to A, 
j = l  ~ 2 j - 1  

say. Since 

X N,  1 ~ 2 x//-~u 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 
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then it follows from (1.20), (6.3), (6.6) and (6.9) that 

~ ( -  1)N D(x) [1 + o(1)]. X~2N+ I, lP2N+ I(X) -- fll/,,2Ck-,)/4 

Set 

n/n 
w(x) := B2(x ) + qZD2(x ). 

Therefore 

~/X2N + 1, lW(X)p2N+ l(X) 

We now choose 

~l = 2(t-k)fl - 1 / 2AM 

75 

(6.10) 

/ 2 M A  ( -  1)Nr/O(x) [1 + o(1)]. (6.11) 
= X!~rlw/~2(k_t)12 x/BZ(x) + rlZDZ(x) 

(6.12) 

and reduce (6.11) to (6.17) for odd N. The case of even N follows in a similar fashion and the choice 
of r / in (6.12) is consistent. This completes the proof of Theorem 1.2. 

It is important  to observe that the choice of i,/in Theorem 1.2 is unique as can be seen from the 
construction, so ~/must be given by (6.12) in order for (1.17) to hold. 

We note that the density of the zeros a, [3], is related to O through, [3] 

O'(x) = ha(x). (6.13) 

Thus O in (1.17) may be replaced by 7t~oa(u)du. This is how (1.18) is stated in [3]. 
We now come to discussing Theorem 1.1 in the context of birth and death processes poly- 

nomials. A birth and death process is a stationary Markov process with birth rates 4, and death 
rates #,. It is assumed that 4, > 0, #, + 1 > 0 for n/> 0 and Po >~ 0. Every such process leads to 
orthogonal  polynomials {F,(x)} generated by 

(6.14) 

Fo(x) = 0, FI(X) = (20 + #o - x)/21, 

- xF . (x )  = 2 .F .+l (x )  - (2. + #.)F.(x)  -- # .F. , (x) .  

The zeros of such a sequence of polynomials are always positive. The F.'s generate a set of 
symmetric orthogonal  polynomials ~ ( x )  through 

~-0(x) = 1. ~1 (x) = x, 

(6.15) X~n(X ) = O~+I(X ) -- f l n ~ _ l ( X ) ,  

where 

/32.+1 = 2., fl2n = #.. (6.16) 



76 Y. Chen, M.E.H. lsmail/Journal of Computational and Applied Mathematics 82 (1997) 59-78 

It is well known that 

• ~ 2 n ( X )  = ( - 1)n{k=f--Ii#k}Fn(X2), (6.17) 

see, e.g., [4]. 
A birth and death process is called asymptotically symmetric in lim.-~o~#,/2, = 1. 

Theorem 6.1. Let {F.} be a family of  birth and death process polynomials satisfying (6.14) and let 

2, = a2n2~[1 + o(n-2/3)], (6.18) 

and 

#, = aZn2O[1 + o(n-2/3)], 

as n ~ oe and assume 6 > O. Let the zeros of  F,  be arranged as 

Xn, 1 ~ Xn,2 ~ "'" ~ Xn, n ~ O, 

and assume #o = O. Then we have 

= 2an°J1 -½62/33-1/3ikn-2/3 + 0(n-2/3)], 

or equivalently 

x/x,,k = x/2(2. + #,) 1 - ~ 6 2 / a 3 - i / a i k \  -2--~£ /I + °(n-2/3) ' 

Proof. Use (6.16), (6.14) and (6.15) to see that 

ft. = aZ(n/2)a[1 + o(n-2/3)]. 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

Now apply Theorem 1.1 to o~(x) to see that the z e r o s  X n ,  k of the ~ . ' s  satisfy 

X,,k = 2a(n/2)o[1 -- 62/36 - 1/3ikn-2/3 + o(n-2/3)]. 

X 2 The result (6.21) now follows since X,,k = 2.,k, as can be seen from (6.17). Finally, (6.21) and (6.22) 
are equivalent since their right-hand sides differ by terms that are of the same order as the error 
term. 

Example. The Wilson polynomials have 

2, (a + b + n)(a + c + n)(a + d + n)(a + b + c + d + n - 1 )  
= ( a + b + c + d + 2 n - 1 ) ( a + b + c + d + 2 n )  , n~>0, (6.23) 

n(b + c + n)(b + d + n)(c + d + n) 
# " = ( a + b + c + d + 2 n - 1 ) ( a + b + c + d + 2 n - 2 ) '  n~>0, (6.24) 
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where a, b, c and d are positive parameters, Thus a = ½, 6 = 1 in (6.18), (6.19), and for X.,k(W),  the 
zeros of the Wilson polynomials, we get 

X, ,k (W)  = n2[1 -- 3-1/3n-2/3ik + 0(//-2/3)]. (6.25) 

Although formula (6.25) is certainly correct it does not show the dependence on the parameters a, b, 
c and d. On the other hand (6.22) gives the more informative formula 

Xn,k(W) = (n q- a -b b q- c q- d) 2 - 3-1/3(n + a + b + c + d)4/3ik -k o(n4/3). (6.26) 

Based on our earlier work using the Cou lomb fluid asymptotics we conjecture that 

X / ~ , k ( W )  = (n + a + b + c + d) - ½3-1/3(n + a + b + c + d)I/3{ik + e.}, (6.27) 

where e, is positive for all n, n > 0 and e. ~ 0 as n ~ ~ .  Of  course (6.26) shows that e, ~ 0 as n ~ oo. 
We think the presence of a + b + c + d in (6.27) is important  to ensure the positivity e,. Since the 
weight function of the Wilson polynomials is symmetric in the parameters a, b, c, d, the asymptotic 
formulas for the orthogonal  polynomials and their zeros must be symmetric in the four parameters 
involved. 

Example. The Laguerre polynomials have 

2 . = n + ~ + l ,  # , = n .  (6.28) 

Hence a = 1, 6 = ½ and (6.22) gives the classical result 

, ~  = (4n + 2~ + 2) 1/2 - 6-1/3(4n + 2ct + 2)-1/6i  k -t- o(n-1/6). (6.29) N~ ~n,k 

The Meixner polynomials arise from a birth and death process which is not asymptotically 
symmetric, so we do not  see how to apply Theorem 6.1 to them. 
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