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Abstract

In this paper, the Cohen–Grossberg neural network model with both time-varying and continuously distributed delays is considered.
Without assuming both global Lipschitz conditions on these activation functions and the differentiability on these time-varying
delays, applying the idea of vector Lyapunov function, M-matrix theory and inequality technique, several new sufficient conditions
are obtained to ensure the existence, uniqueness, and global exponential stability of equilibrium point for Cohen–Grossberg neural
network with both time-varying and continuously distributed delays. These results generalize and improve the earlier publications.
Two numerical examples are given to show the effectiveness of the obtained results. It is believed that these results are significant
and useful for the design and applications of the Cohen–Grossberg neural networks.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Cohen–Grossberg neural network models, first proposed and studied by Cohen and Grossberg [8], have been
widely applied within various engineering and scientific fields such as neuro-biology, population biology, and computing
technology. In such applications, it is of prime importance to ensure that the designed neural networks be stable. This
neural network can be described by the following differential equations [8]:

dxi(t)

dt
= −ai(xi(t))

⎡⎣bi(xi(t)) −
n∑

j=1

cijgj (xj (t)) + Ii

⎤⎦ (1)

for i = 1, 2, . . . , n. In hardware implementation, however, time delays occur due to finite switching speed of the
amplifiers and communication time [7]. On the other hand, it has also been shown that the process of moving images
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requires the introduction of delay in signal transmitted through the networks [20]. It is known that time delays may lead
to oscillation, divergence, or instability which may be harmful to a system [16,2]. Hence, for the Cohen–Grossberg
model (1), Ye et al. [27] also introduced delays by considering the following system of delayed differential equations:

dxi(t)

dt
= −ai(xi(t))

⎡⎣bi(xi(t)) −
K∑

k=0

n∑
j=1

c
(k)

ij gj (xj (t − �k))

⎤⎦ (2)

for i = 1, 2, . . . , n. Further studies were taken by Wang and Zou [25,26], Lu and Chen [15], Chen and Rong [5], Rong
[19], Liao et al. [13], Cao and Liang [3] about the following model:

dxi(t)

dt
= −ai(xi(t))

⎡⎣bi(xi(t)) −
n∑

j=1

cijgj (xj (t)) −
n∑

j=1

dijgj (xj (t − �ij)) + Ii

⎤⎦ (3)

for i=1, 2, . . . , n. In [26,5], several sufficient conditions were obtained to ensure model (3) to be asymptotically stable.
In [19,34], based on Lyapunov stability theory and linear matrix inequality (LMI), several sufficient conditions were
obtained to ensure model (3) to be robustly stable. In [13], several sufficient conditions were obtained to ensure model
(3) to be exponentially stable. A set of conditions ensuring global exponential stability of model (3) were derived in
[25] when cij = 0 and dij = 0, respectively. And, by property of Lyapunov diagonal stable matrix, absolutely global
stability was studied in [15] for model (3) when dij = 0.

Usually, constant fixed time delays in models of delayed feedback systems serve as good approximation in simple
circuits having a small number of cells. In most situations, delays are time-varying. Therefore, the studies of neural
networks with time-varying delays are more important and actual than those with constant delays. Recently, Hwang et
al. [12], Cao and Liang [3], Arik and Orman [1] and Yuan and Cao [28] studied the Cohen–Grossberg neural networks
with time-varying delays of form

dxi(t)

dt
= −ai(xi(t))

⎡⎣bi(xi(t)) −
n∑

j=1

cijgj (xj (t)) −
n∑

j=1

dijgj (xj (t − �ij(t))) + Ii

⎤⎦ (4)

for i = 1, 2, . . . , n. Several sufficient conditions were obtained to ensure global exponential stability for model (4).
Meantime, Zhang et al. [31], Chen and Rong [6] have considered the following model:

dxi(t)

dt
= −ai(xi(t))

⎡⎣bi(xi(t)) −
n∑

j=1

cijgj (xj (t)) −
n∑

j=1

dijfj (xj (t − �ij(t))) + Ii

⎤⎦ (5)

for i = 1, 2, . . . , n. Several sufficient conditions were given to ensure global exponential stability for model (5).
Since a neural network usually has a spatial nature due to the presence of an amount of parallel pathways of a variety

of axon sizes and lengths, it is desired to model them by introducing continuously distributed delays over a certain
duration of time such that the distant past has less influence compared to the recent behavior of the state [10]. Recently,
it is noted that stability of Hopfield neural networks, cellular neural networks and bidirectional associative memory
neural networks with the continuously distributed delays are discussed in [10,18,17,32,22,14,33,29,23,30]. Today, both
time-varying delays and distributed delays have been widely accepted as important parameters associated with neural
networks models. The recurrent neural networks models with both time-varying delays and distributed delays have been
considered in [23,30]. To the best of our knowledge, few authors have considered Cohen–Grossberg neural network
model with both time-varying delays and distributed delays. In this paper, without assuming both global Lipschitz
conditions on these activation functions and the differentiability on these time-varying delays, as need in most other
paper, we shall study global exponential stability of Cohen–Grossberg neural network with both time-varying delays
and distributed delays.
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2. Model description and preliminaries

In this paper, we consider the following model

dxi(t)

dt
= − ai(xi(t))

⎡⎣bi(xi(t)) −
n∑

j=1

cijgj (xj (t)) −
n∑

j=1

dijfj (xj (t − �ij(t)))

−
n∑

j=1

qij

∫ t

−∞
Kij(t − s)vj (xj (s)) ds + Ii

⎤⎦ (6)

for i = 1, 2, . . . , n, where n corresponds to the number of units in a neural network; xi(t) corresponds to the state of
the ith unit at time t; gj (xj (t)), fj (xj (t)) and vj (xj (t)) denote the activation functions of the jth unit at time t; �ij(t)
corresponds to the transmission delay along the axon of the jth unit from the ith unit and satisfies 0��ij(t)��ij (�ij is a
constant); ai(xi(t)) represents an amplification function at time t; bi(xi(t)) is an appropriately behaved function at time
t such that the solutions of model (6) remain bounded; C = (cij)n×n, D = (dij)n×n and Q = (qij)n×n are connection
matrices, Ii is the constant input from outside of the network; the delay kernel Kij: [0, +∞) → [0, +∞) is real valued
nonnegative continuous function and satisfies [30]∫ +∞

0
e�sKij(s) ds = pij(�),

where pij(�) is continuous function in [0,�), � > 0, and pij(0) = 1, i, j = 1, 2, . . . , n.
The initial conditions of model (6) are of the form xi(s) = �i (s), s�0, where �i is bounded and continuous on

(−∞, 0].
Throughout this paper, we make the following assumptions:

(H1) Each function ai(u) is continuous and 0 < ai �ai(u) for all u ∈ R, i = 1, 2, . . . , n.
(H2) bi(u) is monotone increasing, i.e., there exists a positive diagonal matrix B = diag(b1, b2, . . . , bn) such that

bi(u) − bi(v)

u − v
�bi

for all u, v ∈ R(u �= v), i = 1, 2, . . . , n.
(H3) For functions gi , fi and vi , there exist three positive diagonal matrices G=diag(G1, G2, . . . , Gn), F = diag(F1,

F2, . . . , Fn) and V = diag(V1, V2, . . . , Vn) such that

Gi = sup
u1 �=u2

∣∣∣∣gi(u1) − gi(u2)

u1 − u2

∣∣∣∣ , Fi = sup
u1 �=u2

∣∣∣∣fi(u1) − fi(u2)

u1 − u2

∣∣∣∣ , Vi = sup
u1 �=u2

∣∣∣∣vi(u1) − vi(u2)

u1 − u2

∣∣∣∣
for all u1 �= u2, i = 1, 2, . . . , n.

Remark 1. In [25–27,15,5,19,13,12,3,1], the amplification function was required to be bounded, positive and continu-
ous. However, the upper bound of amplification function in this paper is not required. In addition, assumption (H2) in this
paper is as same as that in [25,13,31], the condition of differentiability of behaved function in [27,26,15,5,19,12,3,1,6]
is not required.

Remark 2. Assumption (H3) in this paper is weaker than the locally and partially Lipschitz condition which is mostly
used in literature [25–27,15,5,19,13,12,3,1,31,6]. The activation functions such as sigmoid type and piecewise linear
type are also the special case of the function satisfying assumption (H3).

For convenience, we introduce some notations. For matrix A = (aij)n×n ∈ Rn×n, |A| denotes the absolute-value

matrix given by |A|=(|aij|)n×n; A+=(a+
ij )n×n, where a+

ii =aii as aii �0, and a+
ii =0 as aii < 0, a+

ij =|aij|(i �= j); ‖A‖2=
(�max(A

T A))1/2, where �max(A
TA) represents the maximum eigenvalue of matrix ATA. For matrix A = (aij)m×n ∈
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Rm×n, ‖A‖ denotes Euclid norm defined by ‖A‖= (
∑m

i=1
∑n

j=1 a2
ij)

1/2. For A= (aij)m×n and B = (bij)m×n ∈ Rm×n,

A > Bdenotes aij > bij for all i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Definition 1. The equilibrium point x∗ = (x∗
1 , x∗

2 , . . . , x∗
n)T of model (6) is said to be globally exponentially stable, if

there exist constants � > 0 and K > 0 such that[
n∑

i=1

|xi(t) − x∗
i |r
]1/r

�K‖� − x∗‖re−�t

for all t > 0, where x(t) = (x1(t), x2(t), . . . , xn(t))
T is solution of (6) with initial value xi(s) = �i (s), s�0, i =

1, 2, . . . , n. �(s): (−∞, 0] → Rn is a continuous function with �(s) = (�1(s), �2(s), . . . , �n(s))
T, and ‖� − x∗‖r =

sup−∞<s �0[
∑n

i=1 |�i (s) − x∗
i |r ]1/r , r �1.

Definition 2 (Zhang et al. [31]). A real matrix A=(aij)n×n is said to be an M-matrix if aij �0 (i, j=1, 2, . . . , n; i �= j )
and successive principle minors of A are positive.

Definition 3 (Zhang et al. [30]). A matrix A is said to belong to a class P0 if A satisfies that all principal minors of A
are nonnegative.

Definition 4 (Cao and Wang [4]). A map H : Rn → Rnis a homeomorphism of Rn onto itself, if H ∈ C0, H is
one-to-one, H is onto and the inverse map H−1 ∈ C0.

Lemma 1 (Forti and Tesi [9]). If H(x) ∈ C0 satisfies the following conditions:

(i) H(x) is injective on Rn,
(ii) ‖H(x)‖ → +∞ as ‖x‖ → +∞,

then H(x) is homeomorphism of Rn onto itself.

Lemma 2 (Cao and Liang [3]). Let a�0, bk �0 (k = 1, 2, . . . , m), then

a

m∏
k=1

b
qk

k � 1

r

(
ar +

m∑
k=1

qkb
r
k

)
,

where qk > 0 (k = 1, 2, . . . , m) are some constants,
∑m

k=1 qk = r − 1, and r �1.

3. Main results

Theorem 1. Under assumptions (H1), (H2) and (H3), model (6) has a unique equilibrium point, which is globally
exponentially stable if

W = B − |C|G − |D|F − |Q|V (7)

is an M-matrix. Where

B = diag(b1, b2, . . . , bn), C = (cij)n×n, D = (dij)n×n, Q = (qij)n×n.

Proof. We shall prove this theorem in two steps.
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Step 1: We will prove the existence and uniqueness of the equilibrium point.
Since the equilibrium point x∗ = (x∗

1 , x∗
2 , . . . , x∗

n)T of model (6) satisfy the following equation

−ai(x
∗
i )

⎡⎣bi(x
∗
i ) −

n∑
j=1

cijgj (x
∗
j ) −

n∑
j=1

dijfj (x
∗
j ) −

n∑
j=1

qijvj (x
∗
j ) + Ii

⎤⎦= 0 (8)

for i = 1, 2, . . . , n. From assumption (H1), we know that Eq. (8) is equivalent to the following equation:

−bi(x
∗
i ) +

n∑
j=1

cijgj (x
∗
j ) +

n∑
j=1

dijfj (x
∗
j ) +

n∑
j=1

qijvj (x
∗
j ) − Ii = 0 (9)

for i = 1, 2, . . . , n. Let H(x) = (H1(x), H2(x), . . . , Hn(x))T, where

Hi(x) = −bi(xi) +
n∑

j=1

cijgj (xj ) +
n∑

j=1

dijfj (xj ) +
n∑

j=1

qijvj (xj ) − Ii

for i = 1, 2, . . . , n. In the following, we shall prove that H(x) is a homeomorphism of Rn onto itself.
First, we prove thatH(x) is an injective map onRn. In fact, if there existx=(x1, x2, . . . , xn)

T andy=(y1, y2, . . . , yn)
T ∈

Rn and x �= y such that H(x) = H(y), then

− (bi(xi) − bi(yi)) +
n∑

j=1

cij(gj (xj ) − gj (yj )) +
n∑

j=1

dij(fj (xj ) − fj (yj ))

+
n∑

j=1

qij(vj (xj ) − vj (yj )) = 0

for i = 1, 2, . . . , n.
From assumption (H2), we know that there exists matrix � = diag{�1, . . . , �n}(�i �bi) such that

bi(xi) − bi(yi) = �i (xi − yi)

for i = 1, 2, . . . , n.
From assumption (H3), we know that there exist three matrices K = diag{k1, . . . , kn} > 0(−G�K �G), L =

diag{l1, . . . , ln} > 0(−F �L�F) and U = diag{u1, . . . , un} > 0(−V �U �V ) such that

gi(xi) − gi(yi) = ki(xi − yi), fi(xi) − fi(yi) = li (xi − yi), vi(xi) − vi(yi) = ui(xi − yi)

for i = 1, 2, . . . , n. Hence, we have

−�i (xi − yi) +
n∑

j=1

cijkj (xj − yj ) +
n∑

j=1

dijlj (xj − yj ) +
n∑

j=1

qijuj (xj − yj ) = 0

for i = 1, 2, . . . , n. Furthermore, we get

−�i |xi − yi | +
n∑

j=1

|cij||kj ||xj − yj | +
n∑

j=1

|dij||lj ||xj − yj | +
n∑

j=1

|qij||uj ||xj − yj |�0

for i = 1, 2, . . . , n. That is,

(� − |C||K| − |D||L| − |Q||U |)(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|)T �0.

From W =B −|C|G−|D|F −|Q|V is an M-matrix, we know that �−|C||K|− |D||L|− |Q||U | is also an M-matrix,
hence

xi = yi, i = 1, 2, . . . , n,

which is a contradiction. So H(x) is an injective on Rn.
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Second, we prove that ‖H(x)‖ → +∞ as ‖x‖ → +∞.
Since W =B−|C|G−|D|F −|Q|V is an M-matrix, there exists a positive diagonal matrix P =diag(p1, p2, . . . , pn)

such that PW + WTP is a positive definite matrix. Let

H̃ (x) = (H̃1(x), H̃2(x), . . . , H̃n(x))T,

where

H̃i(x) = − (bi(xi) − bi(0)) +
n∑

j=1

cij(gj (xj ) − gj (0)) +
n∑

j=1

dij(fj (xj ) − fj (0))

+
n∑

j=1

qij(vj (xj ) − vj (0))

for i = 1, 2, . . . , n. Calculating

xTPH̃(x) =
n∑

i=1

xipiH̃i(x)

=
n∑

i=1

⎡⎣−pixi(bi(xi) − bi(0)) +
n∑

j=1

cijpixi(gj (xj ) − gj (0))

+
n∑

j=1

dijpixi(fj (xj ) − fj (0)) +
n∑

j=1

qijpixi(vj (xj ) − vj (0))

⎤⎦

=
n∑

i=1

⎡⎣−pixi�ixi +
n∑

j=1

cijpixikj xj +
n∑

j=1

dijpixi lj xj +
n∑

j=1

qijpixiuj xj

⎤⎦

�
n∑

i=1

⎡⎣−pibix
2
i +

n∑
j=1

|cij|piGj |xi | · |xj | +
n∑

j=1

|dij|piFj |xi | · |xj |

+
n∑

j=1

|qij|piVj |xi | · |xj |
⎤⎦

= − (|x1|, |x2|, . . . , |xn|)PW(|x1|, |x2|, . . . , |xn|)T

= − 1

2
(|x1|, |x2|, . . . , |xn|)(PW + WTP)(|x1|, |x2|, . . . , |xn|)T

� − 1

2
�min(PW + WTP)

n∑
i=1

x2
i

= − 1

2
�min(PW + WTP)‖x‖2.

Using Schwartz inequality, we get

‖x‖ · ‖P ‖ · ‖H̃ (x)‖� 1
2�min(PW + WTP)‖x‖2.



194 Q. Song, J. Cao / Journal of Computational and Applied Mathematics 197 (2006) 188–203

When ‖x‖ �= 0, we have ‖H̃ (x)‖� 1
2�min(PW + WTP)(‖x‖/‖P ‖), therefore ‖H̃ (x)‖ → +∞ as ‖x‖ → +∞, hence

‖H(x)‖ → +∞ as ‖x‖ → +∞.
From Lemma 1, we know that H(x) is a homeomorphism of Rn, thus, model (6) has a unique equilibrium point.
Step 2: We prove that the unique equilibrium point x∗ = (x∗

1 , x∗
2 , . . . , x∗

n)T of model (6) is globally exponentially
stable.

Since W = B − |C|G − |D|F − |Q|V is an M-matrix, there exists � = (�1, �2, . . . , �n)
T > 0 such that

−�ibi +
n∑

j=1

|cij|Gj�j +
n∑

j=1

|dij|Fj�j +
n∑

j=1

|qij|Vj�j < 0

for i = 1, 2, . . . , n. Constructing the function

	i (
) = �i

(
−bi + 


ai

)
+

n∑
j=1

|cij|Gj�j +
n∑

j=1

|dij|Fj�j e�
 +
n∑

j=1

|qij|Vj�jpij(
)

for i=1, 2, . . . , n, where �=max1� i,j �n {�ij}. Obviously, 	i (0) < 0, 	i (
) → +∞ as 
 → +∞. From the assumption
of the delay kernels, we know that 	i (
) are continuous, so there exist � > 0 such that

	i (�) = �i

(
−bi + �

ai

)
+

n∑
j=1

|cij|Gj�j +
n∑

j=1

|dij|Fj�j e�� +
n∑

j=1

|qij|Vj�jpij(�) < 0 (10)

for i = 1, 2, . . . , n. Let

yi(t) = xi(t) − x∗
i , ãi (yi(t)) = ai(yi(t) + x∗

i ), b̃i (yi(t)) = bi(yi(t) + x∗
i ) − bi(x

∗
i ),

g̃j (yj (t)) = gj (yj (t) + x∗
j ) − gj (x

∗
j ), f̃j (yj (t)) = fj (yj (t) + x∗

j ) − fj (x
∗
j ),

ṽj (yj (t)) = vj (yj (t) + x∗
j ) − vj (x

∗
j ),

then model (6) can be rewritten as

dyi(t)

dt
= − ãi (yi(t))

⎡⎣b̃i (yi(t)) −
n∑

j=1

cijg̃j (yj (t)) −
n∑

j=1

dijf̃j (yj (t − �ij(t)))

−
n∑

j=1

qij

∫ t

−∞
Kij(t − s)̃vj (yj (s)) ds

⎤⎦ (11)

for i = 1, 2, . . . , n. Let

wi(t) = e�t |yi(t)|
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for i=1, 2, . . . , n. Calculating the upper right derivative D+wi(t) of wi(t) along the solutions of (11), from assumption
(H1), (H2) and (H3), we get

D+wi(t) = e�t sgn(yi(t))

⎧⎨⎩−ãi (yi(t))

⎡⎣b̃i (yi(t)) −
n∑

j=1

cijg̃j (yj (t)) −
n∑

j=1

dijf̃j (yj (t − �ij(t)))

−
n∑

j=1

qij

∫ t

−∞
Kij(t − s)̃vj (yj (s)) ds

⎤⎦⎫⎬⎭+ �e�t |yi(t)|

= e�t sgn(yi(t))

⎧⎨⎩−ãi (yi(t))

⎡⎣�iyi(t) −
n∑

j=1

cijkjyj (t) −
n∑

j=1

dijlj yj (t − �ij(t))

−
n∑

j=1

qij

∫ t

−∞
Kij(t − s)ujyj (s) ds

⎤⎦⎫⎬⎭+ �e�t |yi(t)|

� e�t ãi (yi(t))

⎧⎨⎩−�i |yi(t)| +
n∑

j=1

|cij||kj ||yj (t)| +
n∑

j=1

|dij||lj ||yj (t − �ij(t))|

+
n∑

j=1

|qij|
∫ t

−∞
Kij(t − s)|uj ||yj (s)| ds

⎫⎬⎭+ �e�t |yi(t)|

� e�t ãi (yi(t))

⎧⎨⎩−bi |yi(t)| +
n∑

j=1

|cij|Fj |yj (t)| +
n∑

j=1

|dij|Gj |yj (t − �ij(t))|

+
n∑

j=1

|qij|
∫ t

−∞
Kij(t − s)vj |yj (s)| ds

⎫⎬⎭+ �e�t |yi(t)|

� e�t ãi (yi(t))

⎧⎨⎩
(

�

ai

− bi

)
|yi(t)| +

n∑
j=1

|cij|Gj |yj (t)| +
n∑

j=1

|dij|Fj |yj (t − �ij(t))|

+
n∑

j=1

|qij|
∫ t

−∞
Kij(t − s)Vj |yj (s)| ds

⎫⎬⎭
= ãi (yi(t))

⎧⎨⎩
(

�

ai

− bi

)
wi(t) +

n∑
j=1

|cij|Gjwj (t) +
n∑

j=1

|dij|Fj e
��ij(t)wj (t − �ij(t))

+
n∑

j=1

|qij|Vj

∫ t

−∞
e�(t−s)Kij(t − s)wj (s) ds

⎫⎬⎭
� ãi (yi(t))

⎧⎨⎩
(

�

ai

− bi

)
wi(t) +

n∑
j=1

|cij|Gjwj (t) + e��
n∑

j=1

|dij|Fjwj (t − �ij(t))

+
n∑

j=1

|qij|Vj

∫ t

−∞
e�(t−s)Kij(t − s)wj (s) ds

⎫⎬⎭ (12)

for i = 1, 2, . . . , n.
Defining the curve � = {z(l) = (�1l, �2l, . . . , �nl)|l > 0} and the set �(z) = {u|0�u�z, z ∈ �}. It is obvious that

�(z(l)) ⊃ �(z(l′)), when l > l′.
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Let l0 = (1 + �)‖� − x∗‖r/min1� i �n {�i} (� is a positive constant), then

wi(s) = e�s |yi(s)|� |yi(s)| = |�i (s) − x∗
i |�‖� − x∗‖r < �i l0, −∞ < s�0.

In the following, we will prove that

wi(t) < �i l0 (13)

for t �0, i = 1, 2, . . . , n. If (13) is not true, then there exist some i and t1 such that

wi(t1) = �i l0, D+wi(t1)�0 and wj(t)��j l0

for −∞ < t � t1, j = 1, 2, . . . , n. However, from (10) and (12) we get

D+wi(t1)� ãi (yi(t1))

⎧⎨⎩
(

�

ai

− bi

)
�i l0 +

n∑
j=1

|cij|Gj�j l0 + e��
n∑

j=1

|dij|Fj�j l0

+
n∑

j=1

|qij|Vj

∫ t1

−∞
e�(t1−s)Kij(t1 − s)�j l0 ds

⎫⎬⎭
= ãi (yi(t1))

⎧⎨⎩
(

�

ai

− bi

)
�i +

n∑
j=1

|cij|Gj�j + e��
n∑

j=1

|dij|Fj�j

+
n∑

j=1

|qij|Vjpij(�)�j

⎫⎬⎭ l0 < 0,

this is a contradiction, so

wi(t) < �i l0

for t �0, i = 1, 2, . . . , n. That is

|xi(t) − x∗
i |��i l0e−�t

for t �0, i = 1, 2, . . . , n. Hence[
n∑

i=1

|xi(t) − x∗
i |r
]1/r

�K‖� − x∗‖re−�t

for all t �0, where

K = (1 + �)(
∑n

i=1 �r
i )

1/r

min1� i �n {�i} > 1.

It means that the equilibrium point of model (6) is globally exponentially stable. The proof is completed. �

Remark 3. In Theorem 1 in this paper, the condition ensuring global exponential stability for model (6) is independent
of amplification function and delays, which implies the strong self-regulation is dominant in the networks.

Corollary 1. Under assumptions (H1), (H2) and (H3), model (6) has a unique equilibrium point, which is globally ex-
ponentially stable if there exist constants 
k > 0 (k=1, 2, . . . , K1), �k > 0 (k=1, 2, . . . , K2), �k > 0 (k=1, 2, . . . , K3),
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�i > 0 (i = 1, 2, . . . , n), �ij, �∗
ij, �ij, �∗

ij, �ij, �∗
ij, �ij, �∗

ij, �ij, �∗
ij, �ij, �∗

ij ∈ R (i, j = 1, 2, . . . , n) such that

n∑
j=1

(
K1∑
k=1


k|cij|
r�ij/
k

G
r�ij/
k

j + �j

�i

|cji|
r�∗

jiG
r�∗

ji
i +

K2∑
k=1

�k|dij|
r�ij/�k

F
r�ij/�k

j

+ �j

�i

|dji|
r�∗

jiF
r�∗

ji
i +

K3∑
k=1

�k|qij|
r�ij/�k

V
r�ij/�k

j + �j

�i

|qji|
r�∗

jiV
r�∗

ji
i

)
< rbi , (14)

where r =∑K1
k=1
k +1=∑K2

k=1�k +1=∑K3
k=1�k +1; K1�ij +�∗

ij =1, K1�ij +�∗
ij =1, K2�ij +�∗

ij =1, K2�ij +�∗
ij =1,

K3�ij + �∗
ij = 1, K3�ij + �∗

ij = 1.

Proof. We consider the following linear system

dz

dt
= (−B + |C|G + |D|F + |Q|V )z. (15)

Constructing a Lyapunov function

V (z) = 1

r

n∑
i=1

�i |zi |r .

Calculating the right derivative D+V of V along the solutions of (15), we get

D+V (z) =
n∑

i=1

�i |zi(t)|r−1

⎧⎨⎩sgn(zi(t))

⎡⎣−bizi(t) +
n∑

j=1

(|cij|Gj + |dij|Fj + |qij|Vj )zj (t)

⎤⎦⎫⎬⎭
�

n∑
i=1

�i

⎧⎨⎩−bi |zi(t)|r +
n∑

j=1

(|cij|Gj + |dij|Fj + |qij|Vj )|zi(t)|r−1|zj (t)|
⎫⎬⎭ . (16)

From Lemma 2, we get

|cij|Gj |zi(t)|r−1|zj (t)| =
K1∏
k=1

(|cij|
�ij/
k

G
�ij/
k

j |zi(t)|)
k × |cij|
�∗
ijG

�∗
ij

j |zj (t)|

� 1

r

(
K1∑
k=1


k|cij|
r�ij/
k

G
r�ij/
k

j |zi(t)|r + |cij|
r�∗

ijG
r�∗

ij
j |zj (t)|r

)
. (17)

Similarly, we have

|dij|Fj |zi(t)|r−1|zj (t)|� 1

r

(
K2∑
k=1

�k|dij|
r�ij/�k

F
r�ij/�k

j |zi(t)|r + |dij|
r�∗

ijF
r�∗

ij
j |zj (t)|r

)
, (18)

|qij|Vj |zi(t)|r−1|zj (t)|� 1

r

(
K3∑
k=1

�k|qij|
r�ij/�k

V
r�ij/�k

j |zi(t)|r + |qij|
r�∗

ijV
r�∗

ij
j |zj (t)|r

)
. (19)



198 Q. Song, J. Cao / Journal of Computational and Applied Mathematics 197 (2006) 188–203

By applying (17)–(19) to (16), according to the inequalities in (14), we get

D+V (z)� 1

r

n∑
i=1

�i

⎧⎨⎩−rbi +
n∑

j=1

(
K1∑
k=1


k|cij|
r�ij/
k

G
r�ij/
k

j + �j

�i

|cji|
r�∗

jiG
r�∗

ji
i

+
K2∑
k=1

�k|dij|
r�ij/�k

F
r�ij/�k

j + �j

�i

|dji|
r�∗

jiF
r�∗

ji
i

+
K3∑
k=1

�k|qij|
r�ij/�k

V
r�ij/�k

j + �j

�i

|qji|
r�∗

jiV
r�∗

ji
i

)}
|zi(t)|r

< 0, t > 0. (20)

From (15) and the Lyapunov stability theorem [21], we know that the zero solution of (15) is globally asymptotically
stable, furthermore, the real parts of all eigenvalues of matrix B − |C|G − |D|F − |Q|V are positive. Hence, B −
|C|G−|D|F −|Q|V is an M-matrix. From Theorem 1, we know that model (6) has a unique equilibrium point, which
is globally exponentially stable. The proof is completed. �

Remark 4. It is difficult to check the condition of Corollary 1 in this paper, the condition of Theorem 1 in this paper
is easy to test in practice.

When Q=0, model (6) becomes model (5); when D =0, model (6) becomes the following Cohen–Grossberg neural
networks model with distributed delays:

dxi(t)

dt
= −ai(xi(t))

⎡⎣bi(xi(t)) −
n∑

j=1

cijgj (xj (t)) −
n∑

j=1

qij

∫ t

−∞
Kij(t − s)vj (s) ds + Ii

⎤⎦ (21)

for i = 1, 2, . . . , n. For model (5) and (21), we have the following results.

Corollary 2. Under assumptions (H1), (H2) and (H3), model (5) has a unique equilibrium point, which is globally
exponentially stable if

W = B − |C|G − |D|F (22)

is an M-matrix, where

B = diag(b1, b2, . . . , bn), C = (cij)n×n, D = (dij)n×n.

Corollary 3. Under assumptions (H1), (H2) and (H3), model (5) has a unique equilibrium point, which is globally
exponentially stable if there exist constants 
k > 0 (k=1, 2, . . . , K1), �k > 0 (k=1, 2, . . . , K2), �i > 0 (i=1, 2, . . . , n),
�ij, �∗

ij, �ij, �∗
ij, �ij, �∗

ij, �ij, �∗
ij ∈ R (i, j = 1, 2, . . . , n) such that

n∑
j=1

(
K1∑
k=1


k|cij|
r�ij/
k

G
r�ij/
k

j + �j

�i

|cji|
r�∗

jiG
r�∗

ji
i +

K2∑
k=1

�k|dij|
r�ij/�k

F
r�ij/�k

j + �j

�i

|dji|
r�∗

jiF
r�∗

ji
i

)
< rbi ,

(23)

where r =∑K1
k=1 
k + 1 =∑K2

k=1 �k + 1; K1�ij + �∗
ij = 1, K1�ij + �∗

ij = 1, K2�ij + �∗
ij = 1, K2�ij + �∗

ij = 1.

Remark 5. The activation functions of Corollary 3 in this paper is weaker than that of Theorem 3 in [3]. The condition
ensuring global exponential stability of model in [3] can be derived from Corollary 3 in this paper. So, the result in [3]
is a special case of Corollary 3 in this paper.
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Corollary 4. Under assumptions (H1), (H2) and (H3), model (21) has a unique equilibrium point, which is globally
exponentially stable if

W = B − |C|G − |Q|V (24)

is an M-matrix, where

B = diag(b1, b2, . . . , bn), C = (cij)n×n, Q = (qij)n×n.

Corollary 5. Under assumptions (H1), (H2) and (H3), model (21) has a unique equilibrium point, which is globally
exponentially stable if there exist constants 
k > 0 (k=1, 2, . . . , K1), �k > 0 (k=1, 2, . . . , K2), �i > 0 (i=1, 2, . . . , n),
�ij, �∗

ij, �ij, �∗
ij, �ij, �∗

ij, �ij, �∗
ij ∈ R (i, j = 1, 2, . . . , n) such that

n∑
j=1

(
K1∑
k=1


k|cij|
r�ij/
k

G
r�ij/
k

j + �j

�i

|cji|
r�∗

jiG
r�∗

ji
i +

K2∑
k=1

�k|qij|
r�ij/�k

V
r�ij/�k

j + �j

�i

|qji|
r�∗

jiV
r�∗

ji
i

)
< rbi ,

(25)

where r =∑K1
k=1 
k + 1 =∑K2

k=1 �k + 1; K1�ij + �∗
ij = 1, K1�ij + �∗

ij = 1, K2�ij + �∗
ij = 1, K2�ij + �∗

ij = 1.

Remark 6. In [24], Wan and Sun have discussed the global asymptotic stability of model (21) when cij = 0 and the
activation functions were required to be monotone and smooth, but the exponential stability was not discussed.

4. Comparisons and examples

Model (6) in this paper is a quite general Cohen–Grossberg neural network model. For example, when qij =0 (i, j =
1, 2, . . . , n), model (6) includes the models from (1) to (5), which have been studied in [8,25–27,15,5,19,13,12,3,1,28,31].
In [8,25–27,15,5,19,13,12,3], the boundedness of the activation functions was required; in [1], the differentiability of
the activation functions was required; in [1], the differentiability of the time-varying delays was also required. When
ai(xi(t)) = 1 and qij = 0, model (6) becomes the following model:

dxi(t)

dt
= −bi(xi(t)) +

n∑
j=1

cijgj (xj (t)) +
n∑

j=1

dijgj (xj (t − �ij(t))) − Ii (26)

for i=1, 2, . . . , n, which is investigated by Huang and Cao [11]. In [11], bi(xi(t)) was required to satisfy bi(0)=0, and
the time-varying delays was required to satisfy �ij(t)=�j (t) and d�j (t)/dt �0. Furthermore, when bi(xi(t))=bixi(t)(bi

is a positive constant), model (26) becomes the recurrent neural network model with time-varying delays, which includes
Hopfield neural network model and cellular neural network model. When ai(xi(t))=1, bi(xi(t))=bixi(t) (bi is positive
constant) and vi = fi = gi (i = 1, 2, . . . , n), model (6) becomes the following model:

dxi(t)

dt
= − bixi(t) +

n∑
j=1

cijgj (xj (t)) +
n∑

j=1

dijgj (xj (t − �ij(t)))

+
n∑

j=1

qij

∫ t

−∞
Kij(t − s)gj (s) ds − Ii (27)

for i = 1, 2, . . . , n, which is investigated in [29,23,30]. In [23,30], the monotonicity of the activation functions was
required; in [29], the activation function was required to be the special function g(
)= 1

2 (|
+ 1|− |
− 1|), and bi = 1.
It is worth noting that we neither assume the boundedness and the differentiability of the activation functions, nor

assume the differentiability of the time-varying delays, as needed in most other papers. In addition, the following
examples show that the results obtained in this paper have a less restriction than those in the earlier results.

To compare with the earlier results, the results in [12,3,30] are restated as follows:
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Theorem 2 (Hwang et al. [12]). Under assumptions (H1), (H2), (H3) and the boundedness of the activation func-
tions, the equilibrium point of model (4) is globally exponentially stable if

G(‖C‖2 + ‖D‖2)� < 1, (28)

where G = max1� i �n {Gi}, � = max1 � i � n {�i }
min1 � i � n {�i�i } , ‖C‖2 = (�max(C

TC))1/2 and ‖D‖2 = (�max(D
TD))1/2.

Theorem 3 (Cao and Liang [3]). Under assumptions (H1), (H2), (H3) and the boundedness of the activation functions,
the equilibrium point of model (4) is globally exponentially stable if there exist constants �k > 0 (k = 1, 2, . . . , K1),
�k > 0 (k = 1, 2, . . . , K2), pij, p∗

ij, qij, q∗
ij,�ij, �∗

ij, �ij, �∗
ij ∈ R such that

�1 > �2 > 0, (29)

where r =∑K1
k=1 �k + 1 =∑K2

k=1 �k + 1; K1�ij + �∗
ij = 1, K1�ij + �∗

ij = 1, K2pij + p∗
ij = 1, K2qij + q∗

ij = 1, and

�1 = min
1� i �n

⎧⎨⎩r�i�i − �i

n∑
j=1

K1∑
k=1

�k|cij|
r�ij/�k

G
r�ij/�k

j − �i

n∑
j=1

K2∑
k=1

�k|dij|
rpij/�k

G
rqij/�k

j

−
n∑

j=1

�j |cji|
r�∗

jiG
r�∗

ji
i

⎫⎬⎭ ,

�2 = max
1� i �n

n∑
j=1

�j |dji|
rp∗

jiG
rq∗

ji
i .

Theorem 4 (Zhang et al. [30]). If every activation function are partially Lipschitz continuous and monotone increasing
function, then the model (27) has a unique equilibrium point which is absolute exponential stable if

−(C+ + |D| + |Q|) ∈ P0. (30)

Example 1. Consider the following model:⎧⎪⎪⎨⎪⎪⎩
dx1(t)

dt
= −(1 + 0.2 cos x1(t))[6x1(t) − g1(x1(t)) + g2(x2(t)) − g1(x1(t − �(t))) + 2],

dx2(t)

dt
= −(1 + 0.2 sin x2(t))[4.5x2(t) + g2(x2(t)) − g1(x1(t − �(t)))

−g2(x2(t − �(t))) − 3],
(31)

where g1(u) = g2(u) = 1
2 (|u + 1| − |u − 1|), �(t) = 3| cos t | + 1.

Model (31) satisfies all assumptions (H1), (H2) and (H3) in this paper with

b1 = 6, b2 = 4.5, G1 = G2 = 1, C =
(

1 −1
0 −1

)
, D =

(
1 0
1 1

)
,

� = 4, I1 = 2, I2 = −3,

then

B =
(

6 0
0 4.5

)
, G =

(
1 0
0 1

)
.

It is easy computing that

W = B − |C|G − |D|G =
(

4 −1
−1 2.5

)
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is an M-matrix. From Corollary 2, we know that model (31) has a unique equilibrium point which is globally exponen-
tially stable.

Since �1=�2=0.8, �1=�2=1.2, �1=6, �2=4.5, we can get G=max1� i �2 {Gi}=1, �=max1� i �2 {�i}/min1� i �2

{�i�i}= 1
3 , ‖C‖2=(�max(C

TC))1/2=
√

(3 + √
5)/2, ‖D‖2=(�max(D

TD))1/2=
√

(3 + √
5)/2 in (28), hence G(‖C‖2+

‖D‖2)� > 1. Thus, Theorem 2 is not hold, which means that Theorem 2 is not applicable to ascertain the stability of
model (31).

On the other hand, if we take r =4 and K1 =K2 =1 in (29), then �1 =�1 =3, �ij +�∗
ij =1, �ij +�∗

ij =1, pij +p∗
ij =1,

qij + q∗
ij = 1, i, j = 1, 2. It is easy computing that

�1= min
1� i �2

⎧⎨⎩r�i�i−�i

2∑
j=1

K1∑
k=1

�k|cij|
r�ij/�k

G
r�ij/�k

j −�i

2∑
j=1

K2∑
k=1

�k|dij|
rpij/�k

G
rqij/�k

j −
2∑

j=1

�j |cji|
r�∗

jiG
r�∗

ji
i

⎫⎬⎭=1.2,

�2 = max
1� i �2

2∑
j=1

�j |dji|
rp∗

jiG
rq∗

ji
i = 2.4,

�1 < �2. So Theorem 3 is not hold, which means that Theorem 3 is not applicable to ascertain the stability of model
(31).

Since g1 and g2 are not differentiable, the results in [6] cannot apply to ascertain the stability of model (31).

Example 2. Consider the following model:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1(t)

dt
= −7x1(t) + g1(x1(t)) + g2(x2(t)) − 2g1(x1(t − �(t)))

+ 2
∫ t

−∞ K11(t − s)g1(s) ds + ∫ t

−∞ K12(t − s)g2(s) ds + 1,

dx2(t)

dt
= −9x2(t) + g2(x2(t)) − g1(x1(t − �(t))) + 2g2(x2(t − �(t)))

− 3
∫ t

−∞ K21(t − s)g1(s) ds + ∫ t

−∞ K22(t − s)g2(s) ds − 3,

(32)

where g1(u)=g2(u)= 1
2 (|u+1|− |u−1|), Kij(
)= ( 1

3 )m+1(
me−
/3)/m!, m=0, 1, 2, . . .; i, j =1, 2; �(t)=2| sin t |.

It is easily computing that pij(�) = ∫∞
0 e�
Kij(
) d
 = (1/(1 − 3�))m+1, i, j = 1, 2, m = 0, 1, 2, . . ., pij(�) is

continuous function in [0, 1
3 ). Model (32) satisfies assumptions (H1), (H2) and (H3) in this paper with

B =
(

7 0
0 9

)
,

G = F = V =
(

1 0
0 1

)
,

C =
(

1 1
0 1

)
, D =

(−2 0
−1 2

)
, Q =

(
2 1

−3 1

)
in (7). It is easily computing that

B − |C|G − |D|F − |Q|V =
(

2 −2
−4 5

)
is an M-matrix. FromTheorem 1, we know that model (32) has a unique equilibrium point which is globally exponentially
stable.

On the other hand, since

C+ =
(

1 1
0 1

)
, |D| =

(
2 0
1 2

)
, |Q| =

(
2 1
3 1

)



202 Q. Song, J. Cao / Journal of Computational and Applied Mathematics 197 (2006) 188–203

in (30),

−(C+ + |D| + |Q|) =
(−5 −2

−4 −4

)
/∈ P0,

Theorem 4 is not hold, which means that Theorem 4 is not applicable to ascertain the stability of model (32).

5. Conclusions

In this paper, the Cohen–Grossberg neural network with both time-varying and distributed delays has been studied.
This neural network is quite general, and can be used to describe some well-known neural networks, including Hopfield
neural networks and cellular neural networks. Without assuming both global Lipschitz conditions on these activation
functions and the differentiability on these time-varying delays, by constructing proper vector Lyapunov functions,
using M-matrix theory, several new sufficient conditions have been obtained to ensure the existence, uniqueness, and
global exponential stability of equilibrium for Cohen–Grossberg neural network with both time-varying and distributed
delays. The sufficient conditions obtained are independent of amplification function and delays, which implies the strong
self-regulation is dominant in the networks. It is worth noting that in this paper neither the activation functions are
assumed to be bounded and differentiable, nor time-varying delays are assumed to be differentiable. Several previous
results are improved and generalized, and two examples are given to show the effectiveness of obtained results.
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