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Abstract

This paper considers the problem of defining a parameterization (chart) on the group of diffeomorphisms with compact support,
motivated primarily by a problem in image registration, where diffeomorphic warps are used to align images. Constructing a chart
on the diffeomorphism group will enable the quantitative analysis of these warps to discover the normal and abnormal variation of
structures in a population.

We construct a chart for particular choices of boundary conditions on the space on which the diffeomorphism acts, and for a
particular class of metrics on the diffeomorphism group, which define a class of diffeomorphic interpolating splines. The geodesic
equation is computed for this class of metrics, and we show how it can be solved in the spline representation. Furthermore,
we demonstrate that the spline representation generates submanifolds of the diffeomorphism group, and we study this mapping.
Explicit computational examples are included, showing how this chart can be constructed in practice, and that the use of the
geodesic distance allows better classification of variation than those obtained using just a Euclidean metric on the space of warps.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and overview

There has been much interest in the group of volume-preserving diffeomorphisms since Arnold’s celebrated
discovery [2] that the Euler fluid equations describe geodesics on the group of volume-preserving (i.e. incompressible)
diffeomorphisms. This paper considers the construction of local charts on the group of all compactly-supported
diffeomorphisms and the chart extension to form a coordinate system or atlas. We will show that the Euler
equations for diffeomorphisms arise naturally from the construction of a right-invariant Riemannian metric on the
diffeomorphism group. These Euler equations appear in several different fields, coinciding with the Camassa-Holm
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wave equation in fluid dynamics for the H'! metric [13] and being used in two and three dimensions in the field of
image registration.

It is this second application that provides the principal motivation for our work. We provide computational examples
of how our methods can be used in Section 6, where we show that elements of the diffeomorphism group can
be approximated to arbitrary accuracy on pixellated images based on a relatively small number of knotpoints, and
Section 7 where we demonstrate that the relevant metric enables legal and illegal examples of 2D images of ventricles
to be reliably classified.

Image warping is concerned with applying non-linear warps to an image in order to make structures in the image
line up with corresponding structures in another (reference) image. There are a variety of applications, but the primary
one is in medical imaging, where it is hoped that aligning images will enable the automated diagnosis of disease
through analysis of the resultant deformation field. Under the assumption that registration between medical images
should define a bijective, continuous, and invertible mapping between all points in the images, suitable warps come
from some diffeomorphism group. Furthermore, in medical imaging the structures being warped are discrete, bounded
entities. This suggests that the image warps should also be discrete and bounded, and so we restrict ourselves to some
group of diffeomorphisms with compact support, G = Diffy(M). While there are places where such modelling
choices are unsuitable (for example, where additional structure such as a tumour is seen in just one of the images)
there are many other problems where they appear to be valid, such as degenerative brain diseases like Alzheimer’s.
For a general review of registration methods, and other applications, see [31], and for an overview of medical image
registration, see [28].

Much of the most relevant work to this paper comes under the rubric of Computational Anatomy (see [23] for an
overview), where the problem of inexact matching for landmarks, shapes and images is viewed as constructing orbits
from a template under diffeomorphic transformations. Following [9,29], the problem of finding the minimum-distance
image deformation under inexact matching is shown to have the same solution as the Euler—Lagrange equations, with
methods such as geodesic shooting [22] used to construct an approximation to the true diffeomorphism. This differs
from our approach where we consider only exact matching. In terms of our target application of analysing image
deformation fields, this means that we analyse the exact field, not some approximation to it. While it may be that in
the presence of noise the inexact matching provides a smoother deformation field, the derivation of the theory is far
clearer when exact matching is considered. We also derive and consider the metric on the whole of Diffy(M), rather
than the metric on sets of landmarks (which is induced by the full metric) — see Section 5 for further details.

Further, this paper considers solving for geodesics on the diffeomorphism group within a spline representation,
which is subtly but significantly different to the template matching approach of solving for geodesics on the space of
knotpoint parameters using the induced metric [30,11,23].

The secondary purpose of our paper is to introduce the mathematics of the diffeomorphism group to those whose
expertise is in the application of the methods in fields such as image registration. We therefore assume in the reader
only knowledge of some standard differential geometry and functional calculus.

1.1. Problem statement

We consider the diffeomorphism group G = Diff(M) of compactly-supported Sobolev H; -mappings,’ with
identity element e. This group is a smooth (C°) Hilbert space, but it is not a Lie group [25,10]. In general, while
these spaces are not Lie groups (group operations are not necessarily smooth between the same spaces except in the
limit as s tends to infinity), the diffeomorphism groups do have structures corresponding to the Lie algebras and group
exponential maps of Lie groups (see Section 2). This group exponential map is only continuous; there is no guarantee
that any diffeomorphism in a neighbourhood of the identity can be embedded into a flow of vector fields [15,10].

The group acts on a space M, of dimension n < 2s, which we will take to be a compact space with boundary
dM. Points on the boundary M do not move, since the diffeomorphisms have compact support. We take M to
be the closed unit ball B in R”. This simplifies some of the computations considerably, and fits well with the target
application — the study of diffeomorphic warps of images — as the image plane/volume can be scaled to lie wholly
within the unit ball.

1 Hg (M) is the space of functions f which vanish on the boundary 3. M (the meaning of the O subscript), and whose derivatives up to order s
are square-integrable functions on M.
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The metric in the image plane/volume will be taken to be Euclidean, with global Cartesian coordinates {x, : u =
1,...n}. The action of g € Diff(M) is given by g : x = g(x) € M, with coordinates {g,, (x)}. The composition?
o of two elements g, & is given by (g o h)(x) = g(h(x)). The relevant vector space (of Eulerian velocity fields) on
M is the (product of) Sobolev space(s) X{ (M), where the vector fields are s-times differentiable, and vanish on the
boundary M = S"~ 1.

1.2. Overview of the paper

As one of the purposes of this paper is to survey the relevant results for non-specialists, we first run through some
standard results (Sections 2, 3 and 4 up to Section 4.1). Useful reviews of the area for those wishing to know more
are [26] and chapter 9 of [17].

The key result for the solution of geodesics on the diffeomorphism group within the spline representation is given
in Section 4.2. We follow the usual approach to constructing a chart, beginning by considering the tangent space at the
identity 7,G. An exponential map from this tangent space to the group is then constructed (see Section 2), such that
it is locally surjective from some neighbourhood of zero in the tangent space to some neighbourhood of the identity
in the group. Inverting this via the corresponding log map gives the chart for this neighbourhood. Translating this
construction across the group in some appropriate manner then provides a chart construction based on any point in the
group, and hence an atlas, where the parameter space is the space of vector fields X (M).

Because Diffjy(M) is not a Lie group, the mapping from the tangent space into the diffeomorphism group is
the Riemannian exponential map, not the group exponential map. A suitable right-invariant metric is therefore
developed in Section 3, and the geodesic equation is computed (Section 4). Following this, in Section 4.2 we
introduce a representation of Diff(M) based on a spline basis (geodesic interpolating splines) and show that for
this representation the geodesic equations for the velocity field reduce to the Euler—Lagrange equation of the spline
action.

We then consider the construction of elements of Diffy(M) using the spline basis in Section 5. We demonstrate
that from the space of knotpoint positions and motions that define the spline, the construction generates a mapping to
submanifolds of Diffy(M). This is followed in Section 5.2 by the explicit computation of the chart at an arbitrary
point p. We describe one particular family of Green’s functions in Section 5.3, the clamped-plate equation of
Boggio [4]. This has both Dirichlet and von-Neumann boundary condition on the unit ball in R". The resultant
geodesic interpolating clamped-plate spline produces warps that are guaranteed to belong to Diffy(M).

2. The group exponential map

For a finite-dimensional Lie Group, the group exponential map is obtained by exponentiating elements of the Lie
algebra g, and corresponds to the flow of left-invariant vector fields on the group. The Lie bracket is obtained by
considering the Lie derivative of a pair of such left-invariant vector fields.

Moving to the infinite-dimensional case, left- and right-invariant vector fields are defined as follows. Consider a
vector X € T,G that is the tangent vector to some smooth curve A : R — A(s) at the point A(0) = e. Left and right
multiplication by some g € Diffy (M) then gives the associated mappings of this curve:

Ly h(s) > goA(s) = Lg(h(s)), Ry :A(t) = A(t) 0 g = Re(A(D)). (1)

The first derivative (tangent mapping) of these mappings gives us the left and right extensions of X, Lx and Rx on G,
where:

Ly@= 2| Lae), Ly@®l, = 29 % o @)
ds|,_o ¢ ' " dx, 7
d

Rx(9) = 5| Re(u(1) = X 0g = Ry(X), 3)
t t=0

Rx(©)®)l = Xu(g() = Rx(go f) = Rx(g) o fYf €G. )

2 Note that the definition of composition of group elements differs between authors (e.g. see [6,29]), so that others ‘left’ (in the sense of (2) and
(4)) may mean our ‘right’ and vice versa.
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As before, the indices 1, v, . . . refer to components in the global Cartesian coordinate basis on M. For the case of right
multiplication, we see that TR, = Ry, hence right group multiplication is C*° for any g € Diffy)(M). Whereas for left
multiplication, we have that TL, = Lr,. If g is H{, constructing Lx(g) “uses up” a derivative (2), so that the result
is only Hj ~1 1t then follows that left multiplication viewed as the mapping Diffjy (M) x Diffy(M) + Diffy(M), is
only continuous (see [26], section 3.3.1. for further details).

The tangent space algebra® g of G = Diffy(M) is generated by considering right-invariant vector fields.
Following [1], this algebra is given by considering the Lie derivative of Ry along Ry:

(LryRy)(e) = [Rx, Ryl(e) = —[X, Y]y = [X, Y] m, ®)

where [, -] is the commutator bracket defined by the Lie derivative of left-invariant vector fields on Diffg(/\/l), hence
the minus sign, and [-, -] 4 is the usual commutator bracket for vector fields on M:

W), (x)ax"(x))

0x, 0xy

(6)

X Y Im@)l =Y (Xv(x)

v

This tangent space algebra is not closed — again we “lose” derivatives, so that if X, Y € %8“ (M), then [X, Vg is
only in X{(M).

The group exponential map expy : T.Diffy(M) = X3(M) > Diffy(M) is then defined by considering the
flow of a right-invariant vector field Ry as follows. Consider X e T,Diff}(M) and Rx(g), as defined above, and let
t — ¢(t) be the C! curve in Diff{y(M) that is an integral curve of Ry:

0 .
¢ () (x) = ¢, x), 5(#(&)6) = ¢, x) = Rx (@ (1) (x) = X(o(1, x)). @)

This corresponds to the Eulerian description of flow on M. A particle that starts at xo € M follows a path x(¢) under
the flow, where:

dx,, ;
#(0, x0) = x(0) = xo, x(1) = ¢(t, xo0), %@ = Pu(t, x0) = Xy (x(1)). ®)
The group exponential map is then given by
expy Xy(M) +— Diffy(M), expy (1 X) (x0) = x(t) = ¢(t, x0). 9)

The problem is that there is no neighbourhood of the identity in Diffy (M) for which this group exponential mapping
is surjective. In fact, there are elements of the group infinitesimally close to the identity that cannot be reached by the
group exponential, as is discussed in [17], page 456, and references therein.

For a given curve ¢(t), we can also consider the associated Eulerian spatial velocity field v¥ € T M, which is
defined as the right logarithmic derivative:

V() =¢@)od™ @), Vi, x)=dult, 7', x)). (10)

It can be seen that this spatial velocity field is explicitly right-invariant.
If ¢(t) = ¢(t) o g then:

v?8 = (p()og)o(g op 1) =d() 0o~ (1) =v? Vg € Diffy(M). an
The group exponential map exp,(z X) therefore corresponds to the Eulerian flow of a staric vector field:
v(t, x) = X(x). (12)

It is possible to use such static vector fields to parameterise diffeomorphisms [3], which when integrated yield one-
parameter subgroups of diffeomorphisms. However, the corresponding logarithm mapping is only well defined for

3 We use the phrase ‘tangent space algebra’ rather than Lie algebra to emphasize the fact that this diffeomorphism group is not a Lie group.
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transformations close enough to the identity, although this may not be problematic for some image registration
applications.

The alternative and more general approach follows from the observation that the above analysis suggests that
to find an exponential map that is locally surjective, we should instead consider the flow of time-varying Eulerian
velocity fields. One way to do this is by constructing a Riemannian metric on the diffeomorphism group. Then, as in
standard finite-dimensional Riemannian geometry, the Riemannian exponential map of X e T, Diff(M) is given by
constructing a geodesic with X as the initial tangent vector.

3. Constructing Riemannian metrics on Diff{(AM)

We will take the standard construction of right-invariant Riemannian metrics on a diffeomorphism group, starting
with a bilinear scalar product (-, -)x on the Hilbert space of vector fields XB(M) X %B(M) that is isomorphic to a
scalar product on 7, Diffy (M) x T,Diffy (M), which we will denote by (-, ).

A Riemannian metric (-, -), on M induces such a scalar product by integration:

(X,Y)e = (X, YV)x = /M dp (X (x), Y (x))x, 13)

where du is the corresponding volume element on M.
Given a scalar product on the space of velocity fields, we then define a scalar product at any point in Diffy (M) by
right-translation. So, for X, Y, € T,Diffy(M):

(Xg, Yoo = (Xg08 ', Y087 ). (14)

For any curve ¢ (¢) € Diffj(M), we have the associated energy/action functional:
1 1
B8] = [ 60,6000 = [ @60 007 0,60 087 ) (1)

1
= / dr (? (1), v? (1) x = L[], (16)
0

where L is the associated Lagrangian on the space of Eulerian velocity fields. We see from (11) that this action, and
hence the associated Riemannian metric, is explicitly right invariant.

3.1. Metrics based on differential operators

In previous work on diffeomorphism groups and their physical applications (e.g. [10,26,21]), authors have
considered Riemannian metrics on the group of volume-preserving diffeomorphisms, with the metric induced by
a metric on M. However, this is not the only possible choice; we can instead construct a scalar product on the Hilbert
space of velocity fields that is not derivable from a metric on M. In particular, we will consider scalar products of the
form:

(, v = / dr(Lo(x)) - (Lu(x))
M

=/ dxv(x) - (LTLyu(x) Y u,v e xXHM), a7
M

where dx is the Euclidean flat-space volume element on M, and - is the flat-space vector scalar product. L (with
Lagrange dual L") is taken to be some scalar differential operator of appropriate non-zero order. Such a scalar
product (the H! scalar product) has been considered previously by Shkoller [27] for the case of volume-preserving
diffeomorphisms, by Kouranbaeva [16], for the case of the diffeomorphism group of either the circle or the line, where
it generates the Camassa-Holm equation, and for the higher-dimensional Camassa-Holm equations in [12].

Note that we have so far considered curves in the space of Eulerian spatial velocity fields X{(M) derived from
some curve ¢ (¢) in the corresponding diffeomorphism group. The corresponding inverse link between the space of
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velocity fields and the diffeomorphism group was established by Dupuis et al. [9], who showed that any curve v(¢)
in the space of Eulerian spatial velocity fields %6(./\/1) for which for dr(v(t), v(¢))L < oo generates a corresponding
curve on the diffeomorphism group Diffy(M). We can therefore, without loss of generality, work in the space of
Eulerian spatial velocity fields X{(M).

4. The Geodesic equation on the diffeomorphism group

The geodesic equation on the diffeomorphism group for the right-invariant Riemannian metric can be derived from
the scalar product defined in (17). This is a simplified version of the variational calculus techniques involved — for
more details, readers should consult more specialist works such as [12]. An alternative form of the equation that makes
the link to the Euler equations more specific is given in Section 4.1.

Theorem 1. Given a scalar product of the form (for L a scalar differential operator)
w,v) = f dxv(x) - (LTL)u(x) Yu,ve Xy(M), (18)
M

that is induced by a right-invariant Riemannian metric on the diffeomorphism group Diffy(M), then the geodesic
equation can be written as:

9 Ov,
Lo+ <a(va(LTL)vﬂ) + &(LTL)%) =0, (19)

where {x,} are global cartesian coordinates on M.

Proof. Consider a curve ¢ (¢) € Diff;(M), with the associated action (from (15)):

1
E[¢l=) f d / dx (L, (¢, ) (L (2, X)), (20)
7 Jo M

where v, (t, x) = ‘i’u (t, ¢_1 (t, x)). A geodesic between the points ¢ (0) and ¢ (1) is, by definition, an extremum of
this action. Varying the curve ¢ () whilst keeping the endpoints ¢ (0) and ¢ (1) fixed, gives an infinitesimal variation:
¢, y) = ¢, y)+e,y), 2n

where €(f,0M) =0V e[0,1]and €0, y) =€(1,y) =0V y e M.
We need to find the corresponding variation in the velocity field v, (¢, x) induced by the variation in ¢ for fixed x
and . Define y = ¢! (¢, x). Then:

Xu = ¢u(t,y) = ¢u(t,y + Ay) + €,(t, y) + higher order terms (22)
d

=0= Z Ay, o fd’“(t’ Y) +eult, y) (23)

= Ay ==Y Mu(t. )6t y), (24)

where (M_I)W = 337 ‘tdm (t, ¥). The variation in the Eulerian velocity is:

Avﬂ(tv-x):éﬂ([7 y)+2(w) ed(tv y)7 (25)
o o t

where é(t, y) = %|ye(r, y)and y = ¢! (z, x). Setting

Mu(t, x) = €,(t,y) = €,(t, 67 (1, x)), (26)
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gives the variation of the velocity field as:

an dv
Av, (1, x) = 0, (t, K og(t, x) — —En,(, , 27
v (t, X) = 1 ( x)+;(axava< X) = g a x)) @7
or equivalently, Av =1+ [n, vlg, (28)

where the latter form is just the Lin constraints [24] on the allowed variation of a Eulerian spatial velocity field. The
boundary conditions on the redefined variation 7(¢, x) are the same as those on the original variation €(z, y) (21).
Inserting this into the expression for the action (20) provides the first-order variation of the action. Note that all
functions now depend on x and ¢, so that the differential operator L contains only derivatives w.r.t. x, and n(¢, x) has
appropriate boundary conditions, so that both spatial and temporal derivatives can be passed across as required.

1 ! ! d
SAE = =) / dt/ dxn, (LTLYD, =) / dzf dxn— (o (LT L)v,)
2 —Jo I el T Im T e "

1 Bvu .'.
= > dr | drne(LTL)v,. (29)
o 0 M Bxa

1 1
= _EAE = /0 dr(n(0), v(0)L + ([v@), n(®)]g, v(1))L. (30)

Applying the fundamental lemma of variational calculus to (29) leads directly to (19). [

Introducing the standard momentum field m, = (LTL)UM, into (19) leads to the Euler equations in the form
known as EPDiff by Holm et al. [11]. In contrast to their approach, we choose to retain the velocity field as our
functional variable. By considering an explicit representation of the space of velocity fields, we are able to solve the
geodesic equation for the velocity field whilst remaining in the full diffeomorphism group. We choose to use a spline
representation in Section 4.2, but we first rederive the geodesic equation using the adjoint representation, generating
the Euler—Poincare equation of (16).

4.1. The adjoint representation of the tangent-space algebra

Corollary 2. If we assume that the adjoint of the adjoint exists, which is not guaranteed in infinite dimensions [20],
then we can then rewrite (30) as:

1 1
_EAE = /o dt(n(1), ()L + (1), ad(w (@) v ()L, (31)

and by applying the fundamental lemma of variational calculus, obtain the geodesic equation in the form
—0(t) = ad(v(1)) v (1), (32

which is the Euler—Poincare equation of the associated Lagrangian (16) for right-invariant, infinite-dimensional
systems as used by other authors (e.g. [18,21,12]).

Proof. As in the case of finite-dimensional Lie Groups, the adjoint representation of the tangent-space algebra is
defined as

adw)(w) = [u, wly Y u,w e Xy(M), (33)

where [, -] is defined in (5) and (6). ad(u) can then be considered as a mapping of the space of vector fields onto
itself. If it exists, the adjoint * of this operator with respect to the scalar product (-, -) is given by:

(u, ad(w)(w))r = (ad()*u, w)r Yu,v,w € %B(M). [l (34)
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4.2. The spline representation

We introduce a spline representation (the Green’s function of the operator LTL) and demonstrate that in this
representation the geodesic equations (19) derived in Section 4 reduce to the Euler—Lagrange equation of the knotpoint
action (52). This means that paths in the infinite-dimensional group Diff(M) can be parameterized by the finite-
dimensional space of knotpoints positions, with a Riemannian metric (55), resulting in the usual affinely parameterized
geodesic. Alternative spline representations based on continuous objects, e.g. curves, can be constructed, but we
consider the simplest case of splines based on a finite set of points.

Theorem 3. Consider the Green’s function G(x, x') defined by:
(L'D)G(x,x") = 8(x — x)). (35)

(Note that the above definition of G(x, x'), and the geodesic equation (19) involve just the combination of operators
LTL, which is now a self-dual differential operator. Hence what follows is valid for situations where an appropriate
LTL exists, but L does not — explicit examples of this are given in Section 5.3.)

The velocity fields can be written as

vu(t, ) =Y aiu (G, bit),  ait), bi(t) € M, (36)

where the set of functions {a;; (t), bi,(t)} can be regarded as the parameters of the velocity field within this spline
basis. The geodesic equations (19) for the velocity field reduce to the Euler—Lagrange equation of the action:
0G(b;, b))
@i (D) + Y aia(aja () — == = 0. (37)

Jh 9bin

Proof. The parameterized velocity field (36) will lie in the correct space Xj(M) if the Green’s function has the
corresponding appropriate boundary conditions. Substituting from (36) into (19) provides:

0= a8 —bi() + Y _ ai(t)biy(t)

0
abiu(t)S(x —bi(1))

+ Z aiu(t)aje(t) (MMX —bi(1)) +G(x, bj(l))%tS(x - bi(t)))

G 0Xy
0G(x,b;(1))
+3 a,-a(t)aja(r>+ﬂfa(x — b (1) (38)

i,j,a
Equating the coefficient of the %S(x — b; (1)) term to zero® gives:

iy (Obiv(t) = Y aiy(0)ay ()G (b; (1), bj(1)) =0 (no sum on i). (39)
j

So, either a;;, (t) = 0, or:

biv(t) =Y aj ()G Bbi(1), bj(1) =Y Gij(t)aju(t) = vy(t, bi(1)), (40)
J J

4 This procedure is valid because of the particular form of the integral equation (30). From (38), the general form (with test function f(x)) is:
a Il
/ dxf(x) (¢(X)3(x —N+A—SG =)+ — [P )s(x — y)]) =0, f@D)=0
D ay ax
where A does not depend on x. The solution is: ¢ (y) = 0 and ¥ (y) = A. An exactly equivalent form is:

def(X)([¢(X)+M]5(x—y)+[A 1//()6)]*%6-}))

Equating coefficients as in the text gives: A = ¥/ (y) = %;}) =0=¢(y) =0.
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where we have defined the matrix G;;(¢):
Gij(b(1) = Gij(t) = G (), bj(1)). (41)

From Eq. (40), we see that the previously undefined parameters {b;(¢)} are the coordinates of some set of particles
that follow the flow. They also define the flow, in that their initial velocities define the initial velocity field. Following
the usual usage in the spline literature, we will call them knotpoints, although it should be remembered that their real
meaning is as particles that follow the flow.

The parameters {a;,, (t)} can also be written in terms of the {b; (¢)}. Taking the inverse of the matrix G;; (), we then
have:

aiy(t) = Y G 0bj (). 42)
J
Equating the coefficient of the § (x — b;(¢)) term from (38) to zero gives:
G(bi, b)) 3G (bi, bj)
i (1) + Zam(z)a,o,(t)4 + Y aia(t)ajo(t )b—’ 0. 43)
l [

o J.a

Considering the second term on the right-hand side and observing that

0G(b;, bj a
Zaja()( L S G by)

abza abia J
S () (44)
- abia i
=0, (45)

gives the result. [J

To see the meaning of this equation, consider the variation of

F=>)" / drai, (1) Gij(Daj (1) (46)

i

with respect to the knotpoint paths {5, (¢)}, where the definitions and relations in (40) hold. Then

3G, .

Adyy = T ™ P Ab pg + Z Gl — m 9 Aba. (47)
m,p.p °7PP
—1
Writing 3.5—;’; =—3,,Gn gbG’/; G, gives
—1 0G s
Aty = Z Gi— " Abma — Gl s Abpp (48)
r.s,p.B pB
1 1 G ;
:>AF:/ dt—ZZAb,-M (c’zm—i-z deaaja# , (49)
0 i J.k,a in
Zig—i-if =Qunlessi = jori =k
G jk G,
= Z a]aaka J Za,aa]a b, ” (50)
Jok,o i l”
aG;
W AF = 0=>a,u+2amaja i =0, (51)

by,

which is the same as the geodesic equation (37).
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Corollary 4. The energy/action of a path y(t) in the finite-dimensional space of knotpoint positions (endowed with the

Riemannian metric with components {gag(y)}) is the Euler—Lagrange equation of the action, which is the geodesic
Eq. (19) for the velocity field in the spline representation. This can be written as

1
Fly,y1= /0 drgas (Y ()3 (03B (@), (52)

using the multi-index tensor notation (with the Einstein summation convention for the multi-indices)

IfA=(ip) and B=(jv)

YA@) = by (1), (53)
gas(y(1) = G (y(1)8un, (54)
PBO(0) = Gij ()80 (55)
From (42)
iy (1) =Y G (0)bju(t) = gas ()32 (). (56)
J

Also, note that with the spline-interpolated velocity field as given in Eq. (36)

W(t, ). v(t, )L =/ dxv(t,x)-(LTL) v(t, x),
M

. B, <A ds\?
= Zam(t)bm(t) = gaB(Y())y~ 1)y (1) = (E) ; (57)

i

where ds? is the square of the infinitesimal metric distance. Hence metric distances in the space of knotpoint positions
correspond with metric distances in Diff () (M).

So the geodesic equations are just the usual ones from finite-dimensional Riemannian geometry for an affinely
parameterised geodesic®

FP (1) + TR A8 @) =0, (58)

where FADB are the usual Christoffel symbols defined by the metric

+

59
ayB ayA ayC &9

1 0 9 9
TRp(y) = EgDC(y)( gac(y) | 98ec(y) _ gAB(y)>_

5. Geodesic interpolating splines (GIS) and sub-manifolds of Diff(s] M)

The spline representation that we introduced in the previous section is related to those introduced by Joshi and
Miller [14] and Camion and Younes [6]. Both of these papers considered the problem of finding a diffeomorphic
interpolant for a set of (non-coincident) knotpoints in some (compact or non-compact) space M. Joshi and Miller
imposed initial conditions on the initial positions and velocities of the knotpoints, y(0) and v(0), while Camion and
Younes imposed initial and final positions y(0), y(1) on the points. In fact, as with finite dimensional Riemannian
geometry, both are equivalent. To solve this interpolation problem, both papers introduce a scalar product on the
space of Eulerian velocity fields generated by some differential operator, as in (17), and use the result of Dupuis et al.
to ensure diffeomorphic mappings. However, the result of Dupuis et al. refers only to compact manifolds M; the

5 Note that we obtain an affinely-parameterized geodesic, with the path length a linear function of the time ¢, because we optimized the energy
functional as opposed to the path length functional.
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generalized thin-plate spline considered in both papers and the Gaussian interpolant considered by Camion and Younes
do not generate mappings with compact support.

Our more general formulation, derived from the explicit Riemannian metric on the diffeomorphism group,
highlights some other interesting features. Of particular interest is the fact that the knotpoint positions {b;, (¢)}, which
were originally introduced in (36) as arbitrary parameters, move according to the flow (40) as a consequence of
imposing the general geodesic equation on the diffeomorphism group (19), whereas in [6], the exact (or inexact)
matching condition for the knotpoints was imposed a priori. This does not, however, imply that the quality of the
image match is independent of the choice of knotpoints.

We next consider the GIS construction in the context of the diffeomorphism group Diffy(M) for the case of
exact matching only. Starting from the space of knotpoint positions and motions, we show how the GIS construction
generates a mapping to sub-manifolds of the diffeomorphism group, which is precisely the chart construction that
we were originally seeking. By considering the tangent spaces to this submanifold, we show how this chart can be
extended across the whole group to generate the final atlas.

5.1. The Space of knotpoint positions

Consider a set of N non-coincident® knotpoints lying in the open unit ball B in R”, with the ith knotpoint having
coordinates y; = {yj, : # = 1,...n}. A valid configuration of knotpoints maps to a point p with coordinates
{yi :i =1,...N}in the space 2N) = BV /S, where S is the set of coincident knotpoint positions (i.e. the set of all
hyperplanes y; = y;Vi # j.)

An element of the tangent space T,,Q(N ) can be considered as a velocity vector v; for each knotpoint. This maps
to an initial velocity field v(0, -) € X(M) on the whole of M via the spline interpolant (36) and (42):

vu(0,) = Y G(x, )G (Mvju, (60)
i,J

where G;;(y) = G(y;, y;) is the Green’s function (in matrix form, with matrix inverse Gi_j1 (v)). The velocity field
given above is the unique interpolant of {v;} that minimizes the spline energy functional:

N
E[v] = Z/M dxv, ()L Lv, () + ) dillvi — v ()2 (61)
N i=1
N
= (v, 0) + Y hillvi — v, (62)

i=1

where the {);} are Lagrange multipliers.

We now map the point p € 2W) to the identity in Diff{y(M). The interpolated velocity field v(0, x) € X{(M)
then becomes v(0, x) € T,Diff;(M), and we construct the geodesic in the diffeomorphism group corresponding to
these initial conditions. For any velocity field v this defines the Riemannian exponential map:

expg : X((M) — Diffy(M), expg(tv) = ¢ (1), (63)

where ¢ (¢) is the affinely-parameterized geodesic curve in Diffé(/\/l) with the initial conditions ¢ (0) = e, ¢3(O, xX) =
v(0, x), which is in the spline representation of velocity fields. This representation is parameterized by a set of N
knotpoints, a set of particles that follow the flow.

The number of knotpoints in the spline representation (N) is constant as we traverse the geodesic, as follows from
the following observations:

e adding a knotpoint that does not follow the current velocity field increases the spline energy in (61);

e adding a new knotpoint that follows the current velocity field requires that the corresponding coefficient ay 4 is
zero at time ¢ (see (36)), and (40) means that a coefficient that is zero at time ¢ is zero for all times after this;

e geodesics are reversible.

6 Since from (40) knotpoints are particles that follow and define the flow, coincident knotpoints must stay together or break the diffeomorphism
constraint. Hence multiple coincident knotpoints are redundant.
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In summary, a geodesic in Diff} (/M) that starts from the identity, with the initial velocity described by N knotpoints
in the spline representation, can be mapped to a unique continuous curve in 2%V), and this curve is actually a geodesic
of the metric g, (which is the Riemannian metric with components g4 p(y): see (55)). This geodesic starts at the point
p = yp, where y,, corresponds to the positions of knotpoints required to describe the initial velocity of the geodesic
in Diff{ (M), and the tangent vector to the curve in {2 (M) is just the velocities of the knotpoints as they follow the flow
that corresponds to the geodesic in Diffj(M). So, any geodesic through the identity e in Diffj; (M) maps to a geodesic
in some space 2.

In the next section we start from 2@), and show how we can construct charts on submanifolds of Diff(s) (M).

5.2. Chart based at p

Without loss of generality, we consider a specific fixed point p € 2®). By taking all possible values of the initial
velocities for these knotpoints, we generate a family of geodesics in 2V with p as initial point, defined w.r.t. the
metric g, (55). This family of geodesics in 24Y) maps to a corresponding family of geodesics in Diffyy (M), which
all start from the identity, and span a sub-manifold in Diffy (M), meaning that any point g € Q™) can be reached
(in unit time) by a geodesic from p. This geodesic maps to a corresponding geodesic in Diff (M) that defines the
mapping of the point ¢ € 2¥) to an element of Diffy) (M) lying in the sub-manifold generated by p.

Similarly, any point g € Diff (M) lying on the submanifold generated by p can be reached, in unit time, from the
identity e by some geodesic; this geodesic, by definition, lies wholly in the submanifold, and hence maps uniquely to
a geodesic in 2™ . The components of the initial velocity at p of this geodesic in 2™ provides the parameterization
of g in this chart, whereas the coordinates at p define the particular chart.

Let dg (-, -) denote the geodesic distance between points in 0NW) defined by the metric gg. dg(-, -) is then the
geodesic distance between points in Diffj (M), defined according to the metric on the diffeomorphism group. We will
denote by V,, the submanifold of Diff}(M) generated by p, with:

Spl: 2™ N, Spl(p) =e (64)

being the mapping (with Spl being short for ‘spline’) between the space of knotpoints and the submanifold, as defined
above. The results of the previous section can then be expressed as:

Vg € 2N, dq(p,q) = dg(e, Spl(q)), (65)

which is to say that geodesic distances from p are preserved under the mapping Spl. However, the metric g, is defined
on the whole of 2®) so that for any two points ¢, r # p, we have the result

do(q,r) = igf{dg(e, lglg) =r}. (66)

Any curve between ¢ and r maps under Spl to a curve in \V,, between Spl(g) and Spl(r), but the geodesic in W)
between g and r does not necessarily correspond to the shortest such path joining Spl(g) and Spl(r) that lies wholly
in the submanifold V,,. Furthermore, the shortest geodesic linking Spl(¢) and Spl(r) will not in general lie in the
submanifold V.

So the mapping Spl between 2V) and Diff{y(M) is far from straightforward. It uniquely maps points in 2W) to
points in \},, which is a submanifold of Diff{)(M), and it maps closed curves to closed curves, but it only preserves
distances for geodesics through p. However, the associated mapping

S/\pl:TPQ(N)n—> Q(N)v—>./\/p (67)

generated via geodesics of g that start at p does provide us with a chart for AV),. It can be seen that it corresponds
to the Riemannian map expg (63) when restricted to the subset of X{(M) that corresponds to the spline interpolant
of elements of T,,Q(N ). Furthermore, we can see how this chart can be extended; all we have to do is to add a new
knotpoint to those that defined the point p € 2®). This then defines the point p’ € 2V FD, the new submanifold
Ny, where N, C Ny, and the new chart based at p’.
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5.2.1. An alternative spline-based mapping

As an illustration of the fact that the choice of mapping between 2®) and Diff)(M) generated by splines is far
from straightforward, we here consider an alternative mapping.

Suppose we have a general, smooth curve A() € 2N, with corresponding knotpoint coordinates {y; n(1)}. Ateach
point on the curve, we can construct the tangent vector:

MO = i), vip®) = Yi0),

which is just the velocities of the knotpoints when they are at position {y;,(#)}. We can interpolate these velocities
using the usual spline interpolant (60), to generate the Eulerian velocity field v(#, x). The image of the curve
A(t) € 2™ under our new spline-based mapping is then defined to be any curve ¥ (¢) € Diffy (M) such that
the tangent vector to i at ¢ is given by v(¢, -). Distances along curves are preserved by this mapping, since the
spline interpolant of velocity fields preserves the inner product of velocities upon which this distance is based (see
Corollary 4, Eq. (57)).

This curve () is, however, not unique. Consider a general element g € Diff)(M). The curves ¥ (¢) and ¥ (¢) o g
have the same associated velocity fields (11). Hence this mapping, rather than mapping the curve A(¢) to a single curve
¥ (¢) instead maps to a family of curves that map into each other by right translation. This mapping does, however,
preserve metric distances along all smooth curves, and hence maps all geodesics in 2 into geodesics in Diffyy (M).

Further, suppose that we consider a piecewise smooth closed curve, for example one formed by three curves
Apgs hgrs Arp between three points p, g, r € 2. If the mapping of the curve ,, ends at some point ¥, (1) €
Difff) (M). The mapping of the second curve A, need not start at v, (1), but instead at a point ¥/, (0) = ¥4 (1) o f,
where f is any diffeomorphism that leaves the knotpoint positions at ¢ € 2V) unchanged. Hence a composite closed
curve in 2Y) does not in general map to families of closed curves in Diff}(M), since the corresponding curves in
Diff}) (M) need only be ‘closed’ with respect to the motions of the knotpoints, not all points x € M. This means that
a point in 2¥) no longer maps to a single point in Diff}(M).

This demonstrates the importance of choosing the spline mapping correctly — S/ﬁl (presented in (67)) preserves
all closed curves, but only certain distances, whereas the one described in this section preserves all distances, but
points and curves are no longer mapped into single points and curves. For our application of image matching, we
consider the positions of landmarks, and so Spl is sufficient, with the appropriate metric distance between patterns
(i.e. configurations of knotpoints) being the metric dy, given in (66).

5.3. A family of Green’s functions with compact support

To produce practical applications of this theory, we need a Green’s function with compact support that generates
a suitable spline. We take M to be the closed unit ball B in R”. As noted in [6], the scalar differential operator L
appears in the formalism as the self-dual operator LTL, hence we can consider any such scalar self-dual differential
operator K = LTL, even if, strictly speaking, L does not exist. To be specific, we consider operators of the form

K= (V)" =a", (68)
where, for the case of m odd, the corresponding operator L does not exist.
The Green'’s functions for these operators with M the unit ball in R"” were given by Boggio [4] in 1905

B A(p.q) ('L'2 _ l)m—l
Ganan(pra) o lp = qlP ™ [ ar T
1
[PO]
lp —ql’
and have the boundary conditions that G, »)(p, ¢) and its derivatives of order 1 to m — 1 are zero on oM.

In the context of splines in general, these Green’s functions generate the polyharmonic clamped-plate splines [19],
the compactly-supported analogue of the polyharmonic thin-plate splines introduced by Duchon [8].

, (69)

n—1

Alp.q) = [PQ]=\/p2q2—2p-q+1,
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6. Constructing the log map

Thus far we have shown how to construct the Riemannian exponential map in Diffy(M) via the spline
representation. However, in practice we actually want to find the velocity field (in some spline representation) that
yields a given warp upon exponentiation; the parameters of the velocity field in the spline representation then provide
the parameterization of the original warp. This mapping, the inverse of the exponential mapping, is called the log map.

Consider a general warp g € Diff;(M), and suppose that it corresponds to the exponential mapping of some
velocity field thus:

g = expgr(v). (70)

Let us also take some spline basis, defined by a point p € 2™, which represents a set of non-coincident knotpoints
y={yi € M,i =1,..., N}. In the Hilbert space of velocity fields X{(M), any velocity field can be decomposed
into a part lying in the spline subspace, and a part perpendicular to it, where ‘perpendicular’ is defined w.r.t. the scalar
product (-, -); . That is:

v=olr oty @l vt =0, 7D

where vJ‘f x) = Zi’j G(x, yi)ijl(y)vM(yj). Then vlr is just the spline interpolant (60) of the set of values of
the original velocity field v taken at the knotpoint positions y. So, if we knew v (the log map applied to g),
then we could iteratively construct some spline basis such that the Hilbert space norm of the perpendicular part,
vtr ||% = (vir, vir); tended towards zero.

However, this depends on knowing the log mapping of g, which is what we were originally trying to find. Instead,
we consider decomposing the warp g rather than the velocity field:

g=g"og”, (72)
where we define:
g? = argmin{dg(e, /I f (i) =gyi)Vi=1,...,N}. (73)

By definition, g” is the warp given by the geodesic in 2™ between y = {y;} and {g(y;)}, and g” is the correcting
warp, where:

(8¥ 08" (i) =g"(gyi) =g(yi) Vi=1,...,N, (74)

i.e., g” is the identity as far as the motion of the knotpoints is concerned. So, given a method of iteratively constructing
the spline basis so that the correcting warp tends to the identity for the motion of all points x € M, the velocity field
given by the log map of the spline warp v” = logg(g?) will approach the log map of the original warp. We can
construct the log map in the spline basis by finding the geodesic in £2) with endpoints {y;} and {g” (y;)}, and the log
map of g? is just the initial velocity of this geodesic.

We should note here that this log map in 2™ is not necessarily single-valued. For example, in two dimensions, for
the case where we have just two diametrically opposed knotpoints that change positions under the warp, we can see
that there are two equivalent solutions, corresponding to clockwise and anticlockwise motion. Of course, in general,
knotpoint initial and final positions will not have the symmetries present in the above case.

6.1. Implementation: Computing the log map

The authors have previously described [19] an iterative, greedy algorithm to construct the log map of an arbitrary
warp as defined by the warp of an image. An unwarped image is described by a set of pixel/voxel values I (x¢), where
xo is the set of pixel positions, which usually lie on some regular grid. An image warp is then defined by the set of
warped pixel positions x, = g(xo), which generates the warped image I, where the set of pixel values I, (xo) is
obtained from I, (xg) = I (xo) by resampling.

For a given spline representation p and spline approximant g”, we calculate the set of pixel discrepancies:

lg? (g(x0)) — g(x0) I M, (75)
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Fig. 1. From the left: the unwarped image, with initial knotpoint positions (white crosses) and the unit circle (black line), the Cauchy warped
image, the approximating warp generated by the set of knotpoints, and the cumulative distribution of discrepancies of pixel positions within the
unit circle, in units of the unwarped pixel size.

where || - || o is the Euclidean norm on M. The pixel position for which this discrepancy is greatest is then added as
a new knotpoint, enlarging the spline representation p — p’, and the process is repeated until the discrepancies are
sufficiently small.

Ideally, we would use the Hilbert norm || - ||z of the discrepancy field or the geodesic distance dg (e, g”’ ) to define
convergence. However, these are only calculable for fields/warps in a spline representation, and g” is by definition not
in the spline representation p, hence we use the Euclidean norm on M.

An example is given in Fig. 1. The warp that we wish to approximate is generated by concatenating 20 random,
localized Cauchy warps; each warp acts only within a defined ellipsoidal region, which is itself restricted to lie wholly
within the unit circle. For the purposes of illustration, we here define the unit circle as the inscribed circle of the image.
Each Cauchy warp is a parameterized, strictly diffeomorphic warp of any ellipsoidal region. The description of the
entire Cauchy-based warp requires 20 x 6 = 120 degrees of freedom.

This warp is then applied to a 190 x 190 pixel image. The warped image is not resampled, but plotted as a coloured
surface with deformed faces/pixels. We then approximate this warp using the greedy algorithm described above. The
result for the case of 30 knotpoints (equal to 30 x 2 x 2 = 120 degrees of freedom) is given. Note that the Cauchy-
based representation is inherently local and mathematically unrelated to the GIS representation. However, for the same
number of degrees of freedom, we see that the approximating warp is visually extremely close to the Cauchy warp.
The cumulative distribution of discrepancies (75) for pixels inside the unit circle is given in the figure, with 50% of
the pixels having a discrepancy of less than 0.6 pixel units, and the maximum discrepancy being 2.25 pixels.

7. Application: Classifying variation

In this section we provide a simple demonstration of the fact that the inclusion of the geodesic distance in the
analysis of sets of warps produces better results than using just the naive Euclidean metric based on the statistics of
the set (that is, the Mahalanobis distance), which is the standard approach that is taken in medical image analysis.
Our demonstration dataset consists of 20 annotated outlines of the anterior lateral ventricles taken from a larger set
of annotated T1 MRI scans.” Each pair of ventricles consisted of 40 landmarks selected by a radiologist. According
to Bookstein [5] these points are ‘pseudo-landmarks’, since they lie on the image edges and need not correspond
to genuine anatomical landmarks. The extent to which this effects the results reported here is unknown. The set of
training examples was Procrustes aligned and then scaled to fit inside the unit circle.

We built a (linear) symmetrical Statistical Shape Model (SSM) [7] from this training set of points (and their mirror
images). This model was then used to generate a set of 48 random examples; these example were classified by hand
to be illegal (13 examples) if the outlines of the two ventricles intersected either themselves or each other, and legal
otherwise — see Fig. 2 for examples. The training set were all defined to be legal.

Using the 40 landmarks on each image as knotpoints, we computed the GIS warp between each annotated outline
and the mean shape from the SSM, using the biharmonic clamped-plate spline basis (69); for full implementation

7 An earlier, similar analysis using examples from the same larger dataset was presented in [19]. It is included here as a demonstration of the
method.
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Fig. 2. (i) The mean shape from the training set, (ii) & (iii) Legal examples and, (iv) & (v) illegal examples from the test set. Note that the lines are
for the purposes of illustration only, and the detail shows the points of near and actual intersection.
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Fig. 3. Mahalanobis versus geodesic distances from the mean shape for Black circles: the training set, Grey triangles: illegal shapes generated by
the SSM, White squares: legal shapes generated by the SSM.

details, see [19]. Note that the outlines in the Figure are for the purposes of illustration only, and that in all cases, the
warps are actually diffeomorphisms, even when the added outlines then intersect.

Fig. 3 shows a plot of the geodesic (metric) distance against the Mahalanobis (statistical, Euclidean) distance for
all of the examples. It can be seen that it is impossible to separate the legal from the illegal examples using the
Mahalanobis distance alone, but that including the metric distance allows a linear classifier that perfectly separates the
classes. This is possible because the metric distance has a sensitivity to changes in the ‘topology’ of the knotpoints
that the naive Euclidean metric lacks, not because the Euclidean metric can generate non-diffeomorphic warps.
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8. Discussion and conclusions

In this paper we have considered the problem of constructing an atlas on the diffeomorphism group of a compact
manifold with boundary. Our approach is based on a right-invariant metric on Diffy (M) that comes from a scalar
differential operator. This gives a spline interpolant on the space of velocity fields, and a geodesic interpolating spline
that is guaranteed to be diffeomorphic on the space of warps. The particular spline interpolant we have introduced
is the polyharmonic clamped-plate spline, which is zero on and outside the unit ball, and vanishes smoothly at the
boundary.

The spline generates a chart on the submanifold defined by the knotpoints of the spline, with the coordinates in the
chart being the initial velocities of those knotpoints. The choice of a differential operator as the basis for the metric
on the diffeomorphism group means that the spline smoothes the data. This means that the warp parameterization
is usually of a reasonably low dimensionality, which has obvious benefits for computational applications. Another
computational aspect is that it is significantly easier and more robust, given our intended application, to use the final
knotpoint positions as the coordinates of the chart, rather than the initial velocities or momenta [30]. This is exactly
equivalent, and leads to the coordinate space 2N, as introduced in Section 5.1. However, as noted in Section 6, the
log map on 2™ is not necessarily single-valued. In practice however, we do not expect this to be a problem.

A considerable body of previous work on using the diffeomorphism group in image analysis has come from the
work of Miller, Trouvé, Younes, Joshi, and co-workers. This was mainly based on the idea of patterns or templates (for
example, see [22,29,11,30]). The simplest pattern is defined as the configuration of some set of N landmark points;
the landmarks can either be derived from an image, or correspond to actual physical markers (e.g. attached to the skull
as in [5]). Then 20) is the space of configurations of the patterns.

Our approach differs from that previously mentioned in that we do not treat objects in images as patterns or
templates. We explicitly deal with the entire image, not a shape/pattern derived from the image. We could treat the
entire pixelated image as a large pattern, but this would be very inefficient — the landmark points would have to
be the positions of each pixel/voxel in the image. Instead, we consider the image as a discrete sampling of some
underlying continuous function, so that the appropriate configuration space is now the diffeomorphism group of the
image plane/volume, and the appropriate metric is the metric on the diffeomorphism group, not the derived metric dy,.

The primary motivation for this work is the modelling of sets of image warps for the classification of normal
and abnormal variation of biological structures, and hence the tracking of disease progression. We have shown
experimentally that using the interpolating spline for chart construction generates low-dimensional representations
of the image warps. The iterative greedy algorithm used to construct the spline-based representation of the warps can
be generalized to produce a common, low-dimensional representation of a set of image warps. Computing statistics
on this representation and building a generative model on the spline submanifold defined by such a set of warps are
the obvious next steps, and are the subject of our future research.
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