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a b s t r a c t

In this paper, we propose a Laguerre spectral method for solving Neumann boundary
value problems. This approach differs from the classical spectral method in that the
homogeneous boundary condition is satisfied exactly. Moreover, a tridiagonal matrix is
employed, instead of the full stiffness matrix encountered in the classical variational
formulation of such problems. For analyzing the numerical errors, some basic results on
Laguerre approximations are established. The convergence is proved. The numerical results
demonstrate the efficiency of this approach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Laguerre spectral method has been used extensively for solving PDEs in unbounded domains. Usually, one only con-
siders certain problemswith Dirichlet boundary conditions; see, e.g., [1–16]. However, it is also interesting and important to
consider various problemswith Neumann boundary conditions. In a standard variational formulation, this kind of boundary
condition is commonly imposed in a natural way. Unfortunately, this approach usually leads to a full stiffness matrix for
approximating the second derivatives.

Recently, Auteri et al. [17] proposed a Legendre spectral method for solving Neumann boundary value problems in
bounded domains. This method differs from the classical spectral method in that the Neumann boundary conditions are
enforced according to an essential treatment, namely, the homogeneous Neumann boundary conditions are satisfied exactly
for each basis. In particular, by taking the appropriate basis, such a treatment leads to sparse and better conditionedmatrices.
Wang and Wang [18] also analyzed the numerical errors of this algorithm.

In this paper, we shall focus on the Neumann problems in unbounded domains, using the Laguerre spectral method
with the essential imposing of Neumann boundary conditions. For analyzing the numerical errors, we establish some basic
results on the Laguerre approximations for Neumann problems, motivated by [19–21]. As examples, we consider twomodel
problems. The related spectral schemes are proposed. The convergence is proved. In particular, by choosing appropriate base
functions with zero slope at the endpoint, a tridiagonal matrix is employed for solving a one-dimensional problem, instead
of the full stiffness matrix encountered in the classical Laguerre spectral method. We also present some numerical results
in order to demonstrate the efficiency of this approach.
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This paper is organized as follows. In Section 2, we establish some related results on Laguerre approximations. In
Section 3, we propose Laguerre spectral schemes with the essential imposing of Neumann boundary conditions in one and
two space dimensions, and prove their convergence. We present some numerical results in Section 4. The final section is for
some concluding remarks.

2. Laguerre approximations

In this section, we investigate Laguerre approximations, which form themathematical foundation of the spectral method
with the essential imposing of Neumann boundary conditions in unbounded domains.

2.1. One-dimensional Laguerre approximations

LetΛ = (0,∞) and χ(x) be a certain weight function. For integer r ≥ 0, we have

Hr
χ (Λ) = {u | u is measurable onΛ and ‖u‖r,χ,Λ < ∞},

equipped with the following inner product, semi-norm and norm:

(u, v)r,χ,Λ =

−
0≤k≤r

∫
Λ

∂kxu(x)∂
k
x v(x)χ(x)dx,

|u|r,χ,Λ =

∫
Λ

(∂ rxu(x))
2χ(x)dx

 1
2

, ‖u‖r,χ,Λ = (u, u)
1
2
r,χ,Λ.

In particular, we have H0
χ (Λ) = L2χ (Λ), with the inner product (u, v)χ,Λ and the norm ‖u‖χ,Λ. For any real r > 0, we define

the space Hr
χ (Λ) and its norm ‖v‖r,χ,Λ by space interpolation as in [22]. We omit the subscript χ in the notation whenever

χ(x) ≡ 1.
Next let ωα,β(x) = xαe−βx, α > −1, β > 0. In particular, ωβ(x) = ω0,β(x) = e−βx. The scaled Laguerre polynomial of

degree l is defined by (cf. [11])

L
(β)

l (x) =
1
l!
eβx∂ lx(x

le−βx).

For any integer N > 0, we denote by PN(Λ) the set of all polynomials of degree at most N , and

0H1
ωβ
(Λ) = {u | u ∈ H1

ωβ
(Λ) and u(0) = 0}, 0PN(Λ) = {φ | φ ∈ PN(Λ) and φ(0) = 0}.

Throughout this paper, we denote by c a generic positive constant independent of N, β and any functions.
The orthogonal projection 0P1

N,β,Λ : 0H1
ωβ
(Λ) → 0PN(Λ) is defined by

(∂xu − ∂x0P1
N,β,Λu, ∂xφ)ωβ ,Λ = 0, ∀φ ∈ 0PN(Λ).

Due to (i) of Lemma 2.2 in [11], for any u ∈ 0H1
ωβ
(Λ), we have

‖u‖ωβ ,Λ ≤
2
β

‖∂xu‖ωβ ,Λ. (2.1)

Moreover, according to Theorem 2.3 of [11] with α = γ = 0 and δ = β , if u ∈ L2ωβ (Λ), ∂
r
xu ∈ L2ωr−1,β

(Λ) and u(0) = 0, then
for integer 1 ≤ r ≤ N + 1,

‖∂ sx(0P
1
N,β,Λu − u)‖ωβ ,Λ ≤ cβs−1(βN)

1−r
2 ‖∂ rxu‖ωr−1,β ,Λ, s = 0, 1. (2.2)

To design a proper spectral method for solving Neumann problems, we use the scaled Laguerre functions as follows
(cf. [23]):

L̃
(β)

l (x) = e−
1
2 βxL

(β)

l (x), l = 0, 1, 2, . . . .

As pointed out in [23], the set of L̃
(β)

l (x) forms a complete L2(Λ)-orthogonal system.
In the spectral method for solving Neumann problems, we have to consider numerical solutions and their derivatives on

the boundaries of domains. To do this, we introduce the spaces

F (Λ) = H1(Λ) ∩ {u | there exists finite trace of ∂xu at x = 0},
0F (Λ) = {u | u ∈ F (Λ), ∂xu(0) = 0}, 00F (Λ) = {u | u ∈ F (Λ), u(0) = ∂xu(0) = 0},

QN,β(Λ) =

e−

1
2 βxψ | ψ ∈ PN(Λ)


, 0QN,β(Λ) = {φ | φ ∈ QN,β(Λ), ∂xφ(0) = 0},

00QN,β(Λ) = {φ | φ ∈ QN,β(Λ), φ(0) = ∂xφ(0) = 0}.
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The set F (Λ) is meaningful (cf. [19–21]). For instance, if u ∈ H1(Λ) and ∂xu is continuous near the point x = 0, then
u ∈ F (Λ). Moreover, it is clear that H2(Λ) ⊂ F (Λ).

Next for any u ∈
0F (Λ), we set

ũ(x) = u(x)−


1
2
βx + 1


u(0)e−

1
2 βx.

It can be verified readily that ũ ∈ 00F (Λ). In order to obtain precise error estimates, we introduce a mapping 00P̃1
N,β,Λ :

00F (Λ) → 00QN,β(Λ), defined by

00P̃1
N,β,Λũ(x) = e−

1
2 βx

∫ x

0
0P1

N−1,β,Λ∂ξ


e

1
2 βξ ũ(ξ)


dξ ∈ 00QN,β(Λ). (2.3)

Accordingly, we define another mapping 0P̃1
N,β,Λ :

0F (Λ) →
0QN,β(Λ) as follows:

0P̃1
N,β,Λu(x) = 00P̃1

N,β,Λũ(x)+


1
2
βx + 1


u(0)e−

1
2 βx.

Lemma 2.1. If u ∈
0F (Λ), ∂ rx


e

1
2 βxu


∈ L2ωr−2,β

(Λ) for integer 2 ≤ r ≤ N + 1, then

‖∂ sx(
0P̃1

N,β,Λu − u)‖Λ ≤ cβs−2(βN)1−
r
2

∂ rx 
e

1
2 βxu


ωr−2,β ,Λ

, s = 0, 1. (2.4)

Proof. We first estimate ‖∂x(00P̃1
N,β,Λũ − ũ)‖Λ. By (2.1) and (2.3) we have

‖∂x(00P̃1
N,β,Λũ − ũ)‖Λ =

e−
1
2 βx∂x


e

1
2 βx00P̃1

N,β,Λũ − e
1
2 βxũ


−

1
2
β(00P̃1

N,β,Λũ − ũ)

Λ

≤

∂x 
e

1
2 βx00P̃1

N,β,Λũ − e
1
2 βxũ


ωβ ,Λ

+
1
2
β

e 1
2 βx00P̃1

N,β,Λũ − e
1
2 βxũ


ωβ ,Λ

≤ 2
∂x 

e
1
2 βx00P̃1

N,β,Λũ − e
1
2 βxũ


ωβ ,Λ

= 2
0P1

N−1,β,Λ∂x


e

1
2 βxũ


− ∂x


e

1
2 βxũ


ωβ ,Λ

.

Further using (2.2) with s = 0, we obtain that for integer 2 ≤ r ≤ N + 1,

‖∂x(00P̃1
N,β,Λũ − ũ)‖Λ ≤ cβ−1(βN)1−

r
2

∂ rx 
e

1
2 βxũ


ωr−2,β ,Λ

. (2.5)

We next estimate ‖00P̃1
N,β,Λũ − ũ‖Λ. For simplicity of statements, let

φ(x) =

∫ x

0
0P1

N−1,β,Λ∂ξ


e

1
2 βξ ũ(ξ)


dξ .

Then by virtue of (2.3), (2.1) and (2.2) with s = 0, we get that for integer 2 ≤ r ≤ N + 1,

‖00P̃1
N,β,Λũ − ũ‖Λ =

φ − e
1
2 βxũ


ωβ ,Λ

≤
2
β

∂x(φ − e
1
2 βxũ)


ωβ ,Λ

=
2
β

0P1
N−1,β,Λ∂x


e

1
2 βxũ


− ∂x


e

1
2 βxũ


ωβ ,Λ

≤ cβ−2(βN)1−
r
2

∂ rx 
e

1
2 βxũ


ωr−2,β ,Λ

. (2.6)

Since 0P̃1
N,β,Λu − u = 00P̃1

N,β,Λũ − ũ, we have from (2.5) and (2.6) that for integer 2 ≤ r ≤ N + 1,

‖∂ sx(
0P̃1

N,β,Λu − u)‖Λ = ‖∂ sx(00P̃
1
N,β,Λũ − ũ)‖Λ ≤ cβs−2(βN)1−

r
2

∂ rx 
e

1
2 βxũ


ωr−2,β ,Λ

= βs−2(βN)1−
r
2

∂ rx 
e

1
2 βxu


ωr−2,β ,Λ

, s = 0, 1.

This ends the proof. �

Remark 2.1. It is pointed out that the main idea and techniques used in this proof come from [19–21].
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In the numerical analysis of the one-dimensional Laguerre spectral method with the essential imposing of Neumann
boundary conditions, we need the following orthogonal projection. To this end, we define the bilinear form a1,λ(u, v) as
follows:

a1,λ(u, v) = (∂xu, ∂xv)Λ + λ(u, v)Λ, λ ≥ 0, ∀u, v ∈
0F (Λ).

The orthogonal projection 0P̃1
N,β,λ,Λ :

0F (Λ) →
0QN,β(Λ) is defined by

a1,λ(0P̃1
N,β,λ,Λu − u, φ) = 0, ∀φ ∈

0QN,β(Λ).

By the projection theorem, for any φ ∈
0QN,β(Λ), we have

‖∂x(
0P̃1

N,β,λ,Λu − u)‖2
Λ + λ‖0P̃1

N,β,λ,Λu − u‖2
Λ ≤ ‖∂x(φ − u)‖2

Λ + λ‖φ − u‖2
Λ.

Take φ =
0P̃1

N,β,Λu ∈
0QN,β(Λ). Then with the aid of (2.4), we verify:

Theorem 2.1. For any u ∈
0F (Λ), ∂ rx


e

1
2 βxu


∈ L2ωr−2,β

(Λ), λ ≥ 0 and integer 2 ≤ r ≤ N + 1,

‖∂x(
0P̃1

N,β,λ,Λu − u)‖2
Λ + λ‖0P̃1

N,β,λ,Λu − u‖2
Λ ≤ c(β−2

+ λβ−4)(βN)2−r
∂ rx 

e
1
2 βxu

2

ωr−2,β ,Λ
. (2.7)

2.2. Two-dimensional Laguerre approximations

We now turn to two-dimensional Laguerre approximations. Let Λ1 = Λ2 = Λ and Ω = {(x, y) | x ∈ Λ1, y ∈ Λ2}.
Define ω1

α,β(x) = ωα,β(x) and ω2
α,β(y) = ωα,β(y). For a certain weight function χ(x, y), we define the weighted spaces

L2χ (Ω) and H1
χ (Ω)with their inner products and norms in the usual way. We omit the subscript χ in the notation whenever

χ(x, y) ≡ 1.
Now let

0F (Ω) =
0F (Λ2;

0F (Λ1)),
0QN,β(Ω) =

0QN,β(Λ1)⊗
0QN,β(Λ2).

The definition of the space 0F (Ω)means that for any u(x, y) ∈
0F (Ω), we have that

‖u(·, y)‖H1(Λ1)
∈

0F (Λ2) with u(x, ·) ∈
0F (Λ1),

where the integral in the norm is the Bochner integral.
We now introduce a mapping 0P̃1

N,β,Ω :
0F (Ω) →

0QN,β(Ω) as follows:

0P̃1
N,β,Ωu =

0P̃1
N,β,Λ1

·
0P̃1

N,β,Λ2
u.

For estimating ‖
0P̃1

N,β,Ωu − u‖1,Ω , we use the notation that for integer 2 ≤ r ≤ N + 1,

Ar
β,Ω(u) = (β−2

+ β−4)

∫
Λ1

∂ ry 
e

1
2 βyu

2

ω2
r−2,β ,Λ2

dx +

∫
Λ2

∂ rx 
e

1
2 βxu

2

ω1
r−2,β ,Λ1

dy


+β−4
∫

Λ1

∂ ry 
e

1
2 βy∂xu

2

ω2
r−2,β ,Λ2

dx +

∫
Λ2

∂ rx 
e

1
2 βx∂yu

2

ω1
r−2,β ,Λ1

dy


+ (β−6
+ β−8)

∫
Λ1

e−βx
∂2x 

e
1
2 βx∂ ry


e

1
2 βyu

2

ω2
r−2,β ,Λ2

dx.

Lemma 2.2. For any u ∈
0F (Ω) and integer 2 ≤ r ≤ N + 1,

‖
0P̃1

N,β,Ωu − u‖2
1,Ω ≤ c(βN)2−rAr

β,Ω(u), (2.8)

provided that Ar
β,Ω(u) is finite.

Proof. Since 0P̃1
N,β,Ωu =

0P̃1
N,β,Λ1

·
0P̃1

N,β,Λ2
u, we have that

‖
0P̃1

N,β,Ωu − u‖2
1,Ω ≤ F1(u)+ F2(u),

where

F1(u) = 2‖∂x(0P̃1
N,β,Λ1

u − u)‖2
Ω + 2‖∂y(0P̃1

N,β,Λ1
u − u)‖2

Ω + 2‖0P̃1
N,β,Λ1

u − u‖2
Ω ,

F2(u) = 2‖∂x(0P̃1
N,β,Λ2

·
0P̃1

N,β,Λ1
u −

0P̃1
N,β,Λ1

u)‖2
Ω + 2‖∂y(0P̃1

N,β,Λ2
·
0P̃1

N,β,Λ1
u −

0P̃1
N,β,Λ1

u)‖2
Ω

+ 2‖0P̃1
N,β,Λ2

·
0P̃1

N,β,Λ1
u −

0P̃1
N,β,Λ1

u‖2
Ω .
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Thanks to (2.4), we deduce that

F1(u) ≤ c(β−2
+ β−4)(βN)2−r

∫
Λ2

∂ rx 
e

1
2 βxu

2

ω1
r−2,β ,Λ1

dy + cβ−4(βN)2−r
∫
Λ2

∂ rx 
e

1
2 βx∂yu

2

ω1
r−2,β ,Λ1

dy.

Similarly

F2(u) ≤ cβ−4(βN)2−r
∫
Λ1

∂ ry 
e

1
2 βy∂x

0P̃1
N,β,Λ1

u
2

ω2
r−2,β ,Λ2

dx

+ c(β−2
+ β−4)(βN)2−r

∫
Λ1

∂ ry 
e

1
2 βy0P̃1

N,β,Λ1
u
2

ω2
r−2,β ,Λ2

dx.

Further, by using (2.4) with s = 0, 1 and r = 2, we obtain that

F2(u) ≤ cβ−4(βN)2−r
∫
Λ1

∂ ry 
e

1
2 βy∂xu

2

ω2
r−2,β ,Λ2

dx + c(β−2
+ β−4)(βN)2−r

∫
Λ1

∂ ry 
e

1
2 βyu

2

ω2
r−2,β ,Λ2

dx

+ c(β−6
+ β−8)(βN)2−r

∫
Λ1

e−βx
∂2x 

e
1
2 βx∂ ry


e

1
2 βyu

2

ω2
r−2,β ,Λ2

dx.

A combination of previous statements leads to the desired result. �

In the numerical analysis of the two-dimensional Laguerre spectral method with the essential imposing of Neumann
boundary conditions, we need another orthogonal projection. To this end, we introduce the bilinear form a2,λ(u, w) as
follows:

a2,λ(u, v) = (∂xu, ∂xv)Ω + (∂yu, ∂yv)Ω + λ(u, v)Ω , λ ≥ 0, ∀u, v ∈
0F (Ω).

The orthogonal projection 0P̃1
N,β,λ,Ω :

0F (Ω) →
0QN,β(Ω) is defined by

a2,λ(0P̃1
N,β,λ,Ωu − u, φ) = 0, ∀φ ∈

0QN,β(Ω).

By the projection theorem,

‖∂x(
0P̃1

N,β,λ,Ωu − u)‖2
Ω + ‖∂y(

0P̃1
N,β,λ,Ωu − u)‖2

Ω + λ‖0P̃1
N,β,λ,Ωu − u‖2

Ω

≤ ‖∂x(φ − u)‖2
Ω + ‖∂y(φ − u)‖2

Ω + λ‖φ − u‖2
Ω , ∀φ ∈

0QN,β(Ω).

Take φ =
0P̃1

N,β,Ωu ∈
0QN,β(Ω). Then with the aid of (2.8), we obtain:

Theorem 2.2. For any u ∈
0F (Ω) and integers 2 ≤ r ≤ N + 1,

‖∂x(
0P̃1

N,β,λ,Ωu − u)‖2
Ω + ‖∂y(

0P̃1
N,β,λ,Ωu − u)‖2

Ω + λ‖0P̃1
N,β,λ,Ωu − u‖2

Ω ≤ c(βN)2−rAr
β,Ω(u), (2.9)

provided that Ar
β,Ω(u) is finite.

3. The Laguerre spectral method

In this section, we consider the Laguerre spectral method with the essential imposing of Neumann boundary conditions
in one and two space dimensions.

3.1. The one-dimensional problem

We first consider an ordinary differential equation
−∂2x U(x)+ λU(x) = f (x), x ∈ Λ,
∂xU(0) = lim

x→∞
U(x) = lim

x→∞
∂xU(x) = 0, (3.1)

where λ ≥ 0. A weak formulation of (3.1) is to seek a solution U ∈
0F (Λ) such that

a1,λ(U, v) = (f , v)Λ, ∀v ∈
0F (Λ). (3.2)

The Laguerre spectral scheme for (3.2) aims to find uN ∈
0QN,β(Λ) such that

a1,λ(uN , φ) = (f , φ)Λ, ∀φ ∈
0QN,β(Λ). (3.3)

We next deal with the convergence of scheme (3.3). Let UN =
0P̃1

N,β,λ,ΛU . We derive from (3.2) that

a1,λ(UN , φ) = (f , φ)Λ, ∀φ ∈
0QN,β(Λ). (3.4)
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SettingUN = uN − UN , and subtracting (3.4) from (3.3), we obtain that

a1,λ(UN , φ) = 0, ∀φ ∈
0QN,β(Λ).

Taking φ = UN , we assert that a1,λ(UN ,UN) = 0. Finally, we use (2.7) to obtain that for any U ∈
0F (Λ), ∂ rx


e

1
2 βxU


∈

L2ωr−2,β
(Λ), λ ≥ 0 and integer 2 ≤ r ≤ N + 1,

‖∂x(U − uN)‖
2
Λ + λ‖U − uN‖

2
Λ ≤ c(β−2

+ λβ−4)(βN)2−r
∂ rx 

e
1
2 βxU

2

ωr−2,β ,Λ
. (3.5)

3.2. The two-dimensional problem

We next consider the elliptic equation
−1U(x, y)+ λU(x, y) = f (x, y), (x, y) ∈ Ω,
∂nU(x, y) = 0, (x, y) on ∂Ω
U(x, y) → 0, ∂xU(x, y) → 0, ∂yU(x, y) → 0, x or y → ∞,

(3.6)

where λ ≥ 0. A weak formulation of (3.6) is to seek a solution U ∈
0F (Ω) such that

a2,λ(U, v) = (f , v)Ω , ∀v ∈
0F (Ω). (3.7)

The Laguerre spectral scheme for (3.7) aims to find uN ∈
0QN,β(Ω) such that

a2,λ(uN , φ) = (f , φ)Ω , ∀φ ∈
0QN,β(Ω). (3.8)

We next deal with the convergence of scheme (3.8). Let UN =
0P̃1

N,β,λ,ΩU . We derive from (3.7) that

a2,λ(UN , φ) = (f , φ)Ω , ∀φ ∈
0QN,β(Ω). (3.9)

SettingUN = uN − UN and subtracting (3.9) from (3.8), we obtain that

a2,λ(UN , φ) = 0, ∀φ ∈
0QN,β(Ω).

Taking φ = UN , we assert that a2,λ(UN ,UN) = 0. Finally, we use (2.9) to obtain that for any U ∈
0F (Ω), λ ≥ 0 and integer

2 ≤ r ≤ N + 1,

‖∂x(U − uN)‖
2
Ω + ‖∂y(U − uN)‖

2
Ω + λ‖U − uN‖

2
Ω ≤ c(βN)2−rAr

β,Ω(U), (3.10)

provided that Ar
β,Ω(U) is finite.

4. Numerical results

In this section, we describe the numerical implementations and present some numerical results.

4.1. The one-dimensional problem

We first consider spectral scheme (3.3). We take the basis functions

η
(β)

l (x) = L̃
(β)

l (x)−
2l + 1
2l + 3

L̃
(β)

l+1(x), 0 ≤ l ≤ N − 1.

Since ∂xL̃
(β)

l (0) = −β

l + 1

2


, we have that ∂xη

(β)

l (0) = 0, 0 ≤ l ≤ N − 1.
In actual computation, we expand the numerical solution as

uN(x) =

N−1−
k=0

alηl(x).

Let

fl′ = (f , ηl′)Λ, 0 ≤ l′ ≤ N − 1,

and define the vectors
−→
X = (a0, a1, . . . , aN−1)

T ,
−→
F = (f0, f1, . . . , fN−1)

T .

Taking φ = ηl′(x), 0 ≤ l′ ≤ N − 1 in (3.3), we find that (3.3) is equivalent to the following system:

(A + λB)
−→
X =

−→
F , (4.1)
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Fig. 1. The discrete L2(Λ)-errors of scheme (3.3) with λ = 1.5, β = 1, 2, 3 and various values of N .

where the matrices are given by

A = (al′ l), B = (bl′ l), 0 ≤ l′, l ≤ N − 1,

with the entries

al′ l =

∫
Λ

∂xηl(x)∂xηl′(x)dx, bl′ l =

∫
Λ

ηl(x)ηl′(x)dx, 0 ≤ l, l′ ≤ N − 1.

Due to (18) and (21) of [14], we obtain that for 0 ≤ l′, l ≤ N − 1,

al′ l =



β(2l′ + 1)
4(2l′ + 3)

, l′ = l − 1,

β(4l′2 + 8l′ + 1)
2(2l′ + 3)2

, l′ = l,

β(2l + 1)
4(2l + 3)

, l′ = l + 1,

0, otherwise,

bl′ l =



−
2l′ + 1
β(2l′ + 3)

, l′ = l − 1,

1
β

+
(2l′ + 1)2

β(2l′ + 3)2
, l′ = l,

−
2l + 1
β(2l + 3)

, l′ = l + 1,

0, otherwise.

Next we denote by EN the discrete L2(Λ)-error. Let λ = 1.5 in (4.1) and take the test function

U(x) = (1 + x + x2)e−x cos x.

In Fig. 1, we plot the numerical errors log10 EN versusN with various values ofβ . It is seen that the errors decay exponentially
as N increases. It seems that scheme (3.3) with suitable bigger parameter β provides more accurate numerical results. How
to choose the best parameter β is an open problem. Roughly speaking, a reasonable choice of parameter β depends mainly
on two factors. The first is how fast the solution varies near the point x = 0. The second is how rapidly the solution decays
as x → ∞. In our example, the solution changes rapidly near the point x = 0, and decays rapidly as x → ∞, so it is better
to take bigger β .

As pointed out in this paper, the Neumann condition in our method (LM) is enforced according to an essential treatment.
In particular, a tridiagonalmatrix is employed; see, e.g., (4.1). But in a standard variational formulation, this kind of boundary
condition is commonly imposed in a natural way. Moreover, the classical approach (CLM) employs the scaled Laguerre
functions L̃

(β)

l (x) as the orthogonal basis functions. This approach leads to a full stiffness matrix for approximating the
second derivative with respect to x. In Table 1, we compare the condition numbers of the corresponding coefficient matrices
of Problem (3.1) for two different methods with λ = 1.5 and various parameters β . We find that the condition numbers of
our method are much smaller than that of the classical method.

4.2. The two-dimensional problem

We next consider spectral scheme (3.8). We expand the numerical solution as

uN(x, y) =

N−1−
k=0

N−1−
l=0

uk,lηk(x)ηl(y).
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Table 1
The condition numbers.

N β = 1 β = 2 β = 3
LM CLM LM CLM LM CLM

15 3.997 1.040e2 2.806 4.143e2 5.362 9.282e2
25 4.189 2.747e2 2.882 1.090e3 5.570 2.460e3
35 4.269 5.260e2 2.915 2.100e3 5.673 4.721e3
45 4.313 8.583e2 2.934 3.420e3 5.729 7.712e3

Fig. 2. The discrete L2(Λ)-errors of scheme (3.8) with λ = 1, β = 1, 2, 4 and various values of N .

Let

fk′ l′ = (f , ηk′ηl′)Ω , 0 ≤ k′, l′ ≤ N − 1,

and define the vectors
−→
X = (u0,0, u1,0, . . . , uN−1,0, u0,1, u1,1, . . . , uN−1,1, . . . , u0,N−1, u1,N−1, . . . , uN−1,N−1)

T ,
−→
F = (f0,0, f1,0, . . . , fN−1,0, f0,1, f1,1, . . . , fN−1,1, . . . , f0,N−1, f1,N−1, . . . , fN−1,N−1)

T .

Taking φ = ηk′(x)ηl′(y) in (3.8) for 0 ≤ k′, l′ ≤ N − 1, we find that (3.8) is equivalent to the following system:

(A ⊗ B + B ⊗ A + λB ⊗ B)
−→
X =

−→
F , (4.2)

where the matrices A and B are the same as before.
We still denote by EN the discrete L2(Ω)-error. Let λ = 1 in (4.2) and take the test function

U(x, y) = (1 + cos x + cos y) exp(−

1 + x2 + y2).

In Fig. 2, we plot the numerical errors log10 EN versus N with various values of β . It is again seen that the errors decay
exponentially asN increases. It seems that scheme (3.8) with suitable bigger parameter β providesmore accurate numerical
results.

5. Concluding remarks

In this paper, we proposed a new Laguerre spectral method for solving Neumann boundary value problems and estab-
lished some basic results on Laguerre approximations, which formed the mathematical foundation of a Laguerre spectral
method with the essential imposing of Neumann boundary conditions. We also analyzed the numerical errors of the pro-
posed spectral schemes. In particular, by choosing appropriate basis functions with zero slope at the endpoint, a tridiagonal
matrix is employed, instead of the full stiffness matrix encountered in the classical variational formulation. The numerical
results demonstrated the spectral accuracy and coincided well with the theoretical analysis.
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