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Numerous studies present strong empirical evidence that certain financial assets may
exhibit mean reversion, stochastic volatility or jumps. This paper explores the valuation of
European options when the underlying asset follows a mean reverting log-normal process
with stochastic volatility and jumps. A closed form representation of the characteristic
function of the process is derived for the computation of European option prices via the
fast Fourier transform.
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1. Introduction

It is well known that the prices of certain financial asset classes show evidence of mean reversion. As a result, the pricing
of options on these asset classes has become an important topic in quantitative finance. For instance, commodity markets
often show prices to fluctuate randomly around an equilibrium level. This is due to the impact of relative prices on the
supply of the commodity in question (see [1]). Commodities such as oil also exhibit jumps linked to abnormal shocks either
in production or demand. Currency markets also show evidence of mean reversion. For instance, see [2] for an empirical
study of mean reversion in real exchange rates over a flexible exchange rate period. Interestingly, empirical studies also
indicate that certain stock prices may exhibit mean reversion as well; e.g., see [3].

Another significant aspect of modeling financial assets is the idea of stochastic volatility. The notion of allowing volatility
to follow a stochastic process has become popular for option pricing over the past ten years, as the existence of a non-flat
implied volatility surface (or term structure) has become even more prominent, especially since the 1987 stock market
crash.

By combining these fundamental ideas of asset mean reversion and stochastic volatility, Wong and Lo [4] propose a
newmodel for option pricing, whereby the underlying asset price is assumed to follow the Schwartz [1] mean reverting log-
normal process governed by a single Brownianmotion, with the volatility process following the Hestonmodel [5], where the
volatility is also driven by a single Brownian motion process. Both the asset price process and the volatility process include
time dependent coefficients and are correlated by a constant correlation coefficient. A powerful technique is derived for
attaining the characteristic function of the logarithm of the underlying asset spot price, from which they are able to apply
the fast Fourier transform (FFT) for the computation of European option prices.

In addition to the ideas of mean reversion and stochastic volatility, we include the notion that financial assets show
evidence of price jumps. For example, Jorion [6] investigates the existence of discontinuities in the sample paths of exchange
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rates and stock market indices whilst Seifert and Uhrig-Homburg [7] provide empirical evidence of jumps occurring in
electricity prices. We then go on to apply the FFT method as introduced in [8,9] to compute European option prices. Finally
we compare the FFT results against a Monte Carlo simulation for the pricing of a European call option under our model.

2. Adding jumps to the mean reverting asset price process

Consider the following two-factor model:
Let (Ω,F ,Q) be a probability space on which are defined two Brownian motion processes W 1

t and W 2
t , 0 ≤ t ≤ T . Let

Ft be the filtration generated by these Brownianmotions. Suppose that Q is a risk neutral probability under which the asset
price process St and volatility process vt are governed by the following dynamics:

dSt = κ (θ(t)− ln St) Stdt +
√
vtdW 1

t , (2.1)

dvt = b(a(t)− vt)dt + σ
√
vtdW 2

t , (2.2)

dW 1
t dW

2
t = ρdt, (2.3)

where θ(t) is a deterministic function that represents the equilibrium mean level of the asset against time, κ is the mean
reverting intensity of the asset, a(t) is a deterministic function that describes the equilibrium mean level of the volatility
process against time and b is the mean reversion speed of the volatility process. The constant σ is the volatility coefficient
of the volatility process andW 1

t andW 2
t are correlated with correlation coefficient ρ.

Suppose that on the probability space (Ω,F ,Q) we now define a Poisson process Nt for all 0 ≤ t ≤ T , with a constant
intensity parameter λ > 0. Furthermore, we assume that the Poisson process Nt is independent of both Brownian motion
processes W 1

t and W 2
t . We also define a sequence of random variables eJi , for all 1 ≤ i ≤ Nt , which represent the jump

sizes of the Poisson process. Each of the eJi are log-normally, identically and independently distributed over time, where
Ji ∼ N(µ, γ 2) and γ > 0. Since the eJi are i.i.d., we suppress the i subscript for notational convenience. Define the following
mean reverting asset price process governed by both a Brownian motion process and compound Poisson process:

dSt = κ


θ(t)− ln St −

λm
κ


Stdt +

√
vtStdW 1

t +

eJ − 1


St−dNt , (2.4)

where

m = EQ 
eJ − 1


= eµ+

1
2 γ

2
− 1, (2.5)

and St− is the value of the process St immediately before a jump.
We now define the following process:

Xt = ln St . (2.6)

Applying the Itô–Doeblin formula to (2.6) we obtain

Xt = X0 +

∫ t

0

1
Su

dScu −
1
2

∫ t

0

1
S2u

dScudS
c
u +

−
0≤u≤t

(Xu − Xu−) (2.7)

where Sct refers to the continuous component of SDE (2.4). Xt− is the value of the process Xt immediately before a jump.
Consider the last term in (2.7). We know that should a jump occur, the size of the jump will be eJ . Hence, if a jump occurs at
time u, it follows that Xu = eJXu−. Therefore

Xu − Xu− =

eJ − 1


Xu−, (2.8)

whenever there is a jump at time u, and of course Xu − Xu− = 0 if there is no jump at u. In either case we have

Xu − Xu− =

eJ − 1


Xu−∆Nu.

This observation allows us to express the last term in (2.7) as−
0≤u≤t

(Xu − Xu−) =

−
0≤u≤t


eJ − 1


Xu−∆Nu =

∫ t

0


eJ − 1


Xu−dNu. (2.9)

Simplifying (2.7) together with (2.9) and expressing the result in differential form, we obtain

dXt = κ


θ(t)−

vt

2κ
−
λm
κ

− Xt


dt +

√
vtdW 1

t +

eJ − 1


Xt−dNt . (2.10)
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For mathematical convenience, we allow the long term mean reverting equilibriums of both the asset price process (2.10)
and the volatility process (2.2) to be constant for all 0 ≤ t ≤ T (i.e. θ(t) = θ for all 0 ≤ t ≤ T , and a(t) = a for all
0 ≤ t ≤ T ). We now define the following two-factor mean reverting process with stochastic volatility and jumps:

dXt = κ


θ −

vt

2κ
−
λm
κ

− Xt


dt +

√
vtdW 1

t +

eJ − 1


Xt−dNt , (2.11)

dvt = b(a − vt)dt + σ
√
vtdW 2

t , (2.12)

dW 1
t dW

2
t = ρdt. (2.13)

3. Deriving the characteristic function

The characteristic function of the process (2.11) is defined as

φt(u) ≡ EQ 
eiuXT |Ft


. (3.1)

We now apply the method of Wong and Lo [4] to compute the characteristic function of the process (2.11).
Lipton [10] and Duffie et al. [11] introduce a generalized Feynman–Kac theorem for affine jump diffusion processes.

On defining the following function:

f (u; t, x, v) = EQ 
eiuXT |Xt = x, vt = v


(3.2)

= e−rTEQ 
erT eiuXT |Xt = x, vt = v


, (3.3)

which can be viewed as a contingent claim that pays erT+iux at time T , where r is a constant interest rate, Xt is the mean
reverting asset price processwith jumps specified by (2.11) and vt is the volatility process specified by (2.12), the generalized
Feynman–Kac theorem implies that f (u; t, x) solves the following partial integro-differential equation (PIDE):

∂ f
∂t

+ κ


θ −

v

2κ
−
λm
κ

− x

∂ f
∂x

+
1
2
v
∂2f
∂x2

+ b(a − v)
∂ f
∂v

+
1
2
σ 2v

∂2f
∂v2

+ ρσv
∂2f
∂x∂v

+ λ

∫
∞

−∞

[f (u; t, x + J, v)− f (u; t, x, v)]q(J)dJ = 0, (3.4)

where q(J) is the distribution function of the random variable J and λ > 0 is the constant intensity parameter of the Poisson
process Nt .

The coefficients, κ

θ −

v
2κ −

λm
κ

− x

and

√
vt , of the mean reverting asset price process (2.11) and the coefficients,

b(a − vt) and σ
√
vt , of the volatility process (2.12) are all affine in nature. It follows that the function f (u; t, x, v) is of

exponential affine form. Hence the solution of (3.4) has the form

f (u; t, x, v) = eB(t,T )+C(t,T )x+D(t,T )v+iux, (3.5)

where B(t, T ), C(t, T ) and D(t, T ) are deterministic functions of t . From (3.2), it is clear that

f (u; T , x, v) = eiux, (3.6)

which is the boundary condition of PIDE (3.4). This implies that

B(T , T ) = 0, C(T , T ) = 0, D(T , T ) = 0. (3.7)

Wenow consider the integral term in (3.4) (omitting the conditional portion of the expectations for notational convenience):

λ

∫
∞

−∞

[f (u; t, x + J, v)− f (u; t, x, v)]q(J)dJ = λ

∫
∞

−∞


EQ

[eiu(XT+J)
] − EQ

[eiuXT ]

q(J)dJ

= λ

∫
∞

−∞


EQ

[eiuXT (eiuJ − 1)]

q(J)dJ

= λ

∫
∞

−∞

EQ
[eiuXT ]EQ

[(eiuJ − 1)]q(J)dJ

= f (u; t, x, v)Λ(u), (3.8)

where Λ(u) = λ

eiuµ−

1
2 u

2γ 2
− 1


. The above result is based on the fact that the jump size J is independent of the process

Xt , and J ∼ N(µ, γ 2).
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Substituting the result (3.8) and the partial derivatives in (3.4) and rearranging we have

[Bt(t, T )+ (κθ − λm) (iu + C(t, T ))+ abD(t, T )+Λ(u)] + [Ct(t, T )

− κ(iu + C(t, T ))] x +

[
Dt(t, T )+

1
2
(iu + C(t, T ))(iu + C(t, T )− 1)

− bD(t, T )+
1
2
σ 2D2(t, T )+ ρσD(t, T )(iu + C(t, T ))

]
v = 0. (3.9)

Since Eq. (3.9) holds for all t , x and v we can conclude that the three terms in square brackets on the left-hand side must
vanish. This reduces the problem to one of solving three, much simpler, ordinary differential equations:

Bt(t, T )+ (κθ − λm) (iu + C(t, T ))+ abD(t, T )+Λ(u) = 0, (3.10)
Ct(t, T )− κ(iu + C(t, T )) = 0, (3.11)

Dt(t, T )+
1
2
(iu + C(t, T ))(iu + C(t, T )− 1)− bD(t, T )+

1
2
σ 2D2(t, T )+ ρσD(t, T )(iu + C(t, T )) = 0, (3.12)

subject to boundary conditions (3.7).
The solution to Eq. (3.11) with the boundary condition C(T , T ) = 0 is

C(t, T ) = iu

e−κ(T−t)

− 1

. (3.13)

We now consider Eq. (3.12). Substituting (3.13) in (3.12) we have

Dt(t, T ) = −
1
2
σ 2D2(t, T )+


b − ρσ iue−κ(T−t)D(t, T )+

1
2


u2e−2κ(T−t)

+ iue−κ(T−t) . (3.14)

We now consider a transformation of the independent variable t . Letting τ = e−κ(T−t) and defining D(τ , T ) = D(t, T ) it
follows that

∂D(t, T )
∂t

=
∂D(τ , T )
∂τ

∂τ

∂t

= κe−κ(T−t) ∂
D(τ , T )
∂τ

. (3.15)

Substituting (3.15) in (3.14), we obtain the following Riccati equation:

∂D(τ , T )
∂τ

= −
σ 2

2κτ
D2(τ , T )+


b
κτ

−
ρσ iu
κ

D(t, T )+
1
2κ


u2

τ
+ iu


, (3.16)

with the initial condition,D(1, T ) = 0.
To solve (3.16), we need a particular solution from which the general solution can be derived. We apply the following

well known transformation for Riccati equations:

D(τ , T ) =
2κτw′(τ )

σ 2w(τ)
. (3.17)

The derivative of (3.17) with respect to τ is

∂D(τ , T )
∂τ

=


2κw′(τ )+ 2κτw′′(τ )


σ 2w(τ)− 2κτσ 2(w′(τ ))2

σ 4w2(τ )
. (3.18)

Substituting (3.17) and (3.18) in (3.16) and simplifying we are left with

τw′′(τ )−

[
b
κ

− 1


− τ


ρσ iu
κ

]
w′(τ )+


u2σ 2

4κ2
+

iu
4κ2


w(τ) = 0. (3.19)

The above ordinary differential equation has a general solution of the form (see [12])

w(τ) = e(
√

1−ρ2−ρi) σu2κ τ
[
C2Φ


a∗, b∗,

τ

ζ


+ C3τ

1−b∗

Φ


a∗

− b∗
+ 1, 2 − b∗,

x
ζ

]
, (3.20)

where

a∗
=
(

ρ2 − 1 + ρ) b

∗

2 +
σ
4κ

ρ2 − 1
, (3.21)

b∗
= 1 −

b
κ
, (3.22)
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and

ζ =
−κ

σu

1 − ρ2

. (3.23)

C2 and C3 are constants to be determined from the boundary conditions and a∗ is a complex function. Φ(a∗, b∗, z) is the
degenerate hypergeometric function, which has the following Kummer series expansion:

Φ(a, b, z) = 1 +

∞−
k=1

(a)kzk

(b)kk!
, (3.24)

where
(a)k = a(a + 1) · · · (a + k − 1). (3.25)

If we let C2 = 1 and C3 = 0 in (3.20), it follows that a particular solution for (3.19) is

w(τ) = e(
√

1−ρ2−ρi) σu2κ τ
[
Φ


a∗, b∗,

τ

ζ

]
. (3.26)

Using the transformation (3.17), Wong and Lo [4] show that a particular solution to (3.16) is

U(τ ) =
2κτ
σ 2

(

1 − ρ2 − ρi) σu2κΦ


a∗, b∗, τ

ζ


+

a∗
b∗ζ
Φ


a∗

+ 1, b∗
+ 1, τ

ζ


Φ


a∗, b∗, τ

ζ

 , (3.27)

which is used in obtaining the general solution to (3.16):

D(τ ) = U(τ )+

Φ2(a∗,b∗, 1
ζ
)

Φ2(a∗,b∗, τ
ζ
)
τ

b
κ e−2(

√
1−ρ2) σu2κ (τ−1)

−
1

U(1) +
σ 2

2κ

 τ
1
Φ2(a∗,b∗, 1

ζ
)

Φ2(a∗,b∗, τ
ζ
)
η

b
κ −1e−2(

√
1−ρ2) σu2κ (η−1)dη

. (3.28)

We now consider the final ordinary differential equation (3.10). Substituting (3.13) and (3.28) in (3.10) we have

Bt(t, T ) = (λm − κθ)iue−κ(T−t)
− abD(t, T )−Λ(u). (3.29)

Integrating both sides and invoking the condition B(T , T ) = 0, we obtain

B(t, T ) =


λm
κ

− θ


iu(e−κ(T−t)

− 1)− ab
∫ T

t
D(s, T )ds +Λ(u)(T − t). (3.30)

We can conclude that the characteristic function of the mean reverting process (2.11) with stochastic volatility (2.12) is

φt(u) = eB(t,T )+C(t,T )x+D(t,T )v+iux, (3.31)
where

B(t, T ) =


λm
κ

− θ


iu(e−κ(T−t)

− 1)− ab
∫ T

t
D(s, T )ds +Λ(u)(T − t),

C(t, T ) = iu

e−κ(T−t)

− 1

,

D(t, T ) = U(e−κ(T−t))+
e−b(T−t)V (e−κ(T−t))

−1
U(1) +

σ 2

2κ

 e−κ(T−t)

1 τ
b
κ −1V (τ )dτ

,

U(τ ) =
2κτ
σ 2

(

1 − ρ2 − ρi) σu2κΦ


a∗, b∗, τ

ζ


+

a∗
b∗ζ
Φ


a∗

+ 1, b∗
+ 1, τ

ζ


Φ


a∗, b∗, τ

ζ

 ,

V (τ ) =
Φ2(a∗, b∗, 1

ζ
)

Φ2(a∗, b∗, τ
ζ
)
e
σu
κ (1−τ)

√
1−ρ2 ,

a∗
=
(

ρ2 − 1 + ρ) b

∗

2 +
σ
4κ

ρ2 − 1
,

b∗
= 1 −

b
κ
,

ζ =
−κ

σu

1 − ρ2

. (3.32)
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4. European option pricing using the fast Fourier transform

Let K be the strike price and T the expiration of a European call option with terminal asset price ST , where ST is governed
by the dynamics (2.11) with stochastic volatility (2.12). The price of a European call option is computed as the discounted
risk neutral conditional expectation of the terminal payoff (ST − K)+ = max(ST − K , 0):

C(t, ST ) = e−r(T−t)EQ 
(ST − K)+|Ft


, (4.1)

where r is the constant interest rate. Assume that for simplicity (without loss of ‘‘generality’’) we let t = 0 and define
Xt = ln St and k = ln K . Furthermore, we express the call option pricing function (4.1) as a function of the log strike k rather
than the terminal log asset price XT :

CT (k) = e−rT
∫

∞

k
(eXT − ek)qT (XT )dXT , (4.2)

where qT (XT ) is the density function of the process XT .
The call price function (4.2) is not square-integrable because CT (k) converges to S0 for k → −∞. Hence, Carr and

Madan [8] introduce a modified call price function cT (k) = eαkCT (k) for α > 0. The European call price can be easily
recovered by applying the FFT:

CT (k) =
e−αk

2π

∫
∞

−∞

e−iuk e
−rTφT (u − i(α + 1))
(α + iu)(α + iu + 1)

du. (4.3)

In this instance, an efficient implementation of the FFT requires a closed form representation of the characteristic function
φT (u). We have seen that the asset price dynamics (2.11) with stochastic volatility (2.12) does indeed have an analytical
characteristic function (3.31) with deterministic functions described by (3.32).

Following the method of Dempster and Hong [9], we evaluate the integral (4.3). We approximate the Fourier integral in
(4.3) by the sum

CT (k) ≈
e−αk

2π

N−1−
j=0

e−iujkψT (uj)∆, (4.4)

where∆ denotes the integration steps and

uj :=


j −

N
2


∆ j = 0, . . . ,N − 1. (4.5)

Now, a one-dimensional FFT computes, for any complex (input) array {Z[n] ∈ C|n = 0, . . . ,N − 1}, the following (output)
array of identical structure:

Y [ℓ] :=

N−1−
n=0

e−i 2πN nℓZ[n], (4.6)

for all ℓ = 0, . . . ,N − 1. In order to apply the above algorithm to evaluate the sum (4.4), we define a grid of size N × 1,
L := {ku : 0 ≤ u ≤ N − 1}, with ω > 0 denoting the distance between the grid points, where

ku =


u −

N
2


ω, (4.7)

and evaluate the sum

Γ (k) =

N−1−
j=0

e−iujkψT (uj). (4.8)

Choosing ω∆ =
2π
N gives the following values of Γ (ku) on L:

Γ (ku) =

N−1−
j=0

e−iujkuψT (uj). (4.9)

Substituting (4.5) and (4.7) in (4.9) and using our choice of ω∆we get

Γ (ku) =

N−1−
j=0

e−i(j− N
2 )∆(u−

N
2 )ωψT (uj)

= (−1)uiN
N−1−
j=0

e−i 2πN uj(−1)jψT (uj). (4.10)
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Table 1
European call option prices (with jumps): FFT vs. Monte Carlo.

Strike price FFT Monte Carlo % difference

0.37466 1.05578 1.04881 0.660%
0.45594 0.97285 0.97056 0.236%
0.55486 0.88356 0.87773 0.659%
0.67523 0.76517 0.76145 0.486%
0.82173 0.62933 0.62362 0.908%
1 0.43771 0.45381 0.853%
1.21695 0.25555 0.25399 0.611%
1.48097 0.05526 0.05576 0.912%
1.80227 0.00153 0.00155 0.998%

This can be computed from the definition of the FFT (4.6) by taking the input array as

Z[j] := (−1)jψT (uj) ∀j = 0, . . . ,N − 1. (4.11)

The result is an approximation for the option price at N × 1 different (log) strikes given by

CT (ku) ≈
e−αk

2π
Γ (ku)∆. (4.12)

5. Numerical results

In this sectionwepresent a numerical comparisonbetween the FFT and aMonte Carlo simulation optionpricing described
by Broadie and Kaya (see [13]). We apply the two techniques for the pricing of a European call option under our mean
reverting model with stochastic volatility and jumps with a view to comparing the performances of the two models. The
codes for the twomodelswerewritten inMatlabwhich includes the fast Fourier routine FFTW (the Fastest Fourier Transform
in the West) of Frigo and Johnson [14]. The experiments were conducted on an Intel Core 2 Duo 2.00 GHz machine running
under Windows Vista Service Pack 1, with 2.00 GB RAM.

We implement our FFT schemewith∆ = 0.25 andN = 128, which leads to a log strike spacing ofω =
8π
128 . Themodified

call price coefficient is set to α = 1.5. For the Monte Carlo simulation we use 50,000 sample paths withM = 365. The non-
jump related parameters for our model are taken from a similar comparison carried out by Wong and Lo [4], where they
compare the FFT toMonte Carlo simulation for pricing European call options under amean reverting process with stochastic
volatility and no jumps: θ = 4.0399, κ = 10, a = 0.5328, b = 3.33, σ = 0.04, ρ = 0.9, r = 0.05, S0 = 1.3, v0 = 0.18
and T = 1. For the jump related parameters, we use values given by Broadie and Kaya [13], where they compare their exact
Monte Carlo approach to the non-exact Monte Carlo approach for the pricing of European call options under a non-mean
reverting process with stochastic volatility and jumps: λ = 0.11, µ = 0.12 and γ = 0.15.

The FFT takes about 2 s to produce 128 option prices corresponding to different strike prices. TheMonte Carlo simulation
takes about two and a half minutes to produce a single option price. Table 1 compares the pricing accuracy between the two
methods across a range of strike prices. It is clear that the relative percentage differences are all less than 1%. If we consider
the Monte Carlo simulation to be the benchmark, not only does this numerical example confirm that our FFT analytical
solution is correct, it also illustrates how much more efficient this technique is.

Acknowledgements

E. Pillay would like to thank both Standard Bank and the University of KwaZulu-Natal for their continued support.

References

[1] E.S. Schwartz, The stochastic nature of commodity prices: implications for valuation and hedging, Journal of Finance 52 (1997) 923–973.
[2] P. Jorion, R.J. Sweeney, Mean reversion in real exchange rates: evidence and implications for forecasting, Journal of International Money and Finance

15 (1996) 535–550.
[3] K. Chaudhuri, Y. Wu, Mean reversion in stock prices: evidence from emerging markets, Managerial Finance 30 (1) (2004) 22–37.
[4] H.Y. Wong, Y.W. Lo, Option pricing with mean reversion and stochastic volatility, European Journal of Operational Research 197 (2009) 179–187.
[5] S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies 6

(1993) 327–343.
[6] P. Jorion, On jump processes in the foreign exchange and in the stock markets, The Review of Financial Studies 1 (4) (1988) 427–445.
[7] J. Seifert, M. Uhrig-Homburg, Modelling jumps in electricity prices: theory and empirical evidence, Review of Derivatives Research 10 (1) (2007)

59–85.
[8] P. Carr, D.B. Madan, Option valuation using the fast Fourier transform, Journal of Computational Finance 2 (4) (1999) 61–73.
[9] M.A.H. Dempster, S.S.G. Hong, Spread option valuation and the fast Fourier transform, Mathematical Finance Bachelier Congress (2002) 203–220.

[10] A. Lipton, Mathematical Methods for Foreign Exchange: A Financial Engineer’s Approach, World Scientific, 2001.
[11] D. Duffie, J. Pan, K. Singleton, Transform analysis and asset pricing for affine jump-diffusion, Econometrica 68 (2000) 1343–1376.
[12] D. Zwillinger, Handbook of Differential Equations, Academic Press, Boston, 1992.
[13] M. Broadie, Ö. Kaya, Exact simulation of stochastic volatility and other affine jump diffusion processes, Operations Research 54 (2) (2006) 217–231.
[14] M. Frigo, S.G. Johnson, FFTW: An Adaptive software architecture for the FFT, Proceedings of the International Conference on Acoustics Speech and

Signal Processing 3 (1998) 1381–1384.


	FFT based option pricing under a mean reverting process with stochastic volatility and jumps
	Introduction
	Adding jumps to the mean reverting asset price process
	Deriving the characteristic function
	European option pricing using the fast Fourier transform
	Numerical results
	Acknowledgements
	References


