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a b s t r a c t

In this paper we propose a novel structure-preserving algorithm for solving the right
eigenvalue problem of quaternion Hermitian matrices. The algorithm is based on the
structure-preserving tridiagonalization of the real counterpart for quaternion Hermitian
matrices by applying orthogonal JRS-symplectic matrices. The algorithm is numerically
stable because we use orthogonal transformations; the algorithm is very efficient, it costs
about a quarter arithmetical operations, and a quarter to one-eighth CPU times, comparing
with standard general-purpose algorithms. Numerical experiments are provided to
demonstrate the efficiency of the structure-preserving algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In 1843, Sir William Rowan Hamilton (1805–1865) introduced quaternions as he tried to extend complex numbers to
higher spatial dimensions, and then he spent the rest of his life obsessed with them and their applications [1]. Nevertheless
he probably never thought that one day in the future the quaternion he had inventedwould be used in quaternionic quantum
mechanics (qQM) and many other fields.

About 100 years later, Finkelstein et al. [2–5] built the foundations of qQM and gauge theories. Their fundamental works
led to a renewed interest in algebrization and geometrization of physical theories by non-commutative fields [6,7]. Among
the numerous references on this subject, the important paper of Horwitz and Biedenharn [8] showed that the assumption
of a complex projection of the scalar product, also called complex geometry [9], permits the definition of a suitable tensor
product [10] between single-particle quaternionic wavefunctions. Quaternions become to play a more and more important
role in many application fields, such as special relativity [11], group representations [12–15], non-relativistic [16,17] and
relativistic dynamics [18,19], field theory [20], Lagrangian formalism [21], electro weak model [22], grand unification
theories [23] and the preonic model [24]. A clear and detailed discussion of qQM together with possible topics for future
developments in field theory and particle physics is found in the recent book by Adler [25].

Many papers have addressed to clarify the proper choice of the quaternionic eigenvalue equation within qQM with
complex or quaternionic geometry. For example, we find the works on the quaternionic right eigenvalue equation [26],
quaternionic eigenvalues and the characteristic equation [27,28], diagonalization of matrices [29], the Jordan form and
q-determinant [30,31]. Most recently, many papers studied the (right) eigenvalue equation for R,C and H linear quater-
nionic operators [32,33,26,34,35]. Interesting applications are found in solving differential equations within quaternionic
formulations of quantummechanics [36,37]. There are two obstacles in discussing quaternion eigenproblems. The first one
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is related to the difficulty in obtaining a suitable definition of the determinant for quaternionic matrices, the second one is
represented by the loss, for non-commutative fields, of the fundamental theorem of the algebra. To overcome these difficul-
ties, one can study the eigenvalue problem for 4n-dimensional real matrices or 2n-dimensional complex matrices obtained
from n-dimensional quaternionicmatrices. For example, [33,38] andmany others gave the spectral theorem for a quaternion
matrix and some numerical algorithms by real or complex counterpart methods.

In analogy with complex quantum mechanics, observable in quaternionic quantum mechanics will be represented by
quaternion Hermitian operators, and quaternion Hermitian operators have special structures and properties ((2.11 g) and
pp. 27–29 of [25]). In this paper we will use these features to compute eigenvalues and corresponding eigenvectors of
quaternion Hermitian operators, by proposing a structure-preserving algorithm. At first, we will characterize structures
of the real counterpart of a quaternion Hermitian operator: symmetry and JRS-symmetry (for definition of JRS-symmetry,
see Section 2). These structures are unchanged under orthogonal JRS-symplectic transformations. That makes it possible to
derive a structure-preserving method for the tridiagonalization of the real counterpart. This structure-preserving method
only costs about a quarter of arithmetic operations of the Householder tridiagonalization algorithm for the real symmetric
counterpart, and what is more important is that the tridiagonal matrix obtained by the structure-preserving method is still
symmetric and JRS-symmetric, and has the following formD 0 0 0

0 D 0 0
0 0 D 0
0 0 0 D


where D is an n × n real symmetric tridiagonal matrix. Therefore to evaluate the eigenvalues of the quaternion Hermitian
matrix, we only need to compute the eigenvalues of a single D.

This paper is organized as follows. In Section 2, we will mention some preliminary results used in the paper. In Section 3,
we will propose a structure-preserving algorithm for solving the right eigenvalue problem for quaternion Hermitian
operators. In Section 4, we will provide three experiments to compare this algorithm with two other standard algorithms,
and apply it to compute eigenfaces for face recognition in color. Finally in Section 5 wewill make some concluding remarks.

2. Preliminaries

In this section we recall some basic information about quaternions and quaternionic matrices for completeness. A
quaternion q ∈ H is expressed as

q = a + bi + cj + dk,

where a, b, c, d ∈ R, and three imaginary units i, j, k satisfy

i2 = j2 = k2 = ijk = −1.

The quaternion skew-fieldH is an associative but non-commutative algebra of rank four overR, endowedwith an involutory
antiautomorphism

q → q = a − bi − cj − dk.

Every non-zero quaternion is invertible, and the unique inverse is given by 1/q = q/|q|2, where the quaternionic norm |q|
is defined by

|q|2 = qq = a2 + b2 + c2 + d2.

Two quaternions q and p belong to the same eigenclass when the following relation

q = s−1ps, s ∈ H

holds. Quaternions belonging to the same eigenclass have the same real part and the same norm,

Re(q) = Re(s−1ps) = Re(p), |q| = |s−1ps| = |p|,

and consequently, they have the same absolute value of the imaginary part.
Quaternionic right eigenvalue problem. The states of qQMwill be described by vectors, |ψ⟩, of a quaternionic Hilbert space,

Hn. To solve the Schrödinger equation

i
∂

∂t
Ψ = OHΨ , (2.1)

where OH is a quaternionic linear operator, we need to study the quaternionic eigenequation

OH|ψ⟩ = |ψ⟩q, |ψ⟩ ∈ Hn, q ∈ H. (2.2)

By adopting quaternionic scalar products in Hn, we find states in one-to-one correspondence with unit rays of the form

|r⟩ = {|ψ⟩u}
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where |ψ⟩ is a normalized vector and u is a quaternionic phase of unity magnitude. The state vector, |ψ⟩u, corresponding
to the same physical state |ψ⟩, is an OH-eigenvector with eigenvalue uqu

OH|ψ⟩u = |ψ⟩u(uqu).

For real values of q, we find only one eigenvalue, otherwise quaternionic linear operators will be characterized by an infinite
eigenvalue spectrum

{q, u1qu1, . . . , ulqul, . . .}

with ul unitary quaternions. The related set of eigenvectors

{|ψ⟩, |ψ⟩u1, . . . , |ψ⟩ul, . . .}

represents a ray. We can characterize the spectrum by choosing a representative ray

|ψ⟩ = |ψ⟩uλ

so that the corresponding eigenvalue λ = uλquλ is complex. For example, if q = a + bi + cj + dkwith c2 + d2 ≠ 0 then we
can choose uλ = x/|x| with x = b +

√
b2 + c2 + d2 − dj + ck such that λ = uλquλ = a +

√
b2 + c2 + d2i. For this state the

right eigenvalue equation (2.2) becomes

OH|ψ⟩ = |ψ⟩λ (2.3)

with |ψ⟩ ∈ Hn and λ ∈ C.
Real counterpart method. The real counterpart method is to solve the n-dimensional quaternionic eigenvalue problem by

solving an equivalent 4n-dimensional real eigenvalue problem.
Let 1n denote the n × n unit matrix, and the superscripts T and ∗ denote the transpose and the conjugate transpose,

respectively. Define an unitary quaternion matrix

U =
1
2

1n −j1n −i1n −k1n
1n j1n −i1n k1n
1n −j1n i1n k1n
1n j1n i1n −k1n

 . (2.4)

For any quaternion matrix Q = Q0 + Q1i + Q2j + Q3k, where Q0,Q1,Q2,Q3 ∈ Rn×n, its real counterpart can be defined as

ΥQ ≡

 Q0 Q2 Q1 Q3
−Q2 Q0 Q3 −Q1
−Q1 −Q3 Q0 Q2
−Q3 Q1 −Q2 Q0

 . (2.5)

Indeed, if we denote Q = A + Bj, where A = Q0 + Q1i, B = Q2 + Q3i ∈ Cn×n, there is

ΥQ = U∗


A + Bj 0 0 0

0 A − Bj 0 0
0 0 A + Bj 0
0 0 0 A − Bj

U . (2.6)

From (2.6), the eigenvalue problem of Q is equivalent to the eigenvalue problem of ΥQ .
Now we study the structural properties of ΥQ . Define four unitary matrices

Pn =

1n 0 0 0
0 −1n 0 0
0 0 1n 0
0 0 0 −1n

 , Jn =

 0 0 −1n 0
0 0 0 −1n
1n 0 0 0
0 1n 0 0

 , (2.7)

Rn =

 0 −1n 0 0
1n 0 0 0
0 0 0 1n
0 0 −1n 0

 , Sn =

 0 0 0 −1n
0 0 1n 0
0 −1n 0 0
1n 0 0 0

 . (2.8)

A real matrix M ∈ R4n×4n is called JRS-symmetric if JnMJTn = M , RnMRT
n = M and SnMSTn = M . A matrix O ∈ R4n×4n is called

JRS-symplectic if OJnOT
= Jn, ORnOT

= Rn and OSnOT
= Sn. A matrix W ∈ R4n×4n is called orthogonal JRS-symplectic if it is

orthogonal and JRS-symplectic. One can see that an orthogonal JRS-symplectic matrix must be orthogonal symplectic, but
the converse is not always true. By simple computations, we can obtain the following properties of the real counterparts of
quaternion matrices, some of them can be found in [33,39].
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Lemma 2.1. Let Q and H be two n × n quaternion matrices, α ∈ R. Then we have the following.
(1) ΥQ+H = ΥQ + ΥH . ΥαQ = αΥQ . ΥQH = ΥQΥH .
(2) ΥQ is JRS-symmetric.
(3) Q is unitary if and only if ΥQ is orthogonal.
(4) If ΥQ is orthogonal then it must be orthogonal JRS-symplectic.

Now we recall two results from Proposition 4.1 and Theorem 5.1 in [33].

Theorem 2.2. Let Q ∈ Hn×n. Then the real eigenvalues of ΥQ appear in fours; the purely imaginary eigenvalues of ΥQ appear
in pairs and in conjugate pairs.

Theorem 2.3. Let Q ∈ Hn×n. ThenQ is a diagonalizable quaternionmatrix if and only if its real counterpart ΥQ is a diagonalizable
real matrix.

The complex eigenvalue spectrum {λ1, . . . , λn} of Q ∈ Hn×n can be obtained from the 4n dimensional eigenvalue
spectrum of ΥQ ∈ R4n×4n,

{λ1, λ1, λ1, λ1, . . . , λn, λn, λn, λn}.

Corresponding to two different complex eigenvalues λ1 and λ2 with λ1 ≠ λ2 ≠ λ1, two quaternionic eigenvectors of Q are
linearly independent.

From above observations we see that, if wewant to compute the eigenvalues of one n×n quaternionicmatrixQ , thenwe
can deal with the eigenvalue problem of the 4n×4n real counterpart matrixΥQ . In general, that will cost more computation
workload, computational time and storage spaces. We find that all these costs will be greatly reduced if the structures of ΥQ
are fully considered.

3. Structure-preserving algorithm

In this section, we propose a structure-preserving algorithm for solving the eigenvalue problem of the Hermitian quater-
nionic matrix.

By Lemma 2.1, the real counterpart of an n × n Hermitian quaternionic matrix has double structures: symmetry and
JRS-symmetry, and depends on 2n2

−n parameters compared to 16n2 parameters of a general 4n×4n realmatrix. Therefore,
a structure-preserving algorithm can be expected to be much more efficient than a general-purpose method.

An ideal method tailored to the matrix structure would be
• strongly backward stable, i.e., the computed solution is the exact solution corresponding to a nearby matrix with the

same structure;
• reliable, i.e., capable to solve all eigenvalue problems in the considered matrix class;
• requiring O(n3) floating point operations (flops), preferably much less than a competitive general-purpose method.

In the following subsectionswewill propose a new structure-preserving algorithm for solving right eigenvalue problems
of the Hermitian quaternionic matrix.

We refer the reader to [40–46] for more information on structure-preserving methods for other problems.

3.1. Orthogonal JRS-symplectic matrices

Recalling the definition of orthogonal JRS-symplectic matrix in Section 2, every orthogonal JRS-symplectic matrixW has
the block structure

W =

 W0 W2 W1 W3
−W2 W0 W3 −W1
−W1 −W3 W0 W2
−W3 W1 −W2 W0

 , W1,W2,W2,W3 ∈ Rn×n. (3.1)

Two types of elementary orthogonal matrices have this form. One is a 4n × 4n generalized symplectic Givens rotation
defined as

Gl =



1l−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, cosα0, 0, 0, cosα2, 0, 0, cosα1, 0, 0, cosα3, 0
0, 0, 1n−l, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1l−1, 0, 0, 0, 0, 0, 0, 0, 0
0, − cosα2, 0, 0, cosα0, 0, 0, cosα3, 0, 0, − cosα1, 0
0, 0, 0, 0, 0, 1n−l, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1l−1, 0, 0, 0, 0, 0
0, − cosα1, 0, 0, − cosα3, 0, 0, cosα0, 0, 0, cosα2, 0
0, 0, 0, 0, 0, 0, 0, 0, 1n−l, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1l−1, 0, 0
0, − cosα3, 0, 0, cosα1, 0, 0, − cosα2, 0, 0, cosα0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1n−l


(3.2)
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where 1 ≤ l ≤ n, α0, α1, α2, α3 ∈ [−π/2, π/2) and cos2 α0 + cos2 α1 + cos2 α2 + cos2 α3 = 1. Notice that if α2 ≡ 0 and
α3 ≡ 0 then (3.2) is a 4n × 4n symplectic Givens rotation Js(i, α) defined by Eq. (37) in [40]. Another one is the direct sum
of four identical n × n Householder matrices

Hl =


1n − βvvT 0 0 0

0 1n − βvvT 0 0
0 0 1n − βvvT 0
0 0 0 1n − βvvT

 ,
where v is a vector of length nwith its first l − 1 elements equal to zero and β a scalar satisfying β(βvTv − 2) = 0.

3.2. Structure-preserving tridiagonalization

Suppose thatW is a 4n × 4n orthogonal JRS-symplectic matrix, ifΩ is JRS-symmetric then

Jn(W TΩW )JTn = (JnW T )Ω(JnW T )T = W TΩW ,

Rn(W TΩW )RT
n = (RnW T )Ω(RnW T )T = W TΩW ,

Sn(W TΩW )STn = (SnW T )Ω(SnW T )T = W TΩW ,

i.e., W TΩW is still JRS-symmetric. Therefore, orthogonal JRS-symplectic equivalence transformations preserve JRS-
symmetric structures.

Recall that if Q = Q0 + Q1i + Q2j + Q3k is Hermitian then Q0 is symmetric and Q1,Q2,Q3 are skew-symmetric, and
consequently ΥQ defined by (2.5) is symmetric. In this case ΥQ has double structures: symmetry and JRS-symmetry. Now
we deduce the standard form of the real counterpart of a Hermitian quaternionmatrix under the orthogonal JRS-symplectic
transformations.

Theorem 3.1. Suppose that Q ∈ Hn×n is Hermitian and ΥQ is the real counterpart of Q . Then there exists an orthogonal
JRS-symplectic matrix W ∈ R4n×4n such that

WΥQW T
=

D 0 0 0
0 D 0 0
0 0 D 0
0 0 0 D

 , (3.3)

where D ∈ Rn×n is a symmetric tridiagonal matrix.

Proof. Since Q is Hermitian, ΥQ has the form in (2.5) with Q T
0 = Q0,Q T

1 = −Q1,Q T
2 = −Q2,Q T

3 = −Q3. Now we prove the
assertion by induction on the order n ofQ . For n = 1, it is clear that the theorem is true. Suppose that for the case 1 ≤ n < m,
there exists an orthogonal JRS-symplectic matrix W ∈ R4n×4n such that

WΥQ W T
=

D0 0 0 0
0 D0 0 0
0 0 D0 0
0 0 0 D0

 ∈ R4n×4n,

where D0 ∈ Rn×n is a symmetric tridiagonal matrix. For n = m, denote

Q0 =


ω
(0)
11 ω

(0)
12 ω

(0)
13 Ω

(0)
14

ω
(0)
12 ω

(0)
22 ω

(0)
23 Ω

(0)
24

ω
(0)
13 ω

(0)
23 ω

(0)
33 Ω

(0)
34

(Ω
(0)
14 )

T (Ω
(0)
24 )

T (Ω
(0)
34 )

T Ω
(0)
44

 , Q1 =


0 ω

(1)
12 ω

(1)
13 Ω

(1)
14

−ω
(1)
12 0 ω

(1)
23 Ω

(1)
24

−ω
(1)
13 −ω

(1)
23 0 Ω

(1)
34

−(Ω
(1)
14 )

T
−(Ω

(1)
24 )

T
−(Ω

(1)
34 )

T Ω
(1)
44

 ,

Q2 =


0 ω

(2)
12 ω

(2)
13 Ω

(2)
14

−ω
(2)
12 0 ω

(2)
23 Ω

(2)
24

−ω
(2)
13 −ω

(2)
23 0 Ω

(2)
34

−(Ω
(2)
14 )

T
−(Ω

(2)
24 )

T
−(Ω

(2)
34 )

T Ω
(2)
44

 , Q3 =


0 ω

(3)
12 ω

(3)
13 Ω

(3)
14

−ω
(3)
12 0 ω

(3)
23 Ω

(3)
24

−ω
(3)
13 −ω

(3)
23 0 Ω

(3)
34

−(Ω
(3)
14 )

T
−(Ω

(3)
24 )

T
−(Ω

(3)
34 )

T Ω
(3)
44

 ,
in which ω(r)st ∈ R for r = 0, 1, 2, 3, s, t = 1, 2, 3, s ≤ t , Ω(r)

s4 ∈ R1×(m−3) for s = 1, 2, 3, Ω(0)
44 is an (m − 3) × (m − 3)

symmetric matrix, andΩ(r)
44 for r = 1, 2, 3 are (m − 3)× (m − 3) skew-symmetric matrices.



Z. Jia et al. / Journal of Computational and Applied Mathematics 239 (2013) 12–24 17

Denote γ12 =


(ω

(0)
12 )

2 + (ω
(2)
12 )

2 + (ω
(1)
12 )

2 + (ω
(3)
12 )

2, and we take a 4m×4m generalized symplectic Givens rotation G2

defined as in (3.2) with cosαs = ω
(s)
12/γ12 (s = 0, 1, 2, 3), such that

ΥQ ≡ G2ΥQGT
2 =


Q0 Q2 Q1 Q3

−Q2 Q0 Q3 −Q1

−Q1 −Q3 Q0 Q2

−Q3 Q1 −Q2 Q0

 (3.4)

with

Q0 =


ω
(0)
11 γ12 ω

(0)
13 Ω

(0)
14

γ12 ω(0)22 ω(0)23
Ω(0)

24

ω
(0)
13 ω(0)23 ω

(0)
33 Ω

(0)
34

(Ω
(0)
14 )

T (Ω(0)
24 )

T (Ω
(0)
34 )

T Ω
(0)
44

 , Q1 =


0 0 ω

(1)
13 Ω

(1)
14

0 0 ω(1)23
Ω(1)

24

−ω
(1)
13 −ω(1)23 0 Ω

(1)
34

−(Ω
(1)
14 )

T
−(Ω(1)

24 )
T

−(Ω
(1)
34 )

T Ω
(1)
44

 ,

Q2 =


0 0 ω

(2)
13 Ω

(2)
14

0 0 ω(2)23
Ω(2)

24

−ω
(2)
13 −ω(2)23 0 Ω

(2)
34

−(Ω
(2)
14 )

T
−(Ω(2)

24 )
T

−(Ω
(2)
34 )

T Ω
(2)
44

 , Q3 =


0 0 ω

(3)
13 Ω

(3)
14

0 0 ω(3)23
Ω(3)

24

−ω
(3)
13 −ω(3)23 0 Ω

(3)
34

−(Ω
(3)
14 )

T
−(Ω(3)

24 )
T

−(Ω
(3)
34 )

T Ω
(3)
44

 .
In a similar manner we can find generalized symplectic Givens rotations G3,G4, . . . ,Gm such that

ΥQ ≡ Gm · · ·G3(G2ΥQGT
2) (Gm · · ·G3)

T
=


Q0 Q2 Q1 Q3

−Q2 Q0 Q3 −Q1

−Q1 −Q3 Q0 Q2

−Q3 Q1 −Q2 Q0


with

Q0 =


ω
(0)
11 γ12 γ13 Γ14

γ12 ω(0)22 ω(0)23
Ω(0)

24

γ13 ω(0)23 ω(0)33
Ω(0)

34

(Γ14)
T (Ω(0)

24 )
T (Ω(0)

34 )
T Ω(0)

44

 , Q1 =


0 0 0 0

0 0 ω(1)23
Ω(1)

24

0 −ω(1)23 0 Ω(1)
34

0 −(Ω(1)
24 )

T
−(Ω(1)

34 )
T Ω(1)

44

 ,

Q2 =


0 0 0 0

0 0 ω(2)23
Ω(2)

24

0 −ω(2)23 0 Ω(2)
34

0 −(Ω(2)
24 )

T
−(Ω(2)

34 )
T Ω(2)

44

 , Q3 =


0 0 0 0

0 0 ω(3)23
Ω(3)

24

0 −ω(3)23 0 Ω(3)
34

0 −(Ω(3)
24 )

T
−(Ω(3)

34 )
T Ω(3)

44

 ,

where Γ14 = [γ14, . . . , γ1m], γ1s =


(ω

(0)
1s )

2 + (ω
(2)
1s )

2 + (ω
(1)
12 )

2 + (ω
(3)
1s )

2 (s = 3, . . . ,m).
It is obvious that there exists a Householder matrix H2 ∈ Rm×m such that

Υ Q ≡

H2 0 0 0
0 H2 0 0
0 0 H2 0
0 0 0 H2

 ΥQ

H2 0 0 0
0 H2 0 0
0 0 H2 0
0 0 0 H2


T

=


Q 0

Q 2
Q 1

Q 3

−
Q 2

Q 0
Q 3 −

Q 1

−
Q 1 −

Q 3
Q 0

Q 2

−
Q 3

Q 1 −
Q 2

Q 0


with

Q 0 =


ω
(0)
11 γ12 0 0

γ12 ω(0)22
ω(0)23

Ω(0)

24

0 ω(0)23
ω(0)33

Ω(0)

34

0 (Ω(0)

24 )
T (Ω(0)

34 )
T Ω(0)

44

 , Q 1 =


0 0 0 0

0 0 ω(1)23
Ω(1)

24

0 −ω(1)23 0 Ω(1)

34

0 −(Ω(1)

24 )
T

−(Ω(1)

34 )
T Ω(1)

44

 ,
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Q 2 =


0 0 0 0

0 0 ω(2)23
Ω(2)

24

0 −ω(2)23 0 Ω(2)

34

0 −(Ω(2)

24 )
T

−(Ω(2)

34 )
T Ω(2)

44

 , Q 3 =


0 0 0 0

0 0 ω(3)23
Ω(3)

24

0 −ω(3)23 0 Ω(3)

34

0 −(Ω(3)

24 )
T

−(Ω(3)

34 )
T Ω(3)

44

 ,

in whichγ12 =


γ 2
12 + · · · + γ 2

1m.

Let Ω denote the submatrix of Υ Q by deleting the 1,m + 1, 2m + 1, 3m + 1 rows and columns. Then Ω is a
4(m − 1) × 4(m − 1) symmetric and JRS-symmetric matrix as defined in (2.5), and it must be a real counterpart of an
(m − 1) × (m − 1) quaternion matrix. By the introduction assumption, there exists a 4(m − 1) × 4(m − 1) orthogonal
JRS-symplectic matrix

W =


W0 W2 W1 W3

−W2 W0 W3 −W1

−W1 −W3 W0 W2

−W3 W1 −W2 W0

 , Ws ∈ R(m−1)×(m−1) (s = 0, 1, 2, 3)

such that

WΩW T
=

D0 0 0 0
0 D0 0 0
0 0 D0 0
0 0 0 D0

 ∈ R4(m−1)×4(m−1), (3.5)

in which D0 ∈ R(m−1)×(m−1) is a symmetric tridiagonal matrix. Define

W = z

H2 0 0 0
0 H2 0 0
0 0 H2 0
0 0 0 H2

Gm · · ·G2 ∈ R4m×4m, (3.6)

where z ∈ R4m×4m is an orthogonal JRS-symplectic matrix dependent on W ,

z ≡

 z0 z2 z1 z3
− z2 z0 z3 − z1
− z1 − z3 z0 z2
− z3 z1 − z2 z0

 , zs =


1 0
0 Ws


∈ Rk×k (s = 0, 1, 2, 3).

Then for n = m, we have

WΥQW T
=

D 0 0 0
0 D 0 0
0 0 D 0
0 0 0 D


in which D ∈ Rm×m is a symmetric tridiagonal matrix. Therefore for n = m, the assertion of the theorem also holds, and we
have completed the proof of the theorem. �

3.3. Right eigenvalue problem

From Theorem3.1, for a Hermitian quaternionicmatrixQ , the eigen-information aboutΥQ can be obtained by computing
the eigen-information of a symmetric tridiagonal matrix D. By applying Lemma 2.1, (3.1) and (3.3),

ΥD = ΥVΥQΥV∗ = ΥVQV∗ ,

where V = W0 + W1i + W2j + W3k is a unitary matrix in Hn×n. Then we have

VQV ∗
= D. (3.7)

We call (3.7) the real tridiagonalization of the Hermitian quaternion matrix Q . We formulate this result in the following
theorem.
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Theorem 3.2. Let Q ∈ Hn×n be Hermitian. Then there exists an unitary quaternionmatrix V ∈ Hn×n such that VQV ∗
= Dwhere

D is a real symmetric tridiagonal matrix. Furthermore,
(1) if (λ, x) is an eigenpair of D then λ is a right eigenvalue of Q and V ∗x is the corresponding eigenvector;
(2) if D has a diagonalization D = Xdiag (λ1, . . . , λn)XT , where X ∈ Rn×n is an orthogonal matrix and λs ∈ R(s = 1,

2, . . . , n), then Q has a diagonalization

Q = Zdiag (λ1, . . . , λn)Z∗, Z = V ∗X .

Note that the diagonalization of a Hermitian quaternion matrix has been studied in the literature (see [33,35], etc.), here
in Theorems 3.1–3.2, we emphasize that the structures are preserved at each step of the diagonalization process, and the
eigenvectors can be computed directly.

3.4. Structure-preserving algorithm

In this subsection we propose a structure-preserving method for solving the right eigenvalue problem of a Hermitian
quaternionmatrixQ = Q0+Q1i+Q2j+Q3k,Qs ∈ Rn×n, s = 0, 1, 2, 3. Inmany applications, the dimension of the Hermitian
quaternionmatrixQ is very large. If we directly apply standard algorithms for solving real symmetrical eigenvalue problems
to the real counterpart ΥQ , of which the dimension is four times large as the dimension of Q , then the algorithm would be
inefficient. So we develop a structure-preserving algorithm by applying orthogonal JRS-symplectic matrices, therefore the
algorithm is numerically stable, efficient, and the real counterpart needs not to be generated.

We first discuss two nice properties of a JRS-symplectic Givensmatrix Gl defined by (3.2) applied to similarity transforms
of the real counterpart ΥQ of a Hermitian quaternion matrix Q .

Property 1. For given g = g0 + g1i + g2j + g3k ∈ H for g0, g1, g2, g3 ∈ R, if g ≠ 0, then we can take G1, the condensed form
of JRS-symplectic Givens matrix Gl,

G1 =

 cosα0 cosα2 cosα1 cosα3
− cosα2 cosα0 cosα3 − cosα1
− cosα1 − cosα3 cosα0 cosα2
− cosα3 cosα1 − cosα2 cosα0

 =

 g0 g2 g1 g3
−g2 g0 g3 −g1
−g1 −g3 g0 g2
−g3 g1 −g2 g0

 
|g| = Υg/|g|,

then

GT
1Υg = ΥgGT

1 = |g|I4.

Property 2. Because Q is Hermitian, the diagonal elements of Q are all real numbers. Therefore, for any JRS-symplectic Givens
matrix Gl, with the condensed form G1 of Gl, we always have

G1ΥQ (l,l)GT
1 = G1Q0(l, l)I4GT

1 = Q0(l, l)I4 = ΥQ (l,l).

With the above observations, we now propose the following algorithms.

Algorithm 3.3. A method for generating a 4 × 4 generalized symplectic Givens rotation.
Function: G1 = JRSGivens(g0, g1, g2, g3)
If g1 = g2 = g3 = 0,

G1 = 14;

else

G1 =

 g0 g2 g1 g3
−g2 g0 g3 −g1
−g1 −g3 g0 g2
−g3 g1 −g2 g0

 
g2
0 + g2

1 + g2
2 + g2

3 . (3.8)

This algorithm costs 24 flops, including 1 square root operation. Notice that the transformation G1 acts as a four-
dimensional Givens rotation [47,48]. We refer the reader to [45,46] for a backward stable implementation of (3.8) and more
Givens-like actions.

Now we propose an algorithm for the tridiagonalization of the real counterpart of a Hermitian quaternionic matrix.

Algorithm 3.4. For given Hermitian quaternionicmatrix Q = Q0+Q1i+Q2j+Q3k ∈ Hn×n, where Qs ∈ Rn×n, s = 0, 1, 2, 3.
This algorithm presents an orthogonal JRS-symplectic matrix W ∈ R4n×4n and a symmetric tridiagonal matrix D ∈ Rn×n

satisfying (3.3).
Function: [W ,D] = Trihermq (Q0,Q1,Q2,Q3).
Set W = I4n

1. for r = 1 : n − 1
2. for t = r + 1 : n
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3. Generate a generalized symplectic Givens rotation for the (t, r)-th elements of Qs by

G1 = JRSGivens(Q0(t, r),Q1(t, r),Q2(t, r),Q3(t, r)).

4. Denote as = Qs([r : t − 1, t + 1 : n], t). Then

Z = [a0 a2 a1 a3]G1.

5. Update the t-th rows of Qs by

Q0([r : t − 1, t + 1 : n], t) = Z(:, 1),
Q2([r : t − 1, t + 1 : n], t) = Z(:, 2),
Q1([r : t − 1, t + 1 : n], t) = Z(: 3),
Q3([r : t − 1, t + 1 : n], t) = Z(:, 4).

6. Update the t-th columns of Qs by

Q0(t, [r : t − 1, t + 1 : n]) = Q0([r : t − 1, t + 1 : n], t)T ,
Qs(t, [r : t − 1, t + 1 : n]) = −Qs([r : t − 1, t + 1 : n], t)T , s = 1, 2, 3.

7. Generate the orthogonal JRS-symplectic matrixW ∈ R4n×4n by

W (:, [t, n + t, 2n + t, 3n + t]) = W (:, [t, n + t, 2n + t, 3n + t])G1.

8. end
9. Generate a Householder matrix H = house (Q0(r + 1 : n, r)), then for s = 0, 1, 2, 3 do

Qs(r + 1 : n, :) = HQs(r + 1 : n, :),
Qs(:, r + 1 : n) = Qs(:, r + 1 : n)H.

10. Update the orthogonal JRS-symplectic matrixW ,

W (:, [r + 1 : n, n + r + 1 : 2n, 2n + r + 1 : 3n, 3n + r + 1 : 4n])
= W (:, [r + 1 : n, n + r + 1 : 2n, 2n + r + 1 : 3n, 3n + r + 1 : 4n]) diag (H,H,H,H).

11. end.

Algorithm3.4 takes about 12n3 flops for the tridiagonalization for the real counterpartΥQ ∈ R4n×4n of an n × nHermitian
quaternionic matrix Q . There needs to be extra 50n3/3 flops for computing the product of all orthogonal JRS-symplectic
matrices. Recall that the Householder tridiagonalization of 4n× 4n symmetric matrix ΥQ needs about 2(4n)3/3 = 128n3/3
flops, and there needs to be extra 128n3/3 flops for computing the product of all Householder matrices. What is more
important is that Algorithm 3.4 is strongly backward stable, since in every step the structures of ΥQ are preserved.

By Theorem 3.2, we now present a method for the right eigenvalue problem of a Hermitian quaternion matrix based on
the structure-preserving tridiagonalization of its real counterpart.

Algorithm 3.5. A structure-preservingmethod for the computation of the right eigenvalues and corresponding eigenvectors
of a Hermitian quaternion matrix Q = Q0 + Q1i + Q2j + Q3k ∈ Hn×n, where Qs ∈ Rn×n, s = 0, 1, 2, 3.

Function: [V ,Λ] = eighermq(Q0,Q1,Q2,Q3)

1. Compute the tridiagonalization of the real counterpart of Q by Algorithm 3.4.

[W ,D] = Trihermq(Q0,Q1,Q2,Q3).

2. Compute the eigenvalues and corresponding eigenvectors of D by the MATLAB order eig .

[VD,ΛD] = eig(D).

3. Recalling (3.7) and Theorem 3.2, let

W0 = W (1 : n, 1 : n), W1 = W (1 : n, n + 1 : 2n),
W2 = W (1 : n, 2n + 1 : 3n), W3 = W (1 : n, 3n + 1 : 4n),

then

V = V T
D (W0 + W1i + W2j + W3k), Λ = ΛD.

In Algorithm3.5VD andWs, s = 0, 1, 2, 3, are n×n realmatrices,V andΛ can be computed by and only by real operations.
So in many cases the calculation may cost less CPU time by Algorithm 3.5 than by the order eig of the famous Quaternion
toolbox for MATLAB, developed by Sangwine and Le Bihan [49].
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4. Numerical experiment

In this sectionwe present three numerical examples. In the first one, we apply Algorithm 3.5 to solve the right eigenvalue
problem of a Hermitian quaternionic linear operator from quaternionic quantum mechanics, and compare our algorithm
with the famous Quaternion toolbox for Matlab [49]. In the second one we deal with the tridiagonalization of a random
Hermitian quaternionicmatrix. In the third onewe apply our algorithms to compute eigenfaces for face recognition in color.
All these experiments are performed on an AMD Athlon(tm) 64 × 2 Dual Core 2.11 GHz/1.00 GB computer using MATLAB
7.10, and the tolerance is taken to be tol = 10−15.

Example 4.1. In a quaternionic Hilbert space Hn, an n×nHermitian quaternionic linear operator OH as in (2.2) is defined by

OH =



3 −2i −j −2k 0 · · · 0

2i 3 −2i
. . .

. . .
. . .

...

j 2i
. . .

. . .
. . .

. . . 0

2k
. . .

. . .
. . .

. . .
. . . −2k

0
. . .

. . .
. . .

. . . −2i −j
...

. . .
. . .

. . . 2i 3 −2i
0 · · · 0 2k j 2i 3


.

1. When n = 5, compute the eigenvalues and corresponding eigenvectors of OH by Algorithm 3.5.
2. Make a comparison between Algorithm 3.5 and the order eig of Quaternion toolbox for Matlab [49].

Solution. 1. Since OH is Hermitian, by Algorithm 3.5 we get

Λ = {−1.2426, 0.0000, 3.0000, 6.0000, 7.2426},
V = V0 + V1i + V2j + V3k,

where

V0 =


0.3557 0 −0.4943 0 0.1996
0.4969 0 0.1988 0 −0.3975
0.5031 0 0.3926 0 0.5031
0.4969 0 −0.0994 0 −0.3975

−0.3557 0 0.1998 0 −0.1996


T

, V1 =


0 −0.5895 0 0.3118 0
0 −0.1739 0 −0.3230 0
0 0.0245 0 0.0245 0
0 0.5714 0 0.2733 0
0 0.0005 0 0.2771 0


T

,

V2 =


0 0 0.0936 0 0.2945
0 0 −0.0994 0 −0.2981
0 0 −0.4908 0 −0.0000
0 0 0.1988 0 0.2981
0 0 −0.4617 0 0.2945


T

, V3 =


0 −0.0647 0 0.2119 0
0 0.2236 0 0.5217 0
0 −0.2209 0 −0.2209 0
0 −0.2236 0 −0.0745 0
0 −0.3770 0 0.5243 0


T

.

In fact OH is similar to a real symmetric tridiagonal matrix

D =


3.0000 3.0000 0 0 0
3.0000 3.0000 2.1344 0 0

0 2.1344 3.0000 2.1082 0
0 0 2.1082 3.0000 3.0000
0 0 0 3.0000 3.0000

 ,
which can be computed by Algorithm 3.4. Now we make an error analysis,

maxλ∈Λ

min
λ∈Λ

|λ−λ| = 1.998401444325282e − 015,

minλ∈Λ

min
λ∈Λ

|λ−λ| = 2.220446049250313e − 016,

whereΛ = {3 − 3
√
2, 0, 3, 6, 3 + 3

√
2}

is the set of all explicit eigenvalues of OH. Above results show that our algorithms are reliable.
2. For n = 10: 300, we apply Algorithm 3.5 and the order eig of Quaternion toolbox for Matlab [49] to OH, respectively.

In Fig. 1, the solid line and the dash-dotted line show the CPU times costed by Algorithm 3.5 and the order eig of Quaternion
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Fig. 1. CPU times for computing eigenvalues and eigenvectors.

Fig. 2. Eigenvalues in descending order.

toolbox, respectively. When n ≤ 20, the CPU time costed by Algorithm 3.5 is about one-eighth of that by the order eig of
Quaternion toolbox; when n is large the CPU time costed by Algorithm 3.5 is about a quarter of that by the order eig of
Quaternion toolbox. Fig. 2 shows that the computational accuracy of Algorithm 3.5 is almost the same as the order eig of
Quaternion toolbox [49].

Example 4.2. In this example we compare Algorithm 3.4 with the Householder tridiagonalization algorithm (for example,
see Algorithm 1.1 on p. 161 of [50]) and the order tridiagonalize of Quaternion toolbox [49]. Given a Hermitian quaternion
matrix Q = Q0 + Q1i + Q2j + Q3k where Q0 ∈ Rn×n is a random symmetric matrix, Q1,Q2,Q3 ∈ Rn×n are three random
skew-symmetric matrices.

In Fig. 3, the solid line, the ‘‘+’’ line and the dash-dotted line show the CPU times costed by Algorithm 3.4, the order
tridiagonalize of Quaternion toolbox and the Householder tridiagonalization algorithm, respectively. When the order n is
large, the CPU time costed by Algorithm 3.4 is about one-eighth of that by the Householder tridiagonalization algorithm, and
about a quarter of that by the order tridiagonalize of Quaternion toolbox [49]. Notice that the operations of Algorithm 3.4
are about a quarter of that of the Householder tridiagonalization algorithm, and the dimension of the matrix processed in
each step of Algorithm 3.4 is also about a quarter of that of the Householder tridiagonalization algorithm.

Example 4.3. Color can be used to improve the performance of face recognition as it has plenty of discriminative informa-
tion. It is well known that a color image for face recognition can be represented by a quaternion matrix. But the algorithms
tend to be more computationally expensive. Applying our algorithms will overcome this major drawback.

Calculating eigenfaces is the core work of face recognition in color. It needs to compute the eigenvalues and correspond-
ing eigenvectors of a covariancematrix. Nowwe apply Algorithm 3.5 to do this. In this experiment, we take 16 faces in color
from Faces95 [51], and compute their eigenfaces in color as shown in Fig. 4. The process takes about 0.015 s. It should be
noted that the eig order of Quaternion toolbox will take about 0.203 s to do the same work.
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Fig. 3. CPU time of tridiagonalization.

Fig. 4. Eigenfaces in color of 16 faces from Faces95.

5. Conclusions

In this paper we present a structure-preserving method to solve the (right) eigenvalue problems of Hermitian quater-
nionic linear operators on quaternionic vector spaces. For Hermitian quaternionic linear operators, we find that their real
counterparts have two structures, i.e., symmetry and JRS-symmetry, and these structures are unchanged under orthogonal
JRS-symplectic equivalence transformations. Sowe construct a structure-preservingmethod for the tridiagonalization of the
real counterpart, andmake it possible that the 4n-dimensional problem is reduced to an n-dimensional problem. Indeed, we
compute a real symmetric tridiagonal matrix which is similar to the original Hermitian quaternionic linear operator. This is
the core of our method. There are at least two advantages of the new structure-preserving tridiagonalization algorithm.

• It costs only about a quarter of operations and one-eighth of the CPU time of the famous Householder tridiagonalization
algorithm, and the obtained tridiagonal matrices are still symmetric and JRS-symmetric.

• Compared with the order tridiagonalize of Quaternion toolbox for Matlab, it can compute the real symmetric tridiagonal
matrix by and only by real computations, and the principal advantage over the order tridiagonalize of Quaternion toolbox
is a four-fold reduction in CPU time.
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Numerical examples show that our algorithms are reliable, and that the larger the dimension of the problem the more
obvious is the advantage of the structure-preserving method.
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