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a b s t r a c t

This paper studies the ruin probability for a Cox risk model with intensity depending
on premiums and stochastic investment returns, and the model proposed in this paper
allows the dependence between premiums and claims.When the surplus is invested in the
bond market with constant interest force, coupled integral equations for the Gerber–Shiu
expected discounted penalty function (GS function) are derived; together with the initial
value and Laplace transformation of the GS function, we provide a numerical procedure
for obtaining the GS function. When the surplus can be invested in risky asset driven by a
drifted Brownian motion, we focus on finding a minimal upper bound of ruin probability
and find that optimal piecewise constant policy yields the minimal upper bound. It turns
out that the optimal piecewise constant policy is asymptotically optimal when initial
surplus tends to infinity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ruin theory models with force of interest or stochastic investment return have received considerable attention in past
two or three decades. For results on the ruin theory under models with constant interest force see, for example, [1–11] and
references therein. In [12], an expected discounted penalty function is introduced, and it is called the Gerber–Shiu function
(or GS function). This has been studied by many authors in the literature. One popular method to study the ruin probability
or the GS function is to analyze the integral–differential equation satisfied by the ruin probability or the GS function, and
another group of literature is on bounds estimation or asymptotic behavior of ruin probability. Most of the studies assume
that the premium income rate is a fixed constant. Some work on variable premium rate models can be found in [13–15].
This paper focuses on the Cox risk model with variable premium rate specified by a function of the Cox process intensity,
and thus the model allows the dependence between premium incomes and claims. Since more premium income means
more customers, more claims probably will occur. So the model is reasonable. The first part of this paper devotes to the
GS function when the model receives constant interest force. Coupled integral equations satisfied by the GS function are
obtained. Together with the initial value of the GS function, we can derive the expression for the GS function.

The second part of the paper focuses on optimal investment policy when the model has stochastic investment return.
In a model with constant interest force, if the claim sizes have exponential moments (i.e. the ‘‘light tailed claims’’), the ruin
probability decreases exponentially as the initial surplus increases. However, when there is a stochastic investment return,
the situation can be different. Frovola et al. [16], Gjessing and Paulsen [17], Kalashnikov and Norberg [18] investigated the
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problem under the assumption that all the surpluses are invested in the risky market; it has been shown that even if the
claims are ‘‘light tailed claims’’, the ruin probability decreases only in the order of a negative power of the initial surplus. This
somehow indicates that investing the surplus into the risky market cannot be optimal. Naturally, one interesting problem
is: if an insurer has the opportunity to invest in the risky asset, what is the optimal investment policy if the insurer wants
to minimize the ruin probability? In particular, can the insurer do better than keeping the surplus in the bond? Browne [19]
considered this problem for the drifted Brownian motion risk model and found that the optimal policy is to invest constant
amount in the risky asset, independent of the surplus of the wealth process. In this case ruin probability has a closed form
expression and is much smaller than the one without any investment in risky asset. However, in most cases, it is not easy
to obtain an explicit solution for the optimal policy. Alternatively, there are some papers focused on finding optimal policy
minimizing the upper bound of ruin probability (c.f. [20,21]). They found that the optimal policy to minimize the upper
bound of ruin probability is a kind of constant policy, and they proved that such constant policy is asymptotic optimal when
the initial surplus tends to infinity. Motivated by the work of Gaier et al. [20], the second part of the paper aims to find
optimal investment policy minimizing the upper bound of ruin probability and proves its asymptotic optimality. Results
obtained in this part can be regarded as an extension of Gaier et al. [20] to the case of the Cox risk model with dependence
between the premiums and claims.

This paper is organized as follows. Section 2 provides an introduction to the model and the problem formulation. In
Section 3, a coupled system of integral equations satisfied by the GS function is obtained and the initial value of the GS
function is derived. Section 4 investigates the optimal investment policy for minimizing the upper bound of ruin probability
and proves that the optimal constant investment policy is asymptotically optimal when initial surplus tends to infinity.

2. Model and problem formulation

Let (Ω,F , P) be a complete probability space. The surplus process of an insurer is specified by

Xt = u +

 t

0
c(λs)ds −

Nt
i=1

Yi, (2.1)

where u > 0 is the initial surplus, {Nt , t ≥ 0}, denotes the number of claims arrived up to time t , is a Cox process with
intensity process {λt , t ≥ 0}. {Yi, i ≥ 1} are i.i.d. random variables with common distribution function F(x) and F(0) = 0.
{λt , t ≥ 0} is a positive-valued, continuous time Markov chain with state space E = {αi, i = 1, 2, , , n} and generator
Q =


qij

n×n. c(·) is a continuous, positive valued function defined on R+. Define τ1 the first time that the process {λt , t ≥ 0}

leaves the initial state, i.e. τ1 = inf{t : t > 0, λt ≠ λ0}. By the classical results on continuous time Markov chain, if
qi := −qii =


j≠i qij < ∞, then we have the following results.

Lemma 1. Suppose that λ0 = αi, then for any αi ∈ E, the following properties holds:

P (τ1 > t) = e−qit; (2.2)

P

τ1 ≤ t, λτ1 = αj


= (1 − e−qit)

qij
qi

; (2.3)

P

λτ1 = αj


=

qij
qi
. (2.4)

The proof of Lemma 1 can be found in [22]. Let F λ
t = σ {λs, 0 ≤ s ≤ t}, F X

t = σ {Xt , 0 ≤ s ≤ t} and
Ft = σ {(λs, Xs), 0 ≤ s ≤ t}. In this paper we shall use Lemma 2.19 in [22], and we cite it here.

Lemma 2. (i) Nt has independent increments with respect to F λ
∞
;

(ii) Nt − Ns is a Poisson distribution with mean
 t
s λrdr with respect to F λ

∞
.

One common assumption in the insurance risk model is the ‘‘positive safety loading’’ condition, which guarantees that
the expected net income of the insurer is positive. Assume that the process {λt , t > 0} is stationary with initial distribution
π = (π1, π2, . . . , πn). Then the following condition guarantees that ‘‘positive safety loading’’ holds.

Ec(λt) = Ec(λ0) > Eλ0EY := pEY . (2.5)
Note that qi < ∞ and λt is a finite-state Markov chain; it follows from the standard results on the stochastic process
(c.f. [23]) that E|λt − λ0|

2
→ 0 (t → 0+) and consequently E|c(λt) − c(λ0)|2 → 0 (t → 0+) and we also have

E
 t
0 c(λs)ds =

 t
0 Ec(λs)ds (c.f. Theorem 2.3, [23]). In fact, Eq. (2.5) ensures that for any t ≥ 0, the expected total premium

income is larger than the expected aggregate claims since

E
 t

0
c(λs)ds =

 t

0
Ec(λs)ds = tEc(λ0) > E


N(t)
i=1

Yi


= EYE

 t

0
λsds


= EYEλ0t

⇐⇒ Ec(λt) = Ec(λ0) > EYEλ0 := pEY .
In particular, putting c(λt) = (1 + ρ)pEY with ρ > 0, our model reduces to the one considered in [22].
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Let Ti(u) = inf{t : Xt < 0|X0 = u, λ0 = αi}, the ruin time of Xt with λ0 = αi, X0 = u, and T (u) = inf{t : Xt < 0|X0 = u}
the ruin time of process (2.1), with the convention that inf∅ = ∞. Denote the ultimate ruin probabilitywith initial surplus u
and initial intensity state αi by ψ(u, i), i.e.

ψ(u, αi) = P

Ti(u) < ∞


= P


T (u) < ∞|X0 = u, λ0 = αi


, (2.6)

the ruin probability with initial surplus u by ψ(u), i.e.

ψ(u) = P

T (u) < ∞


= P


inf
t
Xt < 0|X0 = u


=

n
i=1

ψ(u, i)πi, (2.7)

and the probability that ruin occurs before or on the nth claim by

ψn(u) = P

T (u) ≤ Ln

X0 = u

, (2.8)

where Ln denotes the nth claim time. Besides the ruin probability, other important ruin quantities in ruin theory include the
Laplace transform of the ruin time, denoted by E[e−αT

]; the surplus immediately before ruin, denoted by XT−; the deficit at
ruin, denoted by |XT |, etc. are also important. A unified approach to study these ruin quantities is the GS function which is
defined as

φi,β(u) = E

ω(XT (u)−, |XT (u)|)e−βT (u)1{T (u)<∞}|λ0 = αi


, (2.9)

where ω(x, y), x ≥ 0, y ≥ 0 is a nonnegative function such that φi,β(u) exists. In this paper ω(x, y) is assumed to be
bounded, i.e. supx,y ω(x, y) = M < ∞, x ≥ 0, y ≥ 0, M is a positive constant. The following boundary conditions are
trivial.

φi,β(∞) = ψ(∞, αi) = ψ(∞) = 0. (2.10)

3. Gerber–Shiu expected discounted penalty function

This section focuses on the case that the insurer would like to invest all the surpluses to the bond market with force of
interest δ. Then, the dynamic of the surplus process is specified as

dXt = Xtδdt + c(λt)dt − dZt , (3.1)

where Zt =
Nt

i=1 Yi denotes aggregate claims up to time t . Eq. (3.1) implies that

e−δtdXt − δe−δtXtδdt = d

e−δtXt


= e−δtc(λt)dt − e−δtdZt .

Replace t with r in Eq. (3.1) and integrate both sides w.r.t. r from 0 to t; it follows that

Xt = eδt

u +

 t

0
e−δrc(λr)dr −

 t

0
e−δrdZr


. (3.2)

Theorem 3.1. Vector

φ1,β(u), φ2,β(u), . . . , φd,β(u)


is the solutions to the following matrix equation

8β(u) =

 u

0
K(u, t)8β(t)dt + B(u)8β(0)− C(u)

 u

0
m(t)dt −

 u

0
T(u)8β(t)dt

=

 u

0
[K(u, t)− T(u)]8β(t)dt + B(u)8β(0)− C(u)

 u

0
m(t)dt, (3.3)

where

8β(u) :=

φ1,β(u), φ2,β(u), . . . , φd,β(u)

T
,

K(u, t) := diag

α1(1 − F(u − t))+ β + δ

δu + c(α1)
, . . . ,

αd(1 − F(u − t))+ β + δ

δu + c(αd)


,

B(u) := diag


c(α1)

δu + c(α1)
,

c(α2)

δu + c(α2)
, . . . ,

c(αd)

δu + c(αd)


,

C(u) := diag


α1

δu + c(α1)
,

α2

δu + c(α2)
, . . . ,

αd

δu + c(αd)


, (3.4)

T(u) =

tij(u)


n×n a matrix with tij(u) =

qij
δu+c(αi)

, i, j = 1, 2, . . . , d and m(t) denotes


∞

t ω(t, y − t)dF(y).

Proof. Suppose that (X0, λ0) = (u, αi). Inspired by the ‘‘differential argument’’ applied in [3], consider a very short time
interval [0,∆t]; there are four cases:



L. Xu et al. / Journal of Computational and Applied Mathematics 256 (2014) 52–64 55

(i) no claim arrives and λt does not jump in [0,∆t], then

X∆t = ueδ∆t
+ eδ∆t

 ∆t

0
e−δrc(λr)dr = ueδ∆t

+ c(αi)
eδ∆t

− 1
δ

≈ ueδ∆t
+ c(αi)∆t

with probability (1 − qi∆t)(1 − αi∆t)+ o(∆t). Note that when∆t is very small, eδ∆t
≈ (1 + δ∆t);

(ii) λt does not jump but one claim occurs with arrival time∆s(< ∆t), then we have

X∆t = ueδ∆t
+∆tc(αi)− Y1eδ(∆t−∆s)

with probability (1 − qi∆t)αi∆t + o(∆t). Note that in this case we should further consider whether the claim causes ruin
or not;

(iii) λt jumps but no claim occurs in the time interval [0,∆t]; denote the jump time by∆h(< ∆t), then we have

X∆t = ueδ∆t
+∆hc(αi)+ c(αj)(∆t −∆h)

with probability qi∆t
qij
qi
(1 − αi∆t)+ o(∆t);

(iv) other cases happen with probability o(∆t).
By the Markov property of process (Xt , λt)we have

φi,β(u) = E


E

ω(XT (u)−, |XT (u)|)1T (u)<∞

X∆t , λ∆t

 X0 = u, λ0 = αi


= (1 − qi∆t)(1 − αi∆t)e−β∆tφi,β([u(1 + δ∆t)+ c(αi)∆t])

+ (1 − qi∆t)αi∆te−β∆t


∞

ueδ∆t+c(αi)∆t
ω(ueδ∆t

+ c(αi)∆t, y − ueδ∆t
− c(αi)∆t)dF(y)

+

 ueδ∆t
+c(αi)∆t

0
φi,β(ueδ∆t

+ c(αi)∆t − y)dF(y)



+ e−β∆t

i≠j

qij
qi

qi∆t(1 − αi∆t)φj,β(ueδ∆t
+ c(αi)∆h + c(αj)(∆t −∆h))+ o(∆t). (3.5)

Rearranging Eq. (3.5) yields

φi,β(u)− φi,β(u + [uδ + c(αi)]∆t) = −(qi + αi + β)φi,β([u(1 + δ∆t)+ c(αi)∆t])

+ (1 − qi∆t)αi∆te−β∆t


∞

ueδ∆t+c(αi)∆t
ω(ueδ∆t

+ c(αi)∆t, y − ueδ∆t
− c(αi)∆t)dF(y)

+

 ueδ∆t
+c(αi)∆t

0
φi,β(ueδ∆t

+ c(αi)∆t − y)dF(y)



+ e−β∆t

i≠j

qij
qi

qi∆t(1 − αi∆t)φj,β(ueδ∆t
+ c(αi)∆h + c(αj)(∆t −∆h))+ o(∆t). (3.6)

Eq. (3.6) indicates that φi,β(u) is continuous. Under the assumption that function ω(x, y) is bounded, by the dominated
convergence theorem, differentiating both sides of Eq. (3.6) with respect to∆t yields

φ′

i,β(u)[uδ + c(αi)] = (αi + β + δ)φi,β(u)

−αi


∞

u
ω(u, y − u)dF(y)+

 u

0
φi,β(u − y)dF(y)


−

d
j=1

qijφj,β(u). (3.7)

Replace argument u in the above equation by t and integrate both sides of Eq. (3.7) with respect to t from 0 to u, and note
that  u

0
(δt + c(αi))φ

′

i,β(t)dt =

 u

0
(δt + c(αi))dφi,β(t) = (δt + c(αi))φi,β(t)

u
0
−

 u

0
δφi,β(t)dt

= (δu + c(αi))φi,β(u)− c(αi)φi,β(0)− δ

 u

0
φi,β(t)dt;

denote


∞

t ω(t, y − t)dF(y) bym(t), then we have

φi,β(u) =
αi + β + δ

δu + c(αi)

 u

0
φi,β(t)dt +

c(αi)

δu + c(αi)
φi,β(0)
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−
αi

δu + c(αi)

 u

0
m(t)dt −

αi

δu + c(αi)

 u

0

 t

0
φi,β(t − y)dF(y)dt

−

d
j=1

qij
δu + c(αi)

 u

0
φj,β(t)dt. (3.8)

Since  u

0

 t

0
φi,β(t − y)dF(y)dt =

 u

0

 u

y
φi,β(t − y)dtdF(y)

=

 u

0

 u−y

0
φi,β(t)dtdF(y) = F(y)

 u−y

0
φi,β(t)dt

u
0
−

 u

0
F(y)d

 u−y

0
φi,β(t)dt


=

 u

0
F(u − t)φi,β(t)dt, (3.9)

it follows that

φi,β(u) =

 u

0

αi(1 − F(u − t))+ β + δ

δu + c(αi)
φi,β(t)dt +

c(αi)

δu + c(αi)
φi,β(0)

−
αi

δu + c(αi)

 u

0
m(t)dt −

d
j=1

qij
δu + c(αi)

 u

0
φj,β(t)dt, i = 1, 2, . . . , d. (3.10)

For i = 1, 2, . . . , d, Eq. (3.10) composes a coupled systemof integro equations andEq. (3.3) is thematrix form. This completes
the proof. �

Eq. (3.3) provides theway to obtain the value of8β(u) by the Piccard recursivemethod once the value of8β(0) is known.
The rest of this section provides a result for 8β(0) under some suitable conditions. To proceed our discussion, let

K(r, αi) = E

e−r(XL1−u)

|λ0 = αi

,

K(r) = E

e−r(XL1−u)

=

d
i=1

πiE

e−r(XL1−u)

|λ0 = αi


=

d
i=1

πiK(r, αi). (3.11)

The proof of Lemma 3.2 can be found in the Appendix.

Lemma 3.2. Suppose that Ri is a positive root of equation K(r, αi) = 1, i = 1, 2, . . . , d and R is the positive root of equation
K(r) = 1. Let R̄ := min Ri. Then

ψ(u, αi) ≤ ϱe−R̄u, i = 1, 2, . . . , d (3.12)

ψ(u) ≤ ϱe−Ru, (3.13)

where ϱ is specified by ϱ−1
= inft≥0


∞

t e−RudF(u)
eRt F̄(t)

. Naturally, since ω(x, y) is nonnegative and bounded by M, we have

φi,β(u) ≤ ϱMe−R̄u, i = 1, 2, . . . , d. (3.14)

Theorem 3.3. Suppose the conditions of Lemma 3.2 hold, we have

8β(0) =


α1

c(α1)
,
α2

c(α2)
, · · · ,

αd

c(αd)

T

Θ, (3.15)

whereΘ = limu→∞

 u
0 m(u − t)dt.

Proof. Revisit Eq. (3.10) with t replaced by u − t , by some mathematical manipulations, it follows that

φi,β(u) =

 u

0

αi(1 − F(t))+ β + δ

δu + c(αi)
φi,β(u − t)dt −

αi

δu + c(αi)

 u

0
m(u − t)dt

+
c(αi)

δu + c(αi)
φi,β(0)−

d
j=1

qij
δu + c(αi)

 u

0
φj,β(u − t)dt, i = 1, 2, . . . , d. (3.16)
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Multiply δu + c(αi) on both sides of Eq. (3.16); note that Eq. (3.14) guarantees that

lim
u→∞

φi,β(u)(δu + c(αi)) = 0, i = 1, 2, . . . , d. (3.17)

Using Eq. (3.17), togetherwith boundary condition equation (2.10) and the dominated convergence theorem, letting u → ∞

on both sides of Eq. (3.16) yields

φi,β(0) =
αi

c(αi)
lim
u→∞

 u

0
m(u − t)dt. (3.18)

Summarizing the previous discussion, we complete the proof. �

Remark 1. Eq. (3.17) plays a key role in Theorem3.3, one can easily see thatφi,β(u) = o(u−(1+γ )) for some γ > 0 sufficiently
justifies Eq. (3.17), thus conditions in Lemma 3.2 seem too strong. However, Lemma 3.2 can also serve as an exponential
bound estimation for the GS function, which is a classical research topic in risk theory. �

Remark 2. Taking Laplace transform on both sides of Eq. (3.7) yields

c(αi)sφ̃i,β(s)− αiΘ − δ
dφ̃i,β(s)

ds
= (αi + β)φ̃i,β(s)− αim̃(s)− αiF̃(s)φ̃i,β(s)−

d
j=1

qijφ̃j,β(s), (3.19)

where

φ̃i,β(s) =


∞

0
e−suφi,β(u)du, i = 1, 2, . . . , d;

m̃(s) =


∞

0
e−sum(u)du;

F̃(s) =


∞

0
e−sudF(u).

Eq. (3.19) can be rewritten in the matrix form:

δ
dφ̃β(s)

ds
= Dβ(s)φ̃β(s)− H18β(0)+ H2M̃(s), (3.20)

where φ̃β(s) =


φ̃1,β(s), . . . , φ̃d,β(s)

T
and Dβ(s) is a d × d matrix of the form

Dβ(s) =


(H1s + Q − βI)− H2 + H2F̃(s)


(3.21)

with

I = diag(1, 1, . . . , 1)
H1 = diag(c(α1), c(α2), . . . , c(αd));

H2 = diag(α1, α2, . . . , αd),

M̃(s) = (m̃(s), m̃(s), . . . , m̃(s))T . (3.22)

Eq. (3.20) is a first order, nonlinear matrix ODE. To our knowledge, there is no close form solution to Eq. (3.20). Using the
method of inverting Laplace transformation, Eq. (3.3) provides a numerical method for solving Eq. (3.20). �

Example 1. Consider the case that λt ≡ α and c(λt) = (1 + ρ)αEY with ρ > 0, then our model reduces to the compound
Poisson risk model. If ω(x, y) ≡ 1 and β = 0 then ψi,β(0) is the ruin probability for the classical risk model with positive
safety loading ρ. By Eq. (3.18), we have

ψ(0) =
α

(1 + ρ)αEY
lim
u→∞

 u

0


∞

x
dF(t)dx =

1
1 + ρ

. (3.23)

This is a classical result for the compound Poisson risk model (c.f. [22]).

4. Minimizing the upper bound of ruin probability

Motivated by Gaier et al. [20], this section focuses on finding investment policy that minimizes the upper bound of ruin
probability, and we also prove its asymptotic optimality. Thus, the purpose of this section is to investigate whether there
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are constants R∗

i and C(αi) such that

ψ̂(u, αi) ≤ C(αi)e−R∗
i u, (4.1)

where ψ̂(u, αi) is the minimum ruin probability over all admissible investment policies and it is also known as the value
function in control theory. Of course, there is always a possibility not to invest anything in the risky asset at all, resulting in
an exponential bound for the ruin probability ψ̂(u, αi), which is the so-called Lundberg upper bound for the Cox risk model
without investment (c.f. [22]). Our purpose is to find the tightest upper bound for the minimum ruin probability, that is to
say we want to find the optimal (i.e. the largest) coefficient R∗

i such that (4.1) holds.
To proceed our discussion, we assume that there are two kinds of assets available for investors in the financial market:

a risk-free asset and risky asset, and their dynamics are specified respectively by

dr(t) = δr(t)dt,
dPt
Pt

= µdt + σdBt , (4.2)

where {Bt , t ≥ 0} is a standard Brownian Motion, δ, µ and σ are positive constants. P = {Pt , t ≥ 0} and λ = {λt , t ≥ 0}
are mutually independent. Due to the non-arbitrage assumption of financial market, it is assumed that µ > δ > 0.

Denote by {At} the amount invested in the risky asset at time t and XA
t the wealth process with policy {At , t > 0}. XA

t −At
is the amount invested in bond. Denote by F = {Ft}t≥0 the smallest filtration satisfying the usual condition such that the
process {(λt , Pt), t ≥ 0} is measurable. Assume that strategies {At , t ≥ 0} are predictable w.r.t. Ft and the insurers are
allowed to invest more than its current wealth in risky asset. This means that the value of an admissible policy at time t may
depend on the history of the process (XA

t , λt , Pt) up to time t , but it may not depend on the size of a claim occurring at time
t . Thus the admissible set is

A =


A = (At)t≥0 : A is predictable and P

 t

0
A2
s ds < ∞


for all t ∈ [0,∞)


.

Fleming and Soner [24] state that when the state process of a controlled system isMarkovian, then aMarkov optimal control
is also a general optimal control. Note that (XA

t , λt) is a controlledMarkov vector process; thus it is sufficient to consider the
Markovian control here, i.e. At takes the form of

At = A(XA
t−, λt), (4.3)

where A(·, ·) is the deterministic of investment policy At .

Remark 3. The dynamic of XA
t is

dXA
t = c(λt)dt − dZt + At(µ− δ)dt + XA

t δdt + AtσdBt , (4.4)

which implies that

e−δtdXA
t − δe−δtXA

t dt = e−δt [c(λt)dt − dZt + At(µ− δ)dt + AtσdBt ]

and thus

d

e−δtXA

t


= e−δt [c(λt)dt − dZt + At(µ− δ)dt + AtσdBt ] =: e−δtdX̃A

t (4.5)

e−δtXA
t is the discounted process of XA

t and thus has the same ruin probability of XA
t . Consequently, X̃

A
t has the same ruin

probability with XA
t , for mathematical convenience, we only study the optimal policy for process X̃A

t . �

Denote µ̃ = µ− δ > 0, then

dX̃A
t = [µ̃At + c(λt)]dt + AtσdBt − dZt . (4.6)

Denote the time of ruin with initial surplus u and policy A by

T (u, A(·, ·)) = inf

t ≥ 0 : X̃A(·,·)

t < 0|X̃A(·,·)
0 = u


(4.7)

and ruin probability by ψA(·,·)(u, αi) = P(T (u, A(·, ·)) < ∞|X̃A(·,·)
0 = u, , λ0 = αi). The value function is

ψ̂(u, αi) = inf
A(·,·)∈A

ψA(·,·)(u, i). (4.8)

Denote by AC the piecewise constant control policy and the value of At only depend on the value of the intensity process
λt , i.e.

AC = {A ∈ A, At = A(λt), t ≥ 0}. (4.9)
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It is obvious that AC ⊂ A. The idea of this section is to find an optimal policy in AC . Then we prove that the optimal policy
in AC is the limits of the true optimal policy in A when u → ∞. To distinguish two different type investment strategies,
denote by A(·) the piecewise constant policy and by A(·, ·) the general policy. Suppose that function V (x, l) belongs to the
domain of the infinitesimal operator of process (X̃A

t , λt), then for all A(·) ∈ AC ,

LA(·)V (u, αi) = c(αi)Vx(u, αi)+ αiE[V (u − Y , αi)− v(u, αi)] + A(αi)µ̃Vx(u, αi)

+
1
2
A(αi)

2σ 2Vxx(u, αi)+

d
j=1

qijV (u, αj), i = 1, 2, 3, . . . , d, (4.10)

where Vx, Vxx denote the first and second partial derivatives of V (u, αi)with respect to u. The following boundary condition
is natural,

V (+∞, αi) = 0, i = 1, 2, . . . , d. (4.11)

The Dynkin Theorem (see [25]) claims thatM(t) = V (X̃A
t , λt) is a martingale for any V such that

LA(·)V = 0. (4.12)

Since the main purpose of this paper is to find an optimal exponential upper bound for ruin probability and corresponding
optimal investment piecewise constant policy, motivated by Grandell [22] (Prop. 52 of Chapt. 4), we restrict ourself to
function V with the form of

V (u, αi) = g(αi)e−ru, i = 1, 2, . . . , d. (4.13)

Theorem 4.1. Fix A > 0, for any i = 1, 2, . . . , d, if there exist g : R+ → R+ and Ri(A) > 0, i = 1, 2, . . . , d such that

αi[EerY − 1] +
1
2
A2σ 2r2g(αi)− r[c(αi)g(αi)+ Aµ̃g(αi)] +

d
j=1

qijg(αj) ≡ 0, (4.14)

then,

ψA(u, αi) ≤
g(αi)e−Ri(A)u

E[g(λT (u,A))1{T (u,A)<∞}|λ0 = αi]
. (4.15)

Proof. Plugging (4.13) into (4.12), it is easy to see that

LAV (u, αi) = e−ru


αi[EerY − 1] +

1
2
A2σ 2r2g(αi)− r[c(αi)g(αi)+ Aµ̃g(αi)] +

d
j=1

qijg(αj)


,

which shows that Eq. (4.14) is equivalent to (4.12). Therefore

M(t, Ri(A), A) := g(λt)e−Ri(A)X̃A
t (4.16)

is a F -martingale. By the optional sampling theorem, we have

E

g(λ0)e−Ri(A)u


= E [M(0, Ri(A), A)] = EM(T (u, A) ∧ n, Ri(A), A)

≥ E

M(T (u, A) ∧ n, Ri(A), A)1{T (u,A)≤n}


= E [M(T (u, A) ∧ n, Ri(A), A)|T (u, A) ≤ n] P(T (u, A) ≤ n). (4.17)

Thus,

ψA
n (u, αi) = P(T (u, A) ≤ n|λ0 = αi) ≤

g(αi)e−Ri(A)u

E[M(T (u, A) ∧ n, Ri(A), A)|T (u, A) ≤ n]
. (4.18)

Let n → ∞, note that X̃T (u,A) < 0 and thus e−Ri(A)X̃T (u,A) > 1, we have

ψA(u, αi) = P(T (u, A) < ∞|λ0 = αi) ≤
g(λ0)e−Ri(A)u

E [M(T (u, A), Ri(A), A)|T (u, A) < ∞]

<
g(αi)e−Ri(A)u

E[g(λT (u,A))1{T (u,A)<∞}|λ0 = αi]
. (4.19)

This completes the proof.



60 L. Xu et al. / Journal of Computational and Applied Mathematics 256 (2014) 52–64

Let

C(αi, A) :=
g(αi)

E[g(λT (u,A))1{T (u,A)<∞}|λ0 = αi]
,

C(αi) := max
A∈AC

C(αi, A).

Since ψ̂(u, αi) = infA(·,·)∈A ψ
A(·,·)(u, i), we have

ψ̂(u, αi) ≤ C(αi, A)e−Ri(A)u ≤ C(αi)e−Ri(A)u. (4.20)

The purpose of this section is to find the ‘‘tightest’’ upper bound for ψ̂(u, αi). One should note that the coefficient Ri(A)
depends on the value of A and current state of the intensity process λt . To obtain the tightest upper bound, it is sufficient to
find the maximum of Ri(A) over all A. Denote by R∗

i the maximum of Ri(A) and A∗

i is the maximizer of R∗

i . Then we have

ψ̂(u, αi) ≤ ψA∗
i (u, αi) ≤ C(αi)e−R∗

i u. (4.21)

Following this procedure, we can determine a sequence of investment policies which minimize the upper bound of ruin
probability and the policies vary w.r.t. the state of λt . Lemma 4.2 defines the relationship between A∗

i and R∗

i and provides
the method to find the expressions of A∗

i and R∗

i .

Lemma 4.2. For any fixed A, if
d

j=1 qijg(αj) < 0, then there always exists a positive Ri(A) such that Eq. (4.14) holds and only
A∗

i =
µ̃

σ 2R∗
i
minimizes the left hand side of Eq. (4.14), which results in a maximum R∗

i .

Proof. Let

h(r, A) := αi[EerY − 1] +
1
2
A2σ 2r2g(αi)− r[c(αi)g(αi)+ Aµ̃g(αi)] +

d
j=1

qijg(αj)

h1(r) := αi

EerY − 1


− rc(αi)g(αi)

h2(r) := −


1
2
A2σ 2r2g(αi)− Aµ̃rg(αi)+

d
j=1

qijg(αj)


. (4.22)

With the assumption, for any fixed A, h(0, A) =
d

j=1 qijg(αj) < 0 and ∂2h(r,A)
∂r2

= αiE[Y 2erY ] + A2σ 2g(αi) > 0. Thus there
must exist a unique positive Ri(A) such that Eq. (4.14) holds. It is easy to see that A =

µ̃

σ 2r
is the maximizer of h2(r) for all r .

Note that for any fixed A, root of Eq. (4.14) is the intersection of h1(r) and h2(r). Since h1(0) < 0 and d2h1(r)
dr2

> 0, it follows
that A =

µ̃

σ 2r
yields the maximum r satisfying Eq. (4.14). This root is dependent on the current state of intensity process λt

and denote it by R∗

i . Consequently, the optimal investment constant policy is determined by A∗

i =
µ̃

σ 2R∗
i
. This completes the

proof. �

Given that current state of λt is αi, by Lemma 3.2 we know that R∗

i is the solution to the following equation.

αi[EerY − 1] − rc(αi)g(αi)−
µ̃

2σ 2
g(αi)+

d
j=1

qijg(αj). (4.23)

The following theorem summarizes previous discussions.

Theorem 4.3. The optimal piecewise constant policy for minimizing the upper bound of ruin probability is specified as

A∗(λt) = A∗

i , given that λt = αi, (4.24)

where A∗

i =
µ̃

σR∗
i
and R∗

i is determined by Eq. (4.23).

Remark 4. Denote by f (αi, r, A(·, ·)) the left hand side of Eq. (4.14) by replacing Awith A(·, ·), then

f (αi, R∗

i , A(·, ·)) = f (αi, R∗

i , A
∗

i )− (A(·, ·)− A∗

i )R
∗

i µ̃g(αi)+
1
2


(A(·, ·)2 − A∗2

i )

σ 2R∗2

i g(αi)

= f (αi, R∗

i , A
∗

i )− (A(·, ·)− A∗

i )R
∗

i µ̃g(αi)

+
1
2


(A(·, ·)− A∗

i )
2
+ 2A∗

i (A(·, ·)− A∗

i )

σ 2R∗2

i g(αi). (4.25)
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Note that A∗

i =
µ̃

σ 2R∗
i
and f (αi, R∗

i , A
∗

i ) = 0, Eq. (4.25) can be reformulated as

f (αi, R∗

i , A(·, ·)) = f (αi, R∗

i , A
∗)+

1
2
(A(·, ·)− A∗

i )
2

=
1
2
(A(·, ·)− A∗

i )
2 > 0. (4.26)

This means that

M(t, R∗

i , A(·, ·)) := g(λt)e−R∗
i X

A
t (4.27)

is a submartingale for any investment policy A(·, λt) ≠ A∗(λt) and we cannot have ψi(u, A(·, ·)) ≤ C(αi)e−R∗
i A

∗
i . This

indicates that Eq. (4.19) only holds for the piecewise constant policy A∗(λt) and thus the optimal investment policy in
A∗(·, ·) ∈ A can be approximated by optimal piecewise constant policies A∗(·) ∈ AC when the initial value u tends to
infinity. However, the statements are not strict inmathematics. The rest of this section gives the proof of such approximation
when the claims have uniform exponential moment in tail distribution. �

Definition 4.4 (c.f. Gaier et al. [20]).We say that ξ has a uniform exponential moment in the tail distribution for r , if

sup
y≥0

E

e−r(y−ξ)

ξ > y

< ∞. (4.28)

The proofs of the following two Lemmas are similar to that of Theorem 4 and Lemma 5 of Gaier et al. [20] and we state
it without proof.

Lemma 4.5. Assume that Y has a uniform exponential moment in the tail distribution for R∗

i ; then for each A(·, ·) ∈ A, the
process M(t, R∗

i , A(·, ·)) is a uniformly integrable submartingale.

Lemma 4.6. Assume that Y has a uniform exponential moment in the tail distribution for R∗

i ; then for each A(·, ·) ∈ A and
u > 0, the stopping process

X̃A(·,·)
t := XA(·,·)

t∧T (u,A(·,·)) (4.29)

converges almost surely on {T (u, A(·, ·)) = ∞} to ∞ when t → ∞. In other words, either ruin occurs, or the insurer becomes
infinitely rich. As a result, we know that

M̃(t, R∗

i , A(·, ·)) := M(t ∧ T (u, A), R∗

i , A(·, ·)) (4.30)

converges to 0 as t → ∞ on the set {T (u, A(·, ·)) = ∞}.

Theorem 4.7. Assume that Y has a uniform exponential moment in the tail distribution for R∗

i ; then for each A(·, ·) ∈ A, λ0 = αi
and R∗

i we have

ψA(·,·)(u, αi) = P(T (u, A(·, ·)) < ∞|λ0 = αi)

≥
g(αi)e−R∗

i u

E[M(T (u, A(·, ·)), R∗, A(·, ·))|T (u, A(·, ·)) < ∞]

≥ Ce−R∗
i u, (4.31)

where

C =
1

sup
y≥0

E[e−R∗
i (y−Y )

|Y > y]
> 0. (4.32)

In particular, we have

ψ̂(u, αi) ≥ Ce−R∗
i u. (4.33)

Proof. Using a similar argument to that in Eq. (4.19), we have

g(αi)e−R∗
i u = M̃(0, R∗

i , A) ≤ E[M̃(T (u, A), R∗

i , A)]

= E[M̃(T (u, A), R∗

i , A)|T (u, A) < ∞]P(T (u, A) < ∞)

+ E[M̃(T (u, A), R∗

i , A)|T (u, A) = ∞]P(T (u, A) = ∞)

= E[M̃(T (u, A), R∗

i , A)|T (u, A) < ∞]P(T (u, A) < ∞).
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Note that investment cannot cause ruin (c.f. [26]); thus ruin can only be caused by claim. Suppose that XA
T (u,A)− = y > 0,

then

E[M̃(T (u, A), R∗

i , A)|T (u, A) < ∞] ≤ sup
y≥0

E[e−R∗
i (y−Y )

|Y > y]. (4.34)

This completes the proof. �

Remark 5. What can we say from Eq. (4.21) and Theorem 4.7? One can find that the Lundberg upper bound (4.21) does not
hold for exponent R∗

i when A(·, ·) ≠ A∗, note that R∗

i is defined as the supremum of Ri(A), Eq. (4.31) indicates that R∗

i is the
maximal adjustment coefficient (i.e. the minimal upper bound for ruin probability) we can obtain over all A(·, ·) ∈ A. The
optimal piecewise constant policy corresponding to adjustment coefficient R∗

i is A∗
=

µ̃

σ 2R∗
i
. �

Lemma 4.8. Assume that Y has a uniform exponential moment in the tail distribution for R∗

i , let A(·, ·) be the determining
function of Markovian control process At . If there exist ϵ > 0 and uϵ ≥ 0 such that

|A(u, αi)− A∗

i | ≥ ϵ for u ≥ uϵ, (4.35)

then, there exist rϵ < R∗

i and Aϵ > 0 such that

ψA(·,·)(u, αi) ≥ Aϵe−rϵu. (4.36)

Theorem 4.9. Let A∗(·, ·) be the determining function of optimal Markov control policy of problem (4.8), then we have

lim
u→∞

A∗(u, αi) = A∗

i , for all i = 1, 2, . . . , d. (4.37)

Proof. Assume that limu→∞ A∗(u, αi) ≠ A∗

i , then there exists ϵ, uϵ > 0 such that

|A∗(u, αi)− A∗

i | ≥ ϵ for u ≥ uϵ . (4.38)

Therefore, by Lemma 4.8 we have

ψ̂(u, αi) = inf
A(·,·)∈A

ψA(·,·)(u, αi) ≥ Aϵe−rϵu for some rϵ < R∗

i , (4.39)

which yields that

lim
u→∞

V (u, αi)

e−R∗
i u

= ∞, (4.40)

which is a contradiction to the fact that

ψ̂(u, αi) ≤ inf
A∈AC

ψA(u, αi) = ψA∗
i (u, αi) ≤ C(αi)e−R∗

i u. (4.41)

Remark 6. One should note that the optimal piecewise constant policy is for the ‘‘discounted’’ risk process (that is the force
of interest is δ = 0). Otherwise, the result is slightly different. If δ ≠ 0, by simple calculation, it is easy to see that the optimal
investment policy at time t is given by eδtA∗(λt), where A∗(λt) is specified by Eq. (4.24).

Remark 7. What is themessage of our result frompractical point of view?When the initial surplus of an insurer is very large,
for the optimal investment problem, minimizing ruin probability is a very conservative approach, especially in the sense of
asymptotical optimality. Another remarkable fact, which follows from our analysis, is that, by incorporating additional risks
(investment return from risky asset) we can decrease the ruin probability. And such decrease is quite substantial and leads
to a different exponential decay for the ruin probability. Thus, when an insurer tries to invest in risky asset, even under a
very conservative risk measure (e.g. ruin probability), optimal policy is still important. �
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Appendix

For notational simplicity, we only present the bound for ruin probability ψ(u) and the idea can be extended to ψ(u, αi)
easily. Note that ruin only occurs when a claim arrives, thus we can consider the so-called ‘‘skeleton-process’’ of process
(3.2) in studying ruin probability. Denote the ‘‘discounted skeleton risk process’’ of process (3.2) by

Mn := e−δLnXLn = e−δLn


XLn−1e

δ(Ln−Ln−1) +

 Ln

Ln−1

eLn−δrc(λr)dr − Yn



= Mn−1 + e−δLn−1

 Ln

Ln−1

e−δ(r−Ln−1)c(λr)dr − Yne−δ(Ln−Ln−1)


(A.1)

with the convention that L0 = 0. Obviously,

F̄(x) =


∞

t eRydF(y)

eRt F̄(t)

−1

e−Rx


∞

x
eRydF(y) ≤ ϱe−Rx


∞

x
eRydF(y), (A.2)

where ϱ−1
= inft≥0


∞

t e−RudF(u)
eRt F̄(t)

. Consider whether the first claim causes ruin or not; we have the following recursive
formula.

ψn(u) = P(T ≤ Ln) = P


n

k=1

{Mk < 0}|M0 = u



= P


n

k=1

Mk < 0|M1 < 0


P(M1 < 0)+ P


n

k=1

{Mk < 0} |M1 > 0


P(M1 > 0)

= P

Y1 > ueδL1 +

 L1

0
eδ(L1−r)c(λr)dr


+ E


P


n

k=2

{Mk < 0}
M1 = u +

 L1

0
e−δrc(λr)dr − Y1e−δL1



× P

Y1 < ueδL1 +

 L1

0
eδ(L1−r)c(λr )dr



= E

F̄

ueδL1 +

 L1

0
eδ(L1−r)c(λr)dr



+

 ueδL1+
 L1
0 eδ(L1−r)c(λr )dr

0
ψn−1


ueδL1 +

 L1

0
eδ(L1−r)c(λr)dr − y


dF(y)

 . (A.3)

For n = 1, by inequality (A.2), it follows that

ψ1(u) = E

F̄(ueδL1 +

 L1

0
eδ(L1−r)c(λr)dr)



≤ E


ϱe−R


ueδL1+

 L1
0 eδ(L1−r)c(λr )dr

  ∞

ueδL1+
 L1
0 eδ(L1−r)c(λr )dr

eRydF(y)


(A.4)

≤ ϱe−RuEe−R

u(eδL1−1)+

 L1
0 eδ(L1−r)c(λr )dr−Y


(A.5)

= ϱe−RuE

e−R(XL1−X0)


= ϱe−Ru. (A.6)

By an inductive method, we suppose that for n = k and u > 0

ψk(u) ≤ ϱe−Ru, (A.7)
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then for n = k + 1,

ψk+1(u) = E

F̄(ueδL1 +

 L1

0
eδ(L1−r)c(λr)dr)

+

 ueδL1+
 L1
0 eδ(L1−r)c(λr )dr

0
ψk


ueδL1 +

 L1

0
eδ(L1−r)c(λr)dr − y


dF(y)


≤ E

ϱe−R

ueδL1+

 L1
0 eδ(L1−r)c(λr )dr

  ∞

ueδL1+
 L1
0 eδ(L1−r)c(λr )dr

eRydF(y)

+

 ueδL1+
 L1
0 eδ(L1−r)c(λr )dr

0
ϱe−R


ueδL1+

 L1
0 eδ(L1−r)c(λr )dr−y


dF(y)


= ϱe−RuE


exp


−R


u(eδL1 − 1)+

 L1

0
eδ(L1−r)c(λr)dr − Y


= ϱe−RuE


e−R(X1−X0)


= ϱe−Ru. (A.8)

The second step of the previous equation comes from (A.4). Let k → ∞ and note that limk→∞ ψk(u) = ψ(u), this completes
the proof. �
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