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a b s t r a c t

We present a new semilocal convergence analysis for the Secant and the Moser method
in order to approximate a solution of an equation in a Banach space setting. Using the
method of recurrent relations and weaker sufficient convergence criteria than in earlier
studies such as Amat et al. (2014), Hernández and Rubio (2007), Hernández and Rubio
(1999) and Hernández and Rubio (2002) we increase the convergence domain of these
methods. The advantages are also obtained under less computational cost than in Amat
et al. (2014), Hernández andRubio (2007), Hernández andRubio (1999) andHernández and
Rubio (2002). Numerical examples where the older convergence criteria are not satisfied
but the new convergence criteria are satisfied are also provided in this study.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this study we are concerned with the problem of approximating a solution x∗ of the equation

F(x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subsetD of a Banach spaceX with values in a Banach space Y .
A large number of problems in applied mathematics and engineering are solved by finding the solutions of certain

equations [1–8]. Except in special cases, the most commonly used solution methods are iterative. In fact, starting from
one or several initial approximations a sequence is constructed that converges to a solution of the equation. The study about
the convergence matter of iterative procedures is usually based on two types: semilocal and local convergence analysis.
The semilocal convergence matter is, based on the information around an initial point, to give conditions ensuring the
convergence of the iterative methods; while the local one is, based on the information around a solution to find estimates
on the radii of convergence balls. There is a plethora on local and semilocal convergence results on iterative methods can be
found in [1–20].

Newton’s method given by

xn+1 = xn − F ′(xn)−1F(xn), for each n = 0, 1, 2, . . . , (1.2)
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where x0 is an initial point, is undoubtedly the most famous quadratically convergent iterative method for approximating
x∗ [1,6,8,11]. To avoid the computation of the first derivative at each step, the Secantmethod is used as an efficient alternative
to Newton’s method, which is written as follows [1–20]:

xn+1 = xn − L−1
n F(xn), Ln = [xn−1, xn; F ], for each n = 0, 1, 2, . . . , (1.3)

where x−1, x0 ∈ D, are initial points, [x, y; F ] ∈ L(X, Y ), the space of bounded linear operators from X to Y is a divided
difference of order one for the operator F at the points x, y ∈ Ω satisfying [x, y; F ](x − y) = F(x) − F(y) for each x, y ∈ Ω

with x ≠ y. If F is Fréchet differentiable then F ′(x) = [x, x; F ].
The algorithm of the Secantmethod requires the solution of the system of equations say in the case X = Y = Rm given by

Ln(xn+1 − xn) = F(xn), for each n = 0, 1, 2, . . . . (1.4)

This iterative process has convergence order 1+
√
5

2 . In order to improve the convergence, Moser method [15] defined by

xn+1 = xn − BnF(xn)
Bn+1 = 2Bn − BnLn+1Bn, (1.5)

where x0 ∈ D is an initial point and B0 ∈ L(X, Y ) is a given operator was introduced. Recently, a comparison was given
in [11] between the Secant method (1.3) and the Moser method (1.5) in the semilocal case. The convergence criteria
and the convergence domains between the two methods were also compared. In the present, study, using the method of
recurrent relations, we obtain newweaker convergence criteria [11,15–18] for bothmethods under less computational cost
of the constants involved. In particular, the advantages of our approach are: weaker sufficient convergence criteria; weaker
Lipschitz conditions; tighter error estimates on the distances ∥xn+1 − xn∥, ∥xn − x∗

∥ for each n = 0, 1, 2, . . . and an at least
as precise information on the location of the solution x∗.

The rest of the paper is organized as follows. Section 2 contains the convergence of bothmethods. Thenumerical examples
where older convergence criteria do not hold but our convergence criteria hold can be found in Section 3.

In the rest of the paper we denote by U(x, r), Ū(x, r) the open and closed balls in X with center x ∈ D and of radius
r > 0, respectively.

2. Semilocal convergence

In this section we shall study the semilocal convergence of the Moser method (1.5) for S = (F , x−1, x0, B0, L0) belonging
to the class C = C(l0, l, α, µ, β, δ) defined as follows:

Definition 2.1. Let l0 > 0, l > 0, α ≥ 0, µ ≥ 0, β > 0 and δ ≥ 0 be given constants. Set

η = βµ, d0 = δ + β(l0α + lη), c0 = βη(l0 + ld0(1 + d0))η,

d1 = d20 + c0 and c1 = c0d0(1 + d0)(1 + d1).
(2.1)

Suppose that

d20 < d0 − c0 and c1 ≤ c0. (2.2)

We say that S belongs to the class C if:

(C1) F is a nonlinear operator defined on a convex subset D of a Banach space X and with values in a Banach space Y .
(C2) x0 and x−1 are two points belonging to the interior Ḋ of D and satisfying the inequations

∥x0 − x−1∥ ≤ α

and

∥F(x0)∥ ≤ µ.

(C3) B0 ∈ L(X, Y ) and L0 ∈ L(X, Y ) satisfy

∥B0∥ ≤ β and ∥I − L0B0∥ ≤ δ.

(C4) F is Fréchet differentiable on D and there exist a divided difference of order one [x, y; F ] : D × D → L(X, Y ) such that

∥[x, y; F ] − [u, v; F ]∥ ≤ l0∥x − u∥ + l∥y − v∥ for each x, y, u, v ∈ D.

(C5) Ū(x0, R) ⊆ D, where R =
η

1−∆
and ∆ = d0(1 + d0) < 1.

Using these conditions and notation we can state the main semilocal convergence result for the Moser method (1.5).
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Theorem 2.2. If S ∈ C, then, sequence {xn} generated by the Moser method (1.5) is well defined, remains in Ū(x0, R) for each
n = 0, 1, 2, . . . and converges with R-order of convergence at least 1+

√
5

2 to a solution x∗ of equation F(x) = 0 such that

∥xn − x∗
∥ ≤

∆n

1 − ∆
ηγ δn−1 for each n = 0, 1, 2, . . . ,

where

γ1 =
d1
d0

, γ2 =
c1
c0

, γ = max{γ1, γ2} ∈ (0, 1),

δ−1 = 0, δ0 = 0, δn−1 = s1 + s2 + · · · + sn−1 for each n = 2, 3, . . .
sn = αn+2 − 1, s1 + s2 + · · · + sn = αn+4 − (n + 3) for each n = 1, 2, . . . .

(2.3)

Moreover, the sequence {Bn} converges to B∗, the bounded right inverse of F ′(x∗) = [x∗, x∗
; F ].

Remark 2.3. Before presenting the proof of Theorem2.1, let us compare the new resultswith the corresponding ones in [11].
They supposed in [11] instead of (C4) the condition:

(C4)
′
∥[x, y; F ] − [u, v; F ]∥ ≤ K(∥x − u∥ + ∥y − v∥).

Notice that (C4)
′ implies condition (C4) if we set l0 = l = K but not necessarily vice versa unless if K = max{l, l0}. However,

in general

l0 ≤ K (2.4)

and

l ≤ K (2.5)

hold. Set

d̄0 = δ + βK(α + η), c̄0 = βKη(1 + d̄0 + d̄0
2
), d̄1 = d̄0

2
+ c̄0, c̄1 = c̄0d̄0(1 + d̄0)(1 + d̄1). (2.6)

The sufficient convergence criteria in [11] corresponding to (2.2) are given by

d̄0
2

< d̄0 − c̄0 and c̄1 ≤ c̄0. (2.7)

But if strict inequality holds in condition (2.4) or (2.5), then by (2.1) and (2.6) we get that

d0 < d̄0, c0 < c̄0, d1 < d̄1 and c1 < c̄1. (2.8)

Hence, it follows from (2.2) and (2.7) that

(2.7) ⇒ (2.2) (2.9)

but not necessarily vice versa. That is the new conditions are weaker. Moreover, new sequences {dn} and {cn} (involved in
the proof of Theorem 2.2) defined by

dn = d2n−1 + cn−1, cn = cn−1dn−1(1 − dn−1)(1 + dn) for each n = 1, 2, . . .

are tighter than the old sequences {d̄n} and {c̄n} defined by

d̄n = d̄2n−1 + c̄n−1, c̄n = c̄n−1d̄n−1(1 − d̄n−1)(1 + d̄n).

That is by a dimple inductive argument, if l0 < K or l < K , we have that

dn < d̄n and cn < c̄n for each n = 0, 1, . . . .

The convergence radius in [11] is given by

R̄ =
η

1 − ∆̄
, ∆̄ = d̄0(1 + d̄0).

It follows from (2.8) that R < R̄ for l0 < K or l < K .
Hence, the information on the location of the solution is at least as precise. Notice that in practice the computation

of constant K involves the computation of constants l0 and l. Hence, the new advantages are obtained under the same
computational cost for the constants involved as before.

Proof of Theorem 2.2. With the above changes in the definition of c0, d0, c1 and d1 the proofs are analogous to the
corresponding ones in [11]. To avoid repetitions we state the results and only present the proof of Lemma 2.4 which differs
from the proof of Lemma 3.2 in [11].
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Lemma 2.4. If the sequences {dn} and {cn} are decreasing and xn ∈ D for each n = 1, 2, . . . , then

(In) ∥F(xn)∥ ≤ dn−1∥F(xn−1)∥,
(IIn) ∥B(xn)∥ ≤ (1 + dn−1)∥Bn−1∥,
(IIIn) ∥xn+1 − xn∥ ≤ dn−1(1 − dn−1)∥Bn−1∥ ∥F(xn−1)∥,
(IVn) ∥I − Ln+1Bn∥ ≤ dn,
(Vn) ∥Ln+2 − Ln+1∥ ∥Bn+1∥ ≤ cn
and

∥Bn+1 − Bn∥ ≤ dn∥Bn∥.

Proof. We shall show that the preceding assertions hold for n = 1. It follows from (1.5), (2.1) and (C3) that

∥x1 − x0∥ = ∥B0F(x0)∥ ≤ ∥B0∥ ∥F(x0)∥ = βµ = η.

By hypothesis x1 ∈ D. That is

L1 = [x0, x1; F ] and B1 = 2B0 − B0[x0, x1; F ]B0

exist. Using Moser method (1.5) for n = 0, we get in turn that

F(x1) = F(x0) − [x0, x1; F ](x0 − x1)
= F(x0) − [x0, x1; F ]F(x0)
= (I − [x0, x1; F ]B0)F(x0)
= (I − L1B0)F(x0). (2.10)

We also have that

∥I − L1B0∥ ≤ ∥I − L0B0∥ + ∥L1 − L0∥ ∥B0∥

and by (C2)–(C4) and (2.1)

∥L1 − L0∥ ∥B0∥ ≤ (l0∥x0 − x−1∥ + l∥x1 − x0∥)∥B0∥ ≤ (l0α + lη)β

and

∥I − L1B0∥ ≤ δ + β(l0α + lη) = d0.

That is

∥F(x1)∥ ≤ d0∥F(x0)∥.

We also have by the second substep in Moser method (1.5) for n = 0 that

∥B1∥ = ∥2B0 − B0L1B0∥ ≤ (1 + ∥I − L1B0∥)∥B0∥ ≤ (1 + d0)∥B0∥.

In view of the first substep of Moser method (1.5) for n = 1, we have

∥x2 − x1∥ = ∥B1F(x1)∥ ≤ d0(1 + d0)∥B0∥ ∥F(x0)∥ ≤ d0(1 + d0)ηδ = d0(1 + d0)η.

Consequently, we get

∥x2 − x0∥ ≤ ∥x2 − x1∥ + ∥x1 − x0∥ ≤ [1 + d0(1 + d0)]∥B0∥ ∥F(x0)∥ ≤ [1 + d0(1 + d0)]η.

By hypothesis x2 ∈ D. Hence, L2 exists. Moreover, we have that

∥L1 − L2∥ ∥B1∥ ≤ (l0∥x1 − x0∥ + ∥x2 − x1∥)∥B1∥

≤ (l0η + ld0(1 + d0)η)(1 + d0)∥B0∥

≤ (l0η + ld0(1 + d0)η)(1 + d0)ηβ = c0.

Notice that

∥I − L2B1∥ ≤ ∥I − L1B0∥
2
+ ∥L1 − L2∥ ∥B1∥ ≤ d20 + c0 = d1.

Hence, we showed the assertions for n = 1. The rest of the proof follows by straightforward mathematical induction on the
integer n. �

Lemma 2.5. Suppose that (2.2) holds. Then, the following assertions hold

(i) d0(1 + d0) < 1,
(ii) sequences {cn} and {dn} are decreasing
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(iii) dn < γ αndn−1 and cn < γ βncn−1 for each n = 1, 2, . . . , where {αn} and {βn} are the Fibonacci sequences defined by

α1 = α2 = 1 and αn+2 = αn+1 + αn,

β1 = 1, β2 = 2 and βn+2 = βn+1 + βn,

for each n = 1, 2, . . . .
(iv) dn < γ snd0 and cn = γ sn+1d0.

(v) αn =
l

√
5


1+

√
5

2

n
−


1−

√
5

2

n
> l

√
5


1+

√
5

2

n−1
for each n = 1, 2, . . . .

Proof. It follows exactly as the proof of Lemmas 3.3 and 4.1 in [11]. �

The proof of the rest of the assertions in Theorem 2.2 can be found in Theorems 3.4 and 4.2 in [11]. �
Next, we present the corresponding results to the ones in [11,16–18] for the Secant method (1.3) in an analogous way.
Consider the set S1 = (F , x−1, x0, L0) belonging to the class C1

= C(l0, l, α, µ, λ) if:

Definition 2.6. Let l0 > 0, l > 0, α ≥ 0, µ ≥ 0 and λ > 0 be given constants. Set

ρ = λµ, a−1 =
ρ

α + ρ
, a0 = λ(l0α + lρ) and a1 =

a0a−1

(1 − a0)2
.

Suppose that

a0 < (1 − a1)2 and a−1 < (1 − a0)2.

We say that S1 belongs to the class C1 if (C1), (C2), (C4) and

(C5)
′ Ū(x0, R0) ⊆ D,

where

R0 =
η

1 − ∆0
, ∆0 =

a0
1 − a0

< 1

hold.

Then, as in our Theorem 2.2 (see also the proofs in [11,16–18]), we arrive at the following semilocal result for the Secant
method (1.3).

Theorem 2.7. If S1 ∈ C1, then sequence {xn} generated by the Secant method (1.3) is well defined, remains in Ū(x0, R0) for
each n = 0, 1, 2, . . . and converges with R-order of convergence at least 1+

√
5

2 to a unique solution x∗ of equation F(x) = 0 in
Ū(x0, R0).

Remark 2.8. A remark similar to Remark 2.3 can follow for the Secant method (1.3). Notice that in [11,16–18] the constants
are defined (using (C4)

′ instead of (C4)):

ā−1 = a−1, ā0 = λK(α + ρ), ā1 =
ā0ā−1

(1 − ā0)2

and

R̄0 =
η

1 − ∆̄0
, ∆̄0 =

ā0
1 − ā0

< 1.

The sufficient convergence criteria are:

ā0 ≤ (1 − ā1)2 and ā−1 < (1 − ā0)2

and

Ū(x0, R̄0) ⊆ D.

Notice again that if l0 < K or l < K we have:

a0 < ā0, a1 < ā1 and R0 < R̄0.

The rest of the comments are identical to the ones given in Remark 2.3.

3. Numerical examples

We present four numerical examples in which the old convergence criteria given in [11] are not satisfied but our new
criteria are satisfied. The first two involve the Moser method (1.5) and the last two the Secant method (1.3).
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Example 1 (Moser Method). In the following example, we consider the real function

x3 − 0.49 = 0. (3.11)

We take the starting points x0 = 0.85, x−1 = 1 and we consider the domain Ω = B(x0, 0.5). In this case, we obtain

µ = 0.124125,
α = 0.15,
L0 = 2.5725,
k = l = 6

and

l0 = 3.

Choosing B0 = 0.4, we obtain that δ = 0.029 and η = 0.04965. Notice that the old hypothesis d20 < d0 − c0 is not satisfied
since

d20 = 0.258227 > 0.190719 = d0 − c0

but with the new definitions of d0 and c0 given in Section 2 conditions of Theorem 2.2 are satisfied since

d20 = 0.107689 < 0.320668 = d0 − c0,
c1 = 0.00364164 < 0.00749232 = c0

and

R = 0.212531 < 0.5.

So, Moser method starting from x0 ∈ B(x0, 0.5) converges to the solution of (3.11) from Theorem 2.2.

Example 2 (Moser Method). Consider the following nonlinear boundary value problem
u′′

= −u3
−

1
4

u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s +

 1

0
Q(s, t)


u3(t) +

1
4

u2(t)


dt (3.12)

where, Q is the Green function:

Q(s, t) =


t(1 − s), t ≤ s
s(1 − t), s < t.

We observe that

max
0≤s≤1

 1

0
|Q(s, t)| dt =

1
8
.

Then problem (3.12) is in the form (1.1), where, F is defined as

[F(x)] (s) = x(s) − s −

 1

0
Q(s, t)


x3(t) +

1
4

x2(t)


dt.

The Fréchet derivative of the operator F is given by

[F ′(x)y] (s) = y(s) − 3
 1

0
Q(s, t)x2(t)y(t)dt −

1
2

 1

0
Q(s, t)x(t)y(t)dt.

Choosing x0(s) = s and R = 0.8 we have that ∥F(x0)∥ ≤ 0.15625 . . . . Define the divided difference defined by

[x, y; F ] =

 1

0
F ′(τx + (1 − τ)y)dτ .
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Taking into account that

∥[x, y; F ] − [u, v; F ]∥ ≤

 1

0
∥F ′ (τx + (1 − τ)y) − F ′ (τu + (1 − τ)v) ∥ dτ

≤
1
8

 1

0


3τ 2(∥x2 − v2

∥ + ∥y2 − u2
∥) + 6τ(1 − τ)∥xy − uv∥

+
1
2
τ∥x − u∥ +

1
2
(1 − τ)∥y − v∥


dτ

≤
1
8


∥x2 − u2

∥ +

∥y2 − v2∥


+ (∥xy − uv∥)


+

1
32

(∥x − u∥ + (∥y − v∥)) .

And it is easy to see that

k = l =
1
64

+
1
4
(2 + 2R) = 0.915625

and

l0 =
1
64

+
1
4
(1 + R) = 0.465625.

Choosing x−1(s) =
99s
100 and beta = 1.67 we find that

L0 = 0.432213,
δ = 0.0517949,
η = 0.260938

and

α = 0.01.

Notice that the old hypothesis d20 < d0 − c0 is not satisfied since

d20 = 0.217234 > −0.518597 = d0 − c0

but with the new definitions of d0 and c0 given in Section 2 conditions of Theorem 2.2 are satisfied since

d20 = 0.210285 < 0.334481 = d0 − c0,
c1 = 0.110748 < 0.124088 = c0

and

R = 0.787983 < 0.8.

So, Moser method starting from x0 ∈ B(x0, 0.8) converges to the solution of (3.11) from Theorem 2.2.

Example 3 (Secant Method). Let X = Y = C[0, 1], the space of continuous functions defined in [0, 1] equipped with the
max-norm. Let Ω = {x ∈ C[0, 1]; ∥x∥ ≤ R}, such that R > 1 and F defined on Ω and given by

F(x)(s) = x(s) − f (s) −
3
2

 1

0
G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, λ is a real constant and the kernel G is the Green’s function

G(s, t) =


(1 − s)t, t ≤ s,
s(1 − t), s ≤ t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the following expression:

[F ′(x)(v)](s) = v(s) −
9
2

 1

0
G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f (s) = 22, we obtain

∥F(x0)∥ ≤
3
16

.
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On the other hand, for x, y ∈ Ω we have Choosing R = 0.8 we have that ∥F(x0)∥ ≤
3
8 . Define the divided difference

defined by

[x, y; F ] =

 1

0
F ′(τx + (1 − τ)y)dτ .

Taking into account that

∥[x, y; F ] − [u, v; F ]∥ ≤

 1

0
∥F ′ (τx + (1 − τ)y) − F ′ (τu + (1 − τ)v) ∥ dτ

≤
3
2

 1

0


3τ 2(∥x2 − v2

∥ + ∥y2 − u2
∥) + 6τ(1 − τ)∥xy − uv∥


dτ

≤
3
2


∥x2 − u2

∥ +

∥y2 − v2∥


+ (∥xy − uv∥)


.

And it is easy to see that

k = l = 1.3125

and

l0 = 0.65625.

Choosing x−1(s) = swe find that

L0 = 2.625,
λ = 0.380952,
ρ = 0.142857

and

α = 1.

Notice that the old hypothesis a20 < (1 − a1)2 is not satisfied since

a20 = 0.571429 < 0.373457 = (1 − a1)2

but with the new definitions of a0 and a1 given in Section 2 conditions of Theorem 2.7 are satisfied since

a20 = 0.321429 < 0.610352 = (1 − a1)2,

a−1 = 0.125 < 0.460459 = (1 − a0)2

and

R = 0.271429 < 0.75.

So, Secant method starting from x0 ∈ B(x0, 0.8) converges to the solution of (3.11) from Theorem 2.7.

Example 4 (Secant Method). Let X = Y = R and let consider the real functions

F(x) = x3 − A

where A ∈ (1.2, 1.25) and we are going to apply secant-method to find the solution of F(x) = 0. We take the starting point
x0 = 1 we consider the domain Ω = B(x0, 1) and we let x−1 free in order to find a relation between A and x−1 for which old
criteria are not satisfied but new criteria are satisfied. In this case, we obtain

µ = |(1 − A)|, λ =
1

|1 + x−1 + x2
−1|

, ρ =
|(1 − A)|

|1 + x−1 + x2
−1|

,

l = 8 and l0 = 4.

Taking all this data into account we obtain the following criteria:

(i) If 1.2 < A ≤ 1.2338550182109815 . . . and ε1 < x−1 ≤ ε2
(ii) if 1.2338550182109815 . . . < A < 1.25 and ε1 < x−1 ≤ ε2
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where ε1 is the smallest real root of

p1(t) = 1.42455 × 106
− 3.34994 × 106A + 3.14976 × 106A2

− 1.4807 × 106A3
+ 348160.A4

− 32768.A5

+

855178. − 1.61043 × 106A + 1.13216 × 106A2

− 352256.A3
+ 40960.A4 t

+

1.50297 × 106

− 2.73699 × 106A + 1.85312 × 106A2
− 552960.A3

+ 61440.A4 t2
+


−1.80117 × 106

+ 3.69114 × 106A − 2.83661 × 106A2
+ 966656.A3

− 122880.A4 t3
+


−97945. − 58672.A + 206208.A2

− 116736.A3
+ 20480.A4 t4

+

−1.51615 × 106

+ 2.07942 × 106A − 954240.A2
+ 147456.A3 t5

+

1.61162 × 106

− 2.54336 × 106A + 1.32115 × 106A2
− 225280.A3 t6

+

−373132. + 585920.A − 312192.A2

+ 57344.A3 t7
+


822221. − 806184.A + 212352.A2

− 6144.A3 t8
+


−777826. + 810176.A − 208000.A2 t9

+

296569. − 291584.A + 73408.A2 t10

+

−241882. + 140480.A − 11648.A2 t11

+

200237. − 105392.A + 960.A2 t12

+ (−87548. + 42368.A)t13

+ (38114. − 9184.A)t14

+ (−22244. + 1088.A)t15

+ (9671. − 56.A)t16

− 2510.t17

+ 375.t18

− 30.t19

+ t20

and ε2 is the smallest and the third smallest real root of

p2(t) = 4.35711 × 106
− 1.52346 × 107A + 2.27881 × 107A2

− 1.89065 × 107A3

+ 9.39821 × 106A4
− 2.79962 × 106A5

+ 462848.A6
− 32768.A7

+

2.77159 × 106

− 8.29674 × 106A + 1.03205 × 107A2
− 6.82733 × 106A3

+ 2.53299 × 106A4
− 499712.A5

+ 40960.A6 t
+


4.90296 × 106

− 1.43386 × 107A + 1.74015 × 107A2
− 1.12128 × 107A3

+ 4.04448 × 106A4
− 774144.A5

+ 61440.A6 t2
+


−8.77232 × 106

+ 2.74991 × 107A − 3.5815 × 107A2
+ 2.4819 × 107A3

− 9.6544 × 106A4
+ 1.99885 × 106A5

− 172032.A6 t3
+


−2.58244 × 106

+ 5.81422 × 106A − 4.81691 × 106A2
+ 1.5741 × 106A3

+ 19840.A4
− 124928.A5

+ 20480.A6 t4
+


−9.08616 × 106

+ 2.22009 × 107A − 2.16173 × 107A2
+ 1.04902 × 107A3

− 2.53939 × 106A4
+ 245760.A5 t5

+

9.41664 × 106

− 2.56844 × 107A + 2.77974 × 107A2
− 1.49338 × 107A3

+ 3.98355 × 106A4
− 421888.A5 t6

+

−756210. + 2.80065 × 106A − 3.7805 × 106A2

+ 2.41325 × 106A3
− 744320.A4

+ 90112.A5 t7
+


7.53916 × 106

− 1.50387 × 107A + 1.12769 × 107A2
− 3.79831 × 106A3

+ 501120.A4
− 6144.A5 t8

+

−6.76986 × 106

+ 1.50038 × 107A − 1.23278 × 107A2
+ 4.45402 × 106A3

− 597120.A4 t9
+


2.17202 × 106

− 4.54449 × 106A + 3.61115 × 106A2
− 1.29184 × 106A3

+ 175808.A4 t10
+


−3.73234 × 106

+ 5.82617 × 106A − 3.11178 × 106A2
+ 610496.A3

− 21888.A4 t11
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x–1

Fig. 1. Values of x−1 in which our criteria are satisfied but previous one not.

+

3.19462 × 106

− 5.29662 × 106A + 2.89849 × 106A2
− 525552.A3

+ 960.A4 t12
+


−1.37609 × 106

+ 2.10122 × 106A − 1.08288 × 106A2
+ 188608.A3 t13

+

1.1962 × 106

− 1.35413 × 106A + 443442.A2
− 32864.A3 t14

+

−936214. + 1.03558 × 106A − 288748.A2

+ 2688.A3 t15
+


443797. − 451436.A + 116011.A2

− 56.A3 t16
+


−244910. + 176412.A − 25470.A2 t17

+

158193. − 91668.A + 2919.A2 t18

+

−75352. + 38702.A − 130.A2 t19

+

29454. − 10048.A + A2 t20

+ (−12920. + 1454.A)t21

+ (5475. − 100.A)t22

+ (−1602. + 2.A)t23

+ 279.t24

− 26.t25

+ t26.

In other words for every value of x−1 between the two lines that appear in Fig. 1, the conditions given in [11] are not satisfied
but our new conditions are satisfied.

For example, we choose A = 1.22 and x−1 = 1.15 we obtain

L0 = 3.4725 . . . ,

λ = 0.287977 . . . ,

ρ = 0.0633549 . . .

and

α = 0.15.

Notice that the old hypothesis a20 < (1 − a1)2 is not satisfied since

a20 = 0.241602 > 0.189621 = (1 − a1)2

but with the new definitions of a0 and a1 given in Section 2 conditions of Theorem 2.7 are satisfied since

a20 = 0.101598 < 0.401839 = (1 − a1)2,

a−1 = 0.296946 . . . < 0.464109 . . . = (1 − a0)2

and

R = 0.119061 < 1.

So, Secant method starting from x0 ∈ B(x0, 0.8) converges to the solution of F(x) = 0 from Theorem 2.7.
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