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a b s t r a c t

The paper is devoted to the numerical solution of advection–diffusion problems of
Boussinesq type, by means of adapted numerical methods. The adaptation occurs at two
levels: along space, by suitably semidiscretizing the spatial derivatives through finite
differences based on exponential fitting; along time integration, through an adapted IMEX
method based on exponential fitting itself. Stability analysis is provided and numerical
examples showing the effectiveness of the approach, also in comparison with the classical
one, are given.
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1. Boussinesq equation of hydrodynamics

Let us consider the following Boussinesq equation [1,2]
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Such a problem governs one-dimensional groundwater flows on a sloping impervious base, where h denotes the height of
the water table, S is the drainable porosity, K is the hydraulic conductivity and ϑ is the slope of the impervious base. In
particular, if h shows a small deviation from the weighted depth, Boussinesq equation assumes the following form

∂h
∂t

= γ
∂2h
∂x2

− ν
∂h
∂x

,

i.e. it results to be a linear-diffusion equation, where γ is the angle between the beach face and the horizontal datum and
ν = Kϑ/S. As in [3], we are interested in solving the problem for (x, t) ∈ [0, +∞) × [0, +∞) and equipping it by the
following initial condition

h(x, 0) = h0(x),

and moving boundary condition

h(X(t), t) = f (t), t > 0,
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being X(t) the parametric formulation of the moving boundary, depending on time. Therefore, h0(x) gives the analytic
expression of the initial water table, while X(t), i.e. the abscissa of the moving boundary, following [3], can be regarded
as

X(t) =
f (t)

tan(γ )
.

In summary, we are interested in the following linear advection–diffusion problem:

ht(x, t) = γ hxx(x, t) − νhx(x, t), x > 0, t > 0,
h(x, 0) = h0(x), x ≥ 0,

h(X(t), t) = f (t), t ≥ 0.
(1.1)

As proved in [4], if problem (1.1) is subject to a periodic boundary condition dictated by

f (t) = exp(iωt), (1.2)

where i is the imaginary unit, the solution exhibits the following form

h(x, t) = exp(αx + i(βx + ωt)),

with α, β ∈ R. Taking into account the hydrodynamical features of the problem, the authors in [3] were able to determine
suitable values of α and β , leading to the following final profile of the solution of (1.1)

h(x, t) = exp
 ν

2D
− µ


x

exp [i(ωt − ρx)] , (1.3)

being

µ =
1
2D


2


ω2 +

ν4

16D2
+

ν2

2
.

In above formula, D is a constant depending on the transmissivity and the porosity S, ω provides the temporal frequency
and ρx is the phase. Thus, since in presence of periodic boundary conditions dictated by (1.2) problem (1.1) shows a solution
of the form (1.3), it is worth designing a numerical scheme that takes into account such a qualitative behavior, as described
in the remainder of the manuscript.

1.1. Following known qualitative behaviors of the solutions: the role of adapted numerical methods

Numerical methods adapted to specific problems are usually intended as an efficient alternative to general purpose
methods,which are designed in order to exactly solve (within round-off error) problemswith polynomial solutions. Adapted
methods are instead meant to exactly solve (within round-off error) problems whose solutions exhibit a non-polynomial
qualitative behavior, a priori known: we mention, for instance, periodic behaviors, oscillations and exponential decays or
growths. In such cases, classical methods may result to be quite inefficient because they would need a very small value
of the stepsize to reach a certain accuracy, while it would be useful employing fitted formulae shaped on suitably chosen
functions, e.g. exponential and trigonometrical functions according to the solution of the problem and its features. On all
above considerations exponential fitting technique relies (see [5,6] and references therein), based on the idea of designing
a space of approximants spanned by suitable chosen basis functions, forming the so-called fitting space.

As aforementioned, the basis functions follow the samequalitative behavior of the solution of the problem, and, therefore,
they are oscillatory with a certain frequency if the solution is oscillatory, or exponentially decay with a certain rate if the
solution is of decaying exponential type. The values of the frequencies or decay rates are clearly present in the basis functions
and, of course, unknown; accurately detecting their values is a necessary step in applying adaptedmethodswhich is normally
based onminimizing or annihilating the principal error term [7,8] or trying to exploit theoretical a priori known information
on the problem as in [9]. Thus, an effective employ of exponentially fitting methods relies on suitably choosing the fitting
space and accurately estimating the unknown parameters.

Referring to problem (1.1), we propose an adapted numerical scheme based on two separate steps: the first one consists
in the spatial semidiscretization of the operator by a proper modification of the method of lines, while the second one deals
with a suitable time integration, taking into account the nature of the resulting semidiscretized system. In particular, since
the resulting system of ODEs exhibits stiff components (arising from the diffusion term) and non-stiff ones (arising from the
advection term), it is more natural to differently treat them, by means of implicit–explicit (IMEX) numerical methods that
implicitly integrate the stiff terms and explicitly the other ones, following the classical idea [10–12].

The manuscript is organized as follows: Section 2 introduces the spatial semidiscretization of the problem, by means
of exponentially fitted finite differences, adapted to both the diffusion and the advection terms; Section 3 shows the
development of an adapted IMEX time solver for the semidiscrete problem, while Section 4 analyzes its stability properties;
Section 5 is devoted to the illustration of numerical results showing the effectiveness of the approach; some conclusions are
given in Section 6.
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2. Spatial semidiscretization of the problem

As announced in the previous section, we aim to solve problem (1.1) by first providing a spatial semidiscretization that
takes into account the nature of the solution. First of all, let us better clarify the selection of the numerical domain: taking
into account that the dynamics evolves in an unbounded domainwith free boundary, i.e. [0, ∞)×[0, ∞), the actual domain
of integration is chosen as follows

D = [0, X(T )] × [0, T ], (2.4)

where T is a large enough real number such that any further increase would not affect the solution at all. Thus, problem
(1.1) reformulated in [0, X(T )] × [0, T ] assumes the form

ht(x, t) = γ hxx(x, t) − νhx(x, t), (x, t) ∈ (0, X(T )) × (0, T ],
h(x, 0) = h0(x), x ∈ [0, X(T )],
h(0, t) = h(X(T ), t) = f (t), t ∈ [0, T ].

(2.5)

Following the method of lines (see [13–15] and references therein), we consider the following spatially discretized domain

D1x = {(xi, t) : xi = i1x, i = 0, . . . ,N − 1, 1x = X(T )/(N − 1)},

where 1x is the spatial integration step. Then, problem (1.1) in D1x is equivalent to the following initial value problem

h′
0(t) = f ′(t),

h′
i(t) = γΓ2 − νΓ1, 1 ≤ i ≤ N − 2,

h′
N−1(t) = f ′(t),
hi(0) = h0(xi), 0 ≤ i ≤ N − 1,

(2.6)

where Γ2 is a finite difference approximating the second spatial derivative in (2.5), and Γ1 is a finite difference for the
approximation of the first spatial derivative in (2.5). Inspired by [9,16], we approximate the first and second spatial
derivatives by the following finite differences

Γ2 =
α0h(xn−1, t) + α1h(xn, t) + α2h(xn+1, t)

1x2
,

Γ1 =
β0h(xn−1, t) + β1h(xn, t)

1x
,

(2.7)

and compute α0, α1, α2, β0 and β1 in order to make Γ2 and Γ1 exact on exponential functions, motivated by the qualitative
behavior of the solution (1.3).

2.1. Discretization of the diffusion term

We first provide the expression of the discretized diffusion term Γ2, given by the first equation in (2.7), i.e. we compute
the unknown coefficients α0, α1, α2. This aim is achieved by taking into account the parametrization (1.3) of the solution of
the problem (1.1): indeed, such a parametrization indicates that the solution is of the form

exp(αx) exp(i(βx + ωt)),

or, equivalently,

exp((α + iβ)x) exp(iωt),

which suggests us the employ of the following fitting space for the approximation of the second order spatial derivative

F = {1, exp(ζ x), x exp(ζ x)},

with ζ ∈ C. In summary, we are looking for the following approximant

hxx(xn, t) ≈ Γ2 =
α0h(xn−1, t) + α1h(xn, t) + α2h(xn+1, t)

1x2
,

imposing its exactness on F . For the computation of the coefficients of Γ2, we introduce the following linear operator

L[1x]h(x, t) = hxx(x, t) −
α0h(x − 1x, t) + α1h(x, t) + α2h(x + 1x, t)

1x2
.

We evaluate L[1x]1, L[1x] exp(ζ x), L[1x]x exp(ζ x) and, due to the invariance in translation of the operator, we refer to
the values gained in correspondence of x = 0 and annihilate them, obtaining the following linear system of equationsα0 + α1 + α2 = 0

α0 exp(−z) + α1 + α2 exp(z) = z2

−α0 exp(−z) + α2 exp(z) = 2z
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with z = ζ1x. The solution of such system is given by

α0 = −
zez(2 − 2ez + zez)

(ez − 1)2
,

α1 =
z(2 − 2e2z + z + ze2z)

(ez − 1)2
,

α2 = −
z(2 − 2ez + z)

(ez − 1)2
.

(2.8)

Of course, it is evident that such coefficients are no longer constant, as in the classical polynomial case, but are functions
of z. In general, z ≠ 0 because 1x ≠ 0 and the ζ is generally non-zero (at least for non-degenerate cases), ensuring that
the denominators in (2.8) are non-zero. Nevertheless, when z tends to 0, the variable coefficients (2.8) tend to the classical
values

α0 = α2 = 1, α1 = −2. (2.9)

Hence, the exponentially fitted formula retains the same order of accuracy of the corresponding classical one, which is equal
to 2.

2.2. Discretization of the advection term

We now discretize the advection term by the approximant Γ1 given by the second equation in (2.7). As aforementioned,
the choice of the fitting space is dictated by the parametrization of the solution (1.3) and is given by

G = {1, exp(ζ x)},

with ζ ∈ C. We now compute

hx(xn, t) ≈ Γ1 =
β0h(xn−1, t) − β1h(xn, t)

1x
,

imposing its exactness on G. We introduce the following linear operator

M[1x]h(x, t) = hx(x, t) −
β0h(x − 1x, t) + β1h(x, t)

1x
.

We evaluate M[1x]1, M[1x] exp(ζ x) and annihilate the values gained in correspondence of x = 0, obtaining the linear
system

β0 + β1 = 0
β0 exp(−z) + β1 = z

with z = ζ∆x. The solution of such system is given by

β0 =
z

e−z − 1
,

β1 = −
z

e−z − 1
.

(2.10)

Also in this case, when z tends to 0, the variable coefficients (2.10) tend to the classical values

β0 = 1, β1 = −1 (2.11)

and, therefore, the exponentially fitted formula retains the same order of accuracy of the corresponding classical one, which
is equal to 1.

Remark 2.1. It is important to highlight that previous approaches on the numerical solution of partial differential equations
by exponentially fitted methods have already been considered in the literature, though characterized by different basis
functions. For instance (see [17,18] and references therein), for the convection–diffusion problem

−ε1u + a∇u + bu = f , 0 < ε ≪ 1,

the following fitting space has been considered
1, x, . . . , xp, exp


1
ε


a


, x exp

1
ε


a


, . . . , xp−1 exp

1
ε


a


, (2.12)

which is, different from our case, more closely related to the problem rather than to its solution. This is visible from the
arguments of the exponentials in (2.12), which generally do not match those of the solution of the problem.
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3. Adapted IMEX Euler method

We now focus our attention on the time integration of the spatially semidiscretized system (2.6). In order to highlight a
proper time integrator for this problem, we recast it in the following matrix form

h′(t) = A(z)h(t) + B(z)h(t),

where

A(z) =
1

1x2



0 0 0 · · · 1
γα0 γα1 γα2

γα0 γα1 γα2
. . .

. . .
. . .

γ α0 γα1 γα2
1 0 0

 ∈ RN×N ,

B(z) =
1

1x



0 0 · · · 0
−νβ0 −νβ1

−νβ0 −νβ1
. . .

. . .

−νβ0 −νβ1
0 0

 ∈ RN×N , (3.13)

and

h′(t) =


h′

0(t)
h′

1(t)
...

h′

N−1(t)

 , h(t) =


h0(t)
h1(t)

...
hN−2(t)
f ′(t)

 .

The first summand, depending on the matrix A(z), belongs to the diffusion term, thus it is notoriously stiff [10,19]
and requires an implicit solver in the time integration, while the part belonging to the advection term, i.e. the summand
depending on B(z), can be treated by explicit time integrators. Thus, it looks worthwhile solving this problem by
an implicit–explicit (IMEX) time solver [10,20,21,19] which creates a good compromise among accuracy, stability and
computational cost. With respect to the fully discretized domain

D1x,1t = {(xi, tj) : xi = i1x, tj = j1t, i = 0, . . . ,N − 1, j = 0, 1, . . . ,M − 1}, (3.14)

being 1x = X(T )/(N − 1) and 1t = T/(M − 1), we integrate (2.6) in time with the following adapted IMEX-Euler scheme

hj+1
= ε0hj

+ ε1

1tA(z)hj+1

+ 1tB(z)hj , j = 0, . . . ,M − 2, (3.15)

where hj
= h(tj). The adapted version of the IMEX-Euler methodwe aim to introduce, coherently with the space discretiza-

tion discussed in Section 2, is carried out by taking into account the character in time of the solution (1.3), which shows an
exponential behavior of complex parameter. Hence, we compute the unknown coefficients ε0, ε1 and ε2 by imposing the
exactness of the time integrator (3.15) on the fitting space

H = {1, exp(iωt)}.

We introduce the following linear operator

L[1t]h(t) = h(t + 1t) − ε0h(t) − ε1 (1tA(z)h(t + 1t) + 1tB(z)h(t))

and, by means of Taylor series arguments around (x, t) and neglecting O(1t2) terms, we recast it asL[1t]h(t) = h(t + 1t) − ε0h(t) − ε11th′(t).

We observe that L and L differ for O(1t2), which does not compromise the accuracy of the resulting IMEX-Euler method,
having order 1.

We evaluate

L[1x]1, L[1x]e(x, t),

being 1 = [1, . . . , 1]T ∈ RN and e(x, t) = exp(iωt)1 and, due to the invariance in translation of the operator, we refer to
the values gained in correspondence of t = 0 and annihilate them, obtaining the following linear system of equations

1 − ε0 = 0
exp(iw) − ε0 − iwε1 = 0
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with w = ω1t . The solution of such system is given by

ε0 = 1,

ε1 = −
i

eiw − 1


w

.
(3.16)

Also in this situation, w ≠ 0 because 1t ≠ 0 and the ω is generally non-zero (at least for non-degenerate cases), ensuring
that the denominators in (3.16) are non-zero. Moreover, as expected, whenw tends to 0, the variable coefficients (3.16) tend
to the classical values

ε0 = ε1 = 1 (3.17)

of the coefficients of the IMEX-Eulermethod based on algebraic polynomials. Hence, the exponentially fitted formula retains
the same order of accuracy of the corresponding classical one, which is equal to 1.

Remark 3.1. Of course the application of the adapted numerical scheme requires the computation of the parameters z and
w in (2.8), (2.10) and (3.16). Parameter estimation in exponentially fittedmethods usually requires optimization techniques
having as objective function the leading term of the local discretization error or solving nonlinear systems of equations in
order to annihilate such error term [7,8,22]. In our case, we can efficiently approach the problem of computing the unknown
parameters by exploiting the expression given by (1.3), suggesting us to define

z =

 ν

2D
− µ − iρ


1x,

w = iω1t.

The case of parameter estimation when a parametrization of the solution of the problem is not known is object of [23], in
the case of reaction–diffusion problem.

4. Stability analysis

We now aim to analyze the stability properties of our numerical scheme. While accuracy properties are mostly
highlighted by the constructive issues themselves, stability deserves an independent analysis, which also clarifies the
relationship between the classical method (i.e. classical finite differences for the spatial semidiscretization and classical
IMEX-Euler time integration) and the adapted one (i.e. adapted finite differences for the spatial semidiscretization and
exponentially fitted IMEX-Euler method for the time integration).

Following the idea in [24], we aim to prove stability by controlling the propagation of the error caused by an incoming
perturbation. To do this, we perturb the solution hj as followshj

= hj
+ δj,

and study the behavior of the error

E j
= hj

−hj.

Consequently, the following stability result occurs.

Theorem 4.1. For the IMEX-Euler method (3.15) for the semidiscrete problem (2.6), the following stability inequality occursE j+1


∞
≤ ∥M∥∞

E j


∞
, (4.18)

where

M = Λ (ε0I + ε11tB(z)) , (4.19)

being Λ = (I − ε11tA(z))−1 and I the identity matrix in RN×N .

Proof. We first recast the IMEX-Euler method (3.15) in the following compact form

hj+1
= Λ


ε0hj

+ ε11tB(z)hj ,
obtaining by collecting the approximations in the same step point at each hand side. Similarly, we get the following
expression of the perturbed methodhj+1

= Λ

ε0hj

+ ε11tB(z)hj .
Therefore, the corresponding error associated to the introduced propagation is given by

E j+1
= hj+1

−hj+1
= Λ (ε0I + ε11tB(z)) E j,

and passing to its norm gives the thesis. �
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Thus, according to Theorem 4.1, for the stability analysis it is sufficient to analyze the inequality
∥M∥∞ < 1 (4.20)

with M given by (4.19). Let us specialize this inequality for both the classical and adapted cases:
• for the classical case, covered by Theorem 4.1 when z and w tend to zero, we know that ε0 = ε1 = 1 and the matrix B(z)

reduces to

B =
1

1x



0 0 · · · 0
−ν ν

−ν ν

. . .
. . .

−ν ν
0 0

 ,

and the matrix A(z) is equal to

A =
1

1x2



0 0 0 · · · 1
γ −2γ γ

γ −2γ γ

. . .
. . .

. . .

γ −2γ γ
0 1

 .

Since
B

∞
= 2|ν|/1x, then

∥M∥∞ ≤

I − 1tA−1
1 + 2

1t
1x

|ν|


.

Hence, it is sufficient to check, for stability purposes, thatI − 1tA−1
1 + 2

1t
1x

|ν|


< 1;

• for the adapted case, the infinity norm of the matrix B(z) in (3.13) is equal to |ν|(|β0| + |β1|)/1x. Thus,

∥M∥∞ ≤ ∥ (I − ε11tA(z))−1
∥


1 + 2|νε1|

1t
1x

 z
exp(−z) − 1


and it is sufficient to secure, for stability purposes, that

∥ (I − ε11tA(z))−1
∥


1 + 2|νε1|

1t
1x

 z
exp(−z) − 1

 < 1.

Examples of these bounds are provided in the following section.

5. Numerical experiments

Wenowpresent the numerical evidence originated by applying the IMEX-Euler scheme (3.15) to the advection–diffusion
problem (1.1), with the following values of the parameter

γ = −5, ν = −2, D = 3, ρ = 10,
in correspondence of several values of the frequency ω. The domain chosen for the integration is given by the square
(x, t) ∈ [0, 100] × [0, 100], which is discretized in space and in time with different values of the stepsizes 1x and 1t .
The compared solvers are the following:
• IEclass, obtained by coupling the spatial semidiscretization based on classical finite differences (2.7) with coefficients

(2.9) and (2.11) with the classical IMEX-Euler time integration, giving rise to (3.15) with coefficients (3.17);
• IEef, obtained by coupling the spatial semidiscretization based on adapted finite differences (2.7) with coefficients (2.8)

and (2.10) with the classical IMEX-Euler time integration, giving rise to (3.15) with coefficients (3.16).

The results here reported are oriented in two directions: first of all, confirming the effectiveness of the approach IEef
based on adaptedmethods as well as providing a comparison between IEclass and IEef in terms of stability, at the same
computational cost. Figs. 1 and 2 show the profile of the real part of the numerical solution forω = −2, obtained by the two
aforementioned solvers with stepsizes 1x = 1/10 and 1t = 1. An unstable behavior of IEclass is clearly visible, while
IEef is able to correctly reproduce the profile of the solution. We observe that such stable and unstable behaviors observed
in Figs. 1–3 are coherent with the result highlighted in Theorem 4.1: indeed, the value of ∥M∥∞ is equal to 1 for the classical
case IEclass, while for IEef it is equal to 0.0302. The solution obtained with IEef is also zoomed in Fig. 3, which better
highlights the shape of the oscillations.
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Fig. 1. Real part of the numerical solution of (1.1) with ω = −2 computed by IEclass solver, with 1x = 1/10 and 1t = 1.

Fig. 2. Real part of the numerical solution of (1.1) with ω = −2 computed by IEef solver, with 1x = 1/10 and 1t = 1.

Fig. 3. Real part of the numerical solution of (1.1) with ω = −2 computed by IEef solver, with 1x = 1/10 and 1t = 1, zoomed for (x, t) ∈ [0, 100]
× [0, 10].
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6. Conclusions

We have introduced an alternative approach for the numerical solution of advection diffusion problems (1.1) by means
of adapted methods which take into account the qualitative behavior of the solution. The approach here presented is based
on spatial semidiscretization of the advection and diffusion terms by exponentially fitted finite differences and the time
integration of the resulting system of ODEs by an exponentially fitted IMEX-Euler solver. This novel approach, in comparison
with its classical counterpart based on algebraic polynomials, provides a more stable method, as theoretically proved in
Section 4 and confirmed by the numerical experiments in Section 5. Further development of this research will be oriented
to introducing adapted numerical methods for other evolutionary operators and problems, by emphasizing on the analysis
of stability and accuracy properties in comparison with existing approaches, and on an efficient and accurate parameter
estimation.
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