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a b s t r a c t

We propose a numerical method to approximate the solutions of generalized forms of
two bi-dimensional models of mathematical physics, namely, the Burgers–Fisher and the
Burgers–Huxley equations. In one-dimensional form, the literature in the area gives ac-
count of the existence of analytical solutions for bothmodels, in the form of traveling-wave
fronts boundedwithin an interval I of the real numbers. Motivated by this fact, we propose
a finite-difference methodology that guarantees that, under certain analytical conditions
on the model and computer parameters, estimates within I will evolve discretely into new
estimates which are likewise boundedwithin I . Additionally, we establish the preservation
in the discrete domain of the skew-symmetry of the solutions of the models under study.
Our computational implementation of the method confirms numerically that the proper-
ties of positivity and boundedness are preserved under the analytical constraints derived
theoretically. Our simulations show a good agreement between the analytical solutions
derived in the present work and the corresponding numerical approximations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the computational investigation of mathematical models that describe the dynamics of physical systems, it is
important that the numerical techniques reflect reliably the phenomena that they describe. In these terms, the design of
consistent and computationally stable methods to approximate the solutions of some particular equation in mathematical
physics, could be of little interest to a scientist who wishes to guarantee that certain physical properties of interest are
observed in the numerical simulations. For example, a scientist who investigates computationally the dynamics of traveling
waves in shallow waters [1] may be interested in guaranteeing that the height of the surface of the fluid be nonnegative.
In the context of thermodynamics, one could study numerically the propagation of a forest fire using the temperature
measured in an absolute scale as the variable of interest [2], in which case, negative values of the variable are meaningless.
A chemist could be interested in predicting numerically the evolution of multi-compound, chemical systems which satisfy
conservation constraints [3], in such a way that the sum of the contributions of the compounds that make up the total mass
be constant.

All the applications mentioned above share a feature in common: they are problems that require the use of methods that
preserve numerically some physical characteristics of the solutions. Of course,many other physical problems share the same
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characteristic, be it in the context of population dynamics [4,5], in the development of biological films [6], or in problems
arising in fluid mechanics [7] among other scenarios. However, in most of them, the mathematical and physical properties
of positivity, boundedness and the conservation ofmass and energy, are the crucial features of concern. In fact, the literature
gives evidence of a vast amount of works that have dealt with the conditions of positivity and boundedness both analytically
and numerically [8–11]. Similar remarks hold for the conservation of mass, momentum and energy of systems [12–14].

From a numerical perspective, many computational methods have been designed to guarantee the conservation of the
properties of positivity and boundedness of solutions; however, most of the techniques proposed in the literature follow
non-conventional criteria. Some of the positivity-preserving methods available in the literature follow the non-standard
methodology employed by R.E. Mickens in many of his works [8,9,15]. In fact, this and other non-traditional approaches
have proved fruitful inmany other problemswhere the preservation of the positivity and even the boundedness of solutions
are two important criteria in the design of reliable computational methods [16,17].

In the present work, we consider a two-dimensional time-dependent partial differential equation that generalizes
many models from mathematical physics. Among other interesting features, our equation contemplates the inclusion of a
nonlinear term of advection/convection, and two possible nonlinear reaction laws which generalize the reaction term used
by R.A. Fisher [18], and A. Kolmogorov, I. Petrovsky and N. Piscounov [19] in their seminal works. In the one-dimensional
scenario, the existence of positive and bounded solutions of the model in the form of traveling-wave fronts, is a well-known
fact [20]. For the two-dimensional case, we employ the traveling-wave solutions of the one-dimensional equation, and
extend them to obtain wave fronts for the higher dimensional model. Then, we propose a linear finite-difference method
to approximate the solutions of the equations under investigation (see [7,10,11,21–24] and other works in which the first
author has followed linear approaches), and establish sufficient conditions on themodel and computational constants under
which the properties of positivity and boundedness of the solutions are preserved. These conditions are relatively flexible,
and the method performs well when approximating the analytical, traveling-wave solutions obtained in this manuscript.
Additionally, our numerical technique is capable of preserving the skew-symmetry property of solutions.

Our work is sectioned as follows. In Section 2, we introduce the mathematical models that motivate our study. As it
will be noticed, these models are generalizations of the well-known two-dimensional Burgers–Fisher and Burgers–Huxley
equations, and we derive here some analytical solutions in order to validate the numerical performance of the method
designed in this work. Additionally, we establish some skew-symmetry properties of the solutions of our models. Section 3
introduces the finite-difference technique to approximate solutions of our equations. We give therein a convenient vector
representation of the methodology. In Section 4, we establish the properties of interest of our technique. Next, we present
some numerical simulations which show that our scheme provides good approximations to the exact solutions of our
models, and that the positive and the bounded characters of the solutions are preserved in the discrete domain.

2. Preliminaries

Throughout this work, we use the symbol R+ to represent the set of non-negative numbers. Let α be a real number, let
γ belong in (0, 1), and let p be a positive integer. Let u = u(x, y, t) be a real function defined for every (x, y, t) ∈ R2

× R+,
which is twice differentiable in the interior of its domain. In thiswork,we consider the nonlinear partial differential equation

∂u
∂t

+ αup

∂u
∂x

+
∂u
∂y


− ∇

2u − uf (u) = 0, (1)

where ∇
2 represents the Laplacian operator in the spatial variables x and y.

The reaction factor f is a real function defined in all of R which, for purposes of the present work, may assume one of two
possible nonlinear forms: On the one hand, it will be given by the expression

f (u) = 1 − up, (2)

in which case, our model will be called the Burgers–Fisher equation; on the other, it will be defined as

f (u) = (1 − up)(up
− γ ) (3)

and, in this scenario, the corresponding model under investigation will be denominated the Burgers–Huxley equation
(here, we follow the classification presented in [20,25]). Clearly, the constant α assumes the role of a coefficient of
advection/convection; meanwhile, the exponent p is introduced in order to generalize the reaction law of the models
proposed by Fisher [18], and Kolmogorov, Petrovsky and Piscounov [19].

For the sake of meaningfulness, it is important to realize that the models considered in this work are generalizations
of several partial differential equations from mathematical biology and physics. To start with, what we have called
the Burgers–Fisher equation is an advective/convective generalization of the classical Fisher’s equation from population
dynamics [18,19] with a more generic logistic law; also, it is a version of the Newell–Whitehead–Segel equation from
fluid mechanics with convection effects included [26,27]; finally, the resulting model is the classical heat equation if f is
identically equal to zero and α equals zero. In the case of the Burgers–Huxley model, it is an advective version of the famous
FitzHugh–Nagumo equation studied in the transmission of electric signals in the nervous system [28]; the model is also an
extension of the Huxley’s equation investigated in the context of electrodynamics [29], with a generalized nonlinear factor.
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It is worth noticing that themodels considered in the presentwork possess symmetry propertieswhichwill be preserved
in the discrete scenario of Section 3. For every function u : R2

× R → R+ which is twice differentiable in the interior of
its domain, let L(u) be the left-hand side of Eq. (1). With these conventions, the following result summarizes the symmetry
properties of interest on the solutions of our model; its statement is valid for a class of functions f which encompasses the
nonlinear reaction laws introduced above when p is an even number.

Proposition 1. Let f be an even function, let p be an even number, and let u be a twice differentiable function. Then L(−u) =

−L(u).

As a consequence, for an even function f and an even integer p, a function u satisfies (1) if and only if −u satisfies it, too.
This property of the solutions of our model will be referred to as the property of skew-symmetry, and together with the fact
that our partial differential equation possesses positive and bounded solutions, will be one of the main properties of the
solutions of (1).

It is important to poses exact solutions of the Burgers–Fisher and the Burgers–Huxley equations presented above. In
particular, we are interested in finding bounded solutions of themodel (1). In the one-dimensional scenario, it is well known
that the Burgers–Fisher and the Burgers–Huxley equations have analytical solutions in the form of traveling-wave fronts.
More precisely, let u = u(x, t) be a function defined in R×R+. In the one-dimensional case, the partial differential equation
(1) becomes

∂u
∂t

+ αup ∂u
∂x

−
∂2u
∂x2

− uf (u) = 0. (4)

The followingparagraphs quote someanalytic solutions of (4) corresponding to theBurgers–Fisher or theBurgers–Huxley
forms of the nonlinear reaction factor.

Remark 2. Eq. (4) with reaction function f given by (2) has a traveling-wave solution of the form

u(x, t) =


1
2

+
1
2
tanh


−αp

2(p + 1)


x −


α

p + 1
+

p + 1
α


t
1/p

(5)

(see [20]). This expression represents a wave-front bounded within (0, 1), which connects the constant solutions u = 0 and
u = 1.

Remark 3. As in the previous example, we consider a nonlinear reaction factor of the form (2). In this case, we fix p = 2
and α = 0. The resulting model is the well-known Newell–Whitehead–Segel equation from fluid mechanics [26,27], which
has an exact traveling-wave solution with horizontal asymptotes equal to −1 and 1, given by the formula

u(x, t) =

C1 exp


1
√
2
x


− C2 exp

−

1
√
2
x


C1 exp


1
√
2
x


+ C2 exp

−

1
√
2
x


+ C3 exp

−

3
2 t

 , (6)

for suitable values of the real constants C1, C2 and C3 [28].

Remark 4. If f is given by the formula (3) and p = 1, then the associated Burgers–Huxleymodel possesses a traveling-wave
solution bounded within (0, 1), with horizontal asymptotes equal to 0 and 1. This solution is given by the expression

u(x, t) =
1
2

−
1
2
tanh


1

r − α
(x − vt)


, (7)

where

r =


α2 + 8, v =

(α − r)(2γ − 1)+ 2α
4

. (8)

This family of solutions is obtained as the result of employing symbolic computations and some relevant nonlinear
transformations [20,30,31].

Remark 5. For the one-dimensional Burgers–Huxley model, a traveling-wave solution bounded within the horizontal
asymptotes u = 0 and u = γ 1/p, is provided by the expression (see [20])

u(x, t) =

γ
2

+
γ

2
tanh[a1(x − a2t)]

1/p
, (9)
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with constants

a1 =
−α +


α2 + 4(1 + p)

4(1 + p)
pγ , (10)

a2 =
2αγ − (1 + p − γ )(−α +


α2 + 4(1 + p))

2(1 + p)
. (11)

For the two-dimensional case, we let ϕ be any real number, and introduce

ξ± = x sinϕ ± y cosϕ. (12)

In terms of this new spatial variable, the two-dimensional model (1) reduces to the one-dimensional equation (4), with
x = ξ± and the new advection/convection coefficient given in terms of α and ϕ by α(sinϕ ± cosϕ). In view of this
observation, any solutionu(ξ±, t) of the one-dimensionalmodel yields a family of solutions of the two-dimensional equation
(1) when we let ξ± be given by (12).

3. Computational technique

In order to develop a finite-difference method to approximate the solutions of (1), we will restrict our attention to a
bounded rectangular spatial domain D = [a, b] × [c, d] of the Cartesian plane, and we will approximate the exact solutions
of the model at a given time T > 0. For the sake of simplicity, we fix uniform partitions a = x0 < x1 < · · · < xM = b and
c = y0 < y1 < · · · < yN = d of the spatial intervals [a, b] and [c, d], respectively, with respective norms1x = (b − a)/M
and 1y = (d − c)/N; additionally, we fix a uniform partition 0 = t0 < t1 < · · · < tK = T of the temporal interval
[0, T ], with partition norm1t = T/K . Finally, we let uk

m,n be an approximation of the exact value of u(xm, yn, tk), for every
m ∈ {0, 1, . . . ,M}, every n ∈ {0, 1, . . . ,N} and every k ∈ {0, 1, . . . , K}.

In order to present conveniently a numerical method to approximate the solutions of (1), we will employ the following
standard linear operators:

δtuk
m,n =

uk+1
m,n − uk

m.n

1t
, (13)

δ(1)x uk
m,n =

uk
m+1,n − uk

m−1,n

21x
, (14)

δ(1)y uk
m,n =

uk
m,n+1 − uk

m,n−1

21y
, (15)

δ(2)x uk
m,n =

uk
m+1,n − 2uk

m,n + uk
m−1,n

(1x)2
, (16)

δ(2)y uk
m,n =

uk
m,n+1 − 2uk

m,n + uk
m,n−1

(1y)2
. (17)

Clearly, Eq. (13) provides a first-order approximation in time of the exact value of ut at both (xm, yn, tk) and (xm, yn, tk+1);
here, the subindex t in ut denotes derivation with respect to t . On the other hand, the formulas (14)–(17) yield second-order
approximations in space of the exact values of ux, uy, uxx and uyy, respectively, at the point (xm, yn, tk).

With these conventions, the finite-difference scheme employed in this manuscript to approximate the solutions of (1) is
provided by the set of equations

δtuk
m,n + α(uk

m,n)
p 
δ(1)x uk+1

m,n + δ(1)y uk+1
m,n


− δ(2)x uk+1

m,n − δ(2)y uk+1
m,n − uk+1

m.n f (u
k
m,n) = 0, (18)

where m ∈ {1, . . . ,M − 1}, n ∈ {1, . . . ,N − 1} and k ∈ {0, 1, . . . , K − 1}. The method is a two-step discrete technique,
for which the initial approximation at the time t = 0 will be given by the initial profile of a suitable exact solution u, that
is, u0

m,n = u(xm, yn, 0), for every m ∈ {0, 1, . . . ,M} and every n ∈ {0, 1, . . . ,N}. Additionally, suitable conditions must be
imposed on the boundary of D. In this work, we will consider boundary data of the form

uk
0,n = ψa(yn, tk), uk

M,n = ψb(yn, tk), (19)

uk
m,0 = χc(xm, tk), uk

m,N = χd(xm, tk), (20)

where ψa, ψb : [c, d] × [0, T ] → R and χc, χd : [a, b] × [0, T ] → R are the driving functions at the boundary of D,
which must satisfy the four compatibility identities ψa(c, tk) = χc(a, tk), ψb(c, tk) = χc(b, tk), ψa(d, tk) = χd(a, tk),
ψb(d, tk) = χd(b, tk), for every k ∈ {0, 1, . . . , K}. In our simulations, these functions will be the exact solution of the
problem under consideration evaluated at the boundary points of the spatial domain, so that the compatibility conditions
will be automatically satisfied.
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In order to establish the main properties of the finite-difference method presented above, we need to represent our
technique in a convenient vector form. To do it, it is important to notice that Eq. (18) may be rewritten as

b1uk+1
m−1,n + b2uk+1

m,n−1 + b3uk+1
m,n + b4uk+1

m,n+1 + b5uk+1
m+1,n = uk

m,n, (21)

wherem ∈ {1, . . . ,M−1}, n ∈ {1, . . . ,N −1} and k ∈ {0, 1, . . . , K −1}. The coefficients b1, b2, b3, b4 and b5 are, in general,
functions of the indexesm, n and k through the actual values of xm, yn and tk, but these dependencies have been omitted for
the sake of briefness. The exact expressions of the coefficient in (21) are provided by the following equations:


bk1,m,n = −

αrx(uk
m,n)

p

2
− Rx, bk2,m,n = −

αry(uk
m,n)

p

2
− Ry,

bk3,m,n = 1 + 2Rx + 2Ry −1tf (uk
m,n),

bk4,m,n =
αry(uk

m,n)
p

2
− Ry, bk5,m,n =

αrx(uk
m,n)

p

2
− Rx,

(22)

where

rx =
1t
1x
, ry =

1t
1y
, Rx =

1t
(1x)2

, Ry =
1t
(1y)2

. (23)

Let P be the integer (M+1)(N +1). For every k ∈ {0, 1, . . . , K}, we will represent by uk the vector form of the numerical
approximation to the exact solution of (1) at the time tk. More precisely, the approximate solution at the kth time-step will
be the P-dimensional vector

uk
= (uk

0,0, u
k
0,1, . . . , u

k
0,N , u

k
1,0, u

k
1,1, . . . , u

k
1,N , . . . , u

k
M,0, u

k
M,1, . . . , u

k
M,N). (24)

For every k ∈ {0, 1, . . . , K −1}, let bk+1 be the P-dimensional vector consisting of the data of the solutions on the boundary
at the (k + 1)st time-step, as provided by Eqs. (19)–(20). More precisely, let

bk+1
= (ψa(y0, tk+1), ψa(y1, tk+1), . . . , ψa(yN−1, tk+1), ψa(yN , tk+1), χc(x1, tk+1), 0, . . . , 0  

(N−1)-times

, χd(x1, tk+1),

...

χc(xM−1, tk+1), 0, . . . , 0  
(N−1)-times

, χd(xM−1, tk+1),

ψb(y0, tk+1), ψb(y1, tk+1), . . . , ψb(yN−1, tk+1), ψb(yN , tk+1)). (25)

We will represent the identity matrix of size (N + 1) × (N + 1) by I . For every m ∈ {1, . . . ,M − 1} and every
k ∈ {0, 1, . . . , K − 1}, we introduce the following matrices of the same size of I:

Dk
m =



0 0 0 · · · 0 0 0
0 bk1,m,1 0 · · · 0 0 0
0 0 bk1,m,2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · bk1,m,N−2 0 0
0 0 0 · · · 0 bk1,m,N−1 0
0 0 0 · · · 0 0 0


, (26)

Ek
m =



0 0 0 · · · 0 0 0
0 bk5,m,1 0 · · · 0 0 0
0 0 bk5,m,2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · bk5,m,N−2 0 0
0 0 0 · · · 0 bk5,m,N−1 0
0 0 0 · · · 0 0 0


, (27)
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and

Ak
m =



1 0 0 0 · · · 0 0 0 0

bk2,m,1 bk3,m,1 bk4,m,1 0 · · · 0 0 0 0

0 bk2,m,2 bk3,m,2 bk4,m,2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · bk2,m,N−2 bk3,m,N−2 bk4,m,N−2 0

0 0 0 0 · · · 0 bk2,m,N−1 bk3,m,N−1 bk4,m,N−1
0 0 0 0 · · · 0 0 0 1


. (28)

In the following equation, let 0 represent the null matrix of size equal to (N + 1)× (N + 1). We let Ak+1 be the square real
matrix of size P × P defined by blocks through

Ak+1
=



I 0 0 0 · · · 0 0 0 0
Dk
1 Ak

1 Ek
1 0 · · · 0 0 0 0

0 Dk
2 Ak

2 Ek
2 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · Dk
M−2 Ak

M−2 Ek
M−2 0

0 0 0 0 · · · 0 Dk
M−1 Ak

M−1 Ek
M−1

0 0 0 0 · · · 0 0 0 I


. (29)

With this notation, our finite-difference method can be represented in vector form as the following system of equations,
where k ∈ {0, 1, . . . , K − 1}:

Ak+1uk+1
= uk

+ bk+1. (30)

In the linear regime, the method introduced in this work is consistent of first order in time, and second order in
space. Computationally, the solution of the sparse system described in (30) is carried out using an implementation of
the stabilized bi-conjugate gradient method. Here, preconditioning is not required for convergence in view that we will
guarantee conditions under which Ak+1 is strictly diagonally dominant, for each k ∈ {0, 1, . . . , K − 1}.

Finally, it is worthwhile to notice that the coefficients of the matrix Ak+1 are constant for each k. More importantly, the
expressions of the coefficients do not depend on the solution at time tk+1. Indeed, a careful look at the definitions of all the
coefficients involved in the expression of Ak+1 shows that, in the worst-case scenario, they depend on the solution uk at the
time tk (which is assumed to be known in this iterative process), but also that they are independent of the approximation
uk+1.

4. Numerical properties

The aimof the present section is to establish themost important properties of themethod introduced above. In particular,
we are interested in proving that the method satisfies the same symmetry property of (1) recorded in Proposition 1, as well
as the preservation of the positive and the bounded characters of some solutions of our mathematical model. Throughout
this stage, we will use the nomenclature and conventions introduced previously.

Let 0 represent the P-dimensional zero vector. In order to state the symmetry properties of our finite-difference scheme,
let us express the system of Eqs. (30) as Lk(uk,uk+1) = 0 for k ∈ {0, 1, . . . , K − 1}, where

Lk(uk,uk+1) = Ak+1uk+1
− Buk

− bk+1. (31)

With this notation, the following results is valid for both forms of the function f (namely, (2) and (3)), when p is a positive
even integer.

Proposition 6. Let k ∈ {0, 1, . . . , K − 1}, let f be an even function, and let p be an even number. Then L(−uk,−uk+1) =

−L(uk,uk+1).

Proof. The proof is straightforward. �

As in the continuous case and as a consequence of this last result, it follows that the pair (uk,uk+1) satisfies (30) if and only
if (−uk,−uk+1) satisfies it, too. More precisely, the property of skew-symmetry of the solutions of the partial differential
equation (1) is preserved by out finite-differencemethod if f is an even function and p is an even integer. Thus, this property
of ourmethod is consistentwith the dynamics of the continuousmodel, and itwill be illustrated in the section of simulations.

Recall that a square matrix is a Z-matrix if its off-diagonal elements are all real numbers which are less than or equal
to zero. A special subclass of the class of Z-matrices is the collection of M-matrices. Here, by an M-matrix we understand a
Z-matrix A which satisfies the following properties:
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(i) The diagonal elements of A are positive numbers, and
(ii) there exists a diagonal matrix D of the same size as A, all of whose diagonal entries are positive numbers, such that AD

is strictly diagonally dominant.

The importance of theM-matrices in our investigation lies in the facts that they are all non-singular, and that all the entries
of their inverse matrices are positive numbers [32].

Let A be a matrix (or vector) of any size. We say that A is positive if all its entries are positive numbers, in which case, we
employ the notation A > 0. If s is a real number, we represent by A < s the fact that all the entries of A are less than s, and
we say that A is bounded from above by this number. Clearly, this condition holds if and only if se − A is positive, where e is
the matrix (or vector) of the same size of A, all of whose entries are equal to 1. We say that A is bounded from below by s if
−A is bounded from above by −s, in which case, we write s < A. Finally, |A| will be the matrix (or vector) of the same size
of A, whose entries are the absolute values of the respective entries of A.

The following result is valid for any choice of the function f which satisfies the requirement (b) below.

Lemma 7. Let k ∈ {0, 1, . . . , K − 1}, and suppose that there exists a positive, real number s ≤ 1 such that |uk
| < s1/p. Then

the matrix Ak+1 in (29) is an M-matrix if the following inequalities are satisfied:
(a) s|α|max{1x,1y} ≤ 2, and
(b) 1tf (uk

m,n) < 1 for every m ∈ {1, . . . ,M − 1} and every n ∈ {1, . . . ,N − 1}.

Proof. First, we check that the off-diagonal entries of the matrix Ak+1 are non-positive under the hypothesis (a). This
statement is true for the off-diagonal elements of the first N + 1 and the last N + 1 rows, as it is in the case of the rows
m(N + 1)+ 1 and (m+ 1)(N + 1), for everym ∈ {1, . . . ,M − 1}. Indeed, in these rows the off-diagonal entries are all equal
to zero. For all of the remaining rows, notice that the only non-zero off-diagonal elements are the variables bk1,m.n, b

k
2,m.n,

bk4,m.n and bk5,m.n, and that

max

bkl,m,n


l=1,2,4,5 ≤ max


|α|rxs
2

− Rx,
|α|rys

2
− Ry


=

1
2
max


(s|α|1x − 2)Rx, (s|α|1y − 2)Ry


≤ 0. (32)

Next, we show that the diagonal entries of Ak+1 are positive, and that this matrix is strictly diagonally dominant. Again, we
only need to check the rows labeled m(N + 1) + n, where m ∈ {1, . . . ,M − 1} and n ∈ {2, . . . ,N}. Using (b) and the fact
that Ak+1 is a Z-matrix, we obtain that

l=1,2,4,5

|bkl,m,n| = 2Rx + 2Ry < bk3,m,n, (33)

which is what we needed. We conclude that Ak+1 is anM-matrix. �

Proposition 8. Let k ∈ {0, 1, . . . , K − 1}, and suppose that there exists a positive number s ≤ 1 such that 0 < uk <
s1/p. Assume that the boundary conditions at the time tk+1 are positive. Then the vector uk+1 is positive if the inequali-
ties (a) and (b) of Lemma 7 are satisfied.

Proof. Under the hypotheses, the matrix Ak+1 of (30) is an M-matrix, so it is non-singular and has a positive inverse.
Meanwhile, the right-hand side of the same equation is a positive vector, which yields that uk+1 is positive, too. �

Let s be a positive number. In the following, we will consider separately the problem of approximating solutions of
(1) bounded within (0, s1/p) and bounded within (−s1/p, s1/p). The proofs will be independent of Proposition 8; however,
Lemma 7 will be the crucial result.

Proposition 9. Let k ∈ {0, 1, . . . , K − 1}, suppose that there exists a positive number s ≤ 1 such that |uk
| < s1/p, and assume

that bk+1 < s1/p. Then uk+1 < s1/p holds if (a) and (b) of Lemma 7 hold and if, additionally, the following inequality is satisfied:
(c) s1/p[1 −1tf (uk

m,n)] − uk
m,n > 0, for every m ∈ {1, . . . ,M − 1} and every n ∈ {1, . . . ,N − 1}.

Proof. Let wk+1
= s1/pe − uk+1, where e is the P-dimensional vector, all of whose components are equal to 1. In terms of

wk+1, Eq. (30) becomes

Ak+1wk+1
= As1/pe − uk

− bk+1. (34)

For the sake of simplicity, let dk+1 be the vector in the right-hand side of (34). The first N + 1 components of dk+1, as well
as the last N + 1, are identical to the corresponding components of the vector s1/pe − bk+1, which are positive. Similarly,
the [m(N + 1) + 1]st and the [(m + 1)(N + 1)]th components of dk+1 are positive, for every m ∈ {1, . . . ,M − 1}. The
remaining entries of dk+1 assume the expression on the left side of the inequality (c), for some m ∈ {1, . . . ,M − 1} and
n ∈ {1, . . . ,N − 1}; consequently, dk+1 is positive. This and the fact that Ak+1 is an M-matrix yield that wk+1 is a positive
vector or, equivalently, that uk+1 is bounded from above by s1/p. �
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Following our nomenclature, let s be a positive number such that s ≤ 1 and let F : (−s1/p, s1/p) → R be the function
given by

F(u) = s1/p[1 −1tf (u)] − u. (35)

Before we establish our next result, it is necessary to verify the feasibility of condition (c) in Proposition 9, at least for the
functions f given by Eqs. (2) and (3). In the two scenarios considered below, u is a real number satisfying the inequality
|u| < s1/p.

• Consider first the casewhen f takes on the expression (2). Our need to approximate the solutions of (1)which are bounded
from above by 1 leads us to fix s in such value. If we impose the constraint p1t < 1, then1t(1+u+u2

+· · ·+up−1) < 1.
As a consequence,

F(u) = 1 − u +1t(up
− 1) = (1 − u)


1 −1t(1 + u + u2

+ · · · + up−1)

> 0. (36)

• For a reaction factor of the form (3), we consider two different scenarios, namely, when the solutions are bounded
from above by either γ 1/p or 1. In either case, we suppose that the solutions are positive. Notice first that F(u) =

(γ 1/p
− u) + γ 1/p1t(1 − up)(γ − up), so F is positive within its domain when s is equal to γ . Now, when s is equal

to 1, the inequality in the expression

F(u) = (1 − u)

1 −1t(1 + u + u2

+ · · · + up−1)(up
− γ )


> 0 (37)

is satisfied when (1 − γ )p1t < 1.

Next, we want to show that the conditions given by Proposition 9 also guarantee the boundedness from above of new
approximations.

Proposition 10. Let k ∈ {0, 1, . . . , K − 1}, suppose that there exists a positive number s ≤ 1 such that |uk
| < s1/p and

|bk+1
| < s1/p. Moreover, let f be an even function, and let p be an even integer. If (a) and (b) of Lemma 7 are satisfied as well as

the inequality
(c)′ s1/p[1 −1tf (uk

m,n)] − |uk
m,n| > 0, for every m ∈ {1, . . . ,M − 1} and every n ∈ {1, . . . ,N − 1},

then |uk+1
| < s1/p.

Proof. Beforehand, notice that (c) of Proposition 9 and the inequality s1/p[1 − 1tf (−uk
m,n)] − (−uk

m,n) > 0 are satisfied
for every m ∈ {1, . . . ,M − 1} and every n ∈ {1, . . . ,N − 1}. In particular, Proposition 9 guarantees that uk+1 < s1/p. The
discussion after Proposition 6 establishes that the pair of vectors vk = −uk and vk+1

= −uk+1 satisfies (30). On the other
hand, the facts that |vk| < s1/p and that f is an even function guarantee that the hypotheses of Proposition 9 are satisfied for
vk and vk+1. It follows that the inequality −s1/p < uk+1 also holds, whence the conclusion follows. �

It is important to point out that the constants s satisfying the hypotheses of all these propositions do exist for the cases
of the Burgers–Fisher and the Burgers–Huxley equations. In the former case s = 1, while in the second s ∈ {1, γ }. In view
of these considerations, the numerical method (18) preserves the positivity and the boundedness of approximations within
(0, s1/p) or (−s1/p, s1/p) for s being equal to either 1 or γ 1/p. It is important to notice also that the respective continuous
models possess analytical results on the existence and uniqueness of solutions bounded within the same interval [33].
The existence of such constants is a cornerstone in this report, and it is the reason why this manuscript focuses on the
Burgers–Fisher and the Burgers–Huxley models.

We summarize in the following theorem the most important properties on the existence and uniqueness of positive and
bounded solutions of our methodology for the cases of the Burgers–Fisher and Burgers–Huxley equations.

Proposition 11 (Existence and Uniqueness). Let s ∈ {1, γ }, and suppose that (a) and (b) of Lemma 7 are satisfied.
(i) If 0 < u0 < s1/p, and if ψa,ψb, χc and χb are all bounded in (0, s1/p), then there exists a unique sequence (uk)Kk=0 satisfying

(30), as well as the inequalities 0 < uk < s1/p for each k ∈ {0, 1, . . . , K}.
(ii) Let p be an even number, and suppose that |u0

| < s1/p and that ψa, ψb, χc and χb are all bounded in (−s1/p, s1/p). If
(c)′ of Proposition 10 holds then there exists a unique sequence (uk)Kk=0 satisfying (30), such that |uk

| < s1/p for each
k ∈ {0, 1, . . . , K}.

Proof. The proof follows from Propositions 8 and 10. �

Finally, we explore the feasibility of the inequality (c)′ in Proposition 10, at least for an even reaction law associated to
the Newell–Whitehead–Segel equation. Let

G(u) = 1 −1t(1 − u2p)− |u|

= (1 − |u|)

1 −1t(1 + |u| + |u|2 + · · · + |u|2p−1)


, (38)

with |u| < 1. Clearly, a sufficient condition for G(u) to be positive is that 2p1t < 1. Clearly, the method proposed in this
work is a linear technique [11,21–24].
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Fig. 1. Graphs of the exact solutions (left column) and the corresponding numerical approximation (right column) versus the spatial coordinates x and y
at the times t = 0 (top row), t = 10 (middle row) and t = 20 (bottom row) of the Burgers–Fisher model (1) subject to initial and boundary conditions
given by the exact solution (5), using the parameters α = 0.45 and p = 1. The simulations were performed using the finite-difference method (18) over
the spatial domain D = [−20, 70] × [−20, 70], with step sizes1x = 1y = 3 and1t = 0.01.

5. Illustrative simulations

Beforehand, it is important to mention that each iteration of the computer implementation of our technique requires to
solve the sparse system (30) using the stabilized bi-conjugate gradient method. Here, preconditioning is not required for
convergence in view that Ak+1 is strictly diagonally dominant.
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Fig. 2. Graphs of the exact solution (left column) and the corresponding, numerical approximation (right column) versus the spatial coordinates x and y
at the time t = 20 for the Burgers–Fisher model (1) subject to initial and boundary conditions given by the exact solution (6), using the parameters α = 0,
p = 2 and C1 = C2 = C3 = 1. The simulationswere performed using the finite-differencemethod (18) over the spatial domainD = [−30, 30]×[−30, 30],
with step sizes1x = 1y = 2 and1t = 0.1.

In the present section, we validate our method using the analytic solutions of the one-dimensional model quoted in
Section 2. In the two-dimensional scenario, the spatial variable will be ξ+ as given by (12) with ϕ = π/4. It is important
to keep in mind that the model is the Burgers–Fisher equation if the nonlinear reaction factor f is given by (2), and it is the
Burgers–Huxley equation if f is provided by (3). In the examples below, the initial and boundary conditions will be provided
by each of the four particular solutions. In all of them, the relevant boundedness conditions summarized by the results of
Section 4 will be satisfied by the parameter values.

Example 12. Fix the model parameters α = 0.45 and p = 1, and consider the particular solution (5). Computationally, fix
the spatial domain D = [−20, 70] × [−20, 70], and the parameters1x = 1y = 3 and1t = 0.01. Fig. 1 presents the exact
solution (left column) and the corresponding numerical approximation (right column) of the problem at three different
times, namely, t = 0 (top row), t = 10 (middle row) and t = 20 (bottom row). The simulations show a good qualitative
agreement between the analytical and the computational solutions of the problem, in addition to the fact that the positive
and the bounded characters of the exact solutions are preserved by the numerical technique. �

Example 13. Let α = 0 and p = 2, and consider the exact solution (6) with C1 = C2 = C3 = 1. Fix the spatial domain
D = [−30, 30] × [−30, 30], and step sizes 1x = 1y = 2 and 1t = 0.1. Fig. 2(a) presents the exact solution at time
t = 20, while graph Fig. 2(b) shows the corresponding, numerical approximation computed through (18). We notice that
the approximate solution is both bounded within (−1, 1) and qualitatively similar to the exact solution at that time. This
similarity will be further analyzed quantitatively in other scenarios. �

For comparison purposes, we define the point-wise, absolute error between the exact solution u at time tk and a
corresponding numerical approximation uk by

E(xm, yn, tk) = |u(xm, yn, tk)− uk
m,n|, (39)

for eachm ∈ {0, 1, . . . ,M} and n ∈ {0, 1, . . . ,N}. Likewise, we define the absolute error at the kth time step by

ϵ(tk) = max{E(xm, yn, tk) : m = 0, 1, . . . ,M, n = 0, 1, . . . ,N}. (40)

Example 14. Consider the exact solution (7) of the Burgers–Huxley model with α = −0.1, γ = 0.4 and p = 1.
Computationally, let D = [−30, 30] × [−30, 30], 1x = 1y = 2 and 1t = 0.1. The left column of Fig. 3 presents the
temporal evolution of the approximate solution at times t = 50 (top row), t = 100 (middle row) and t = 250 (bottom
row); meanwhile, the right column presents the corresponding point-wise, absolute errors. Clearly, the numerical solutions
remain bounded within the interval (0, 1), as expected. We must mention here that we have performed simulations with
smaller values of the step sizes. Our results (not presented here) showed that the point-wise, absolute error decreases as
these values are decreased. �

It is important to notice that the error increases as time increases, a fact which is entirely expected. On the other hand, it
is also interesting to notice that the error is localized around thewave front. This is also expected, in view that the numerical
approximation and the exact solution are both approximately equal to 0 or 1 away from the front, and the absolute error
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Fig. 3. Graphs of the numerical approximations (left column) and the corresponding point-wise, absolute errors (right column) versus the spatial
coordinates x and y at the times t = 50 (top row), t = 100 (middle row) and t = 250 (bottom row) for the Burgers–Huxley model (1) subject to
initial and boundary conditions given by the exact solution (7), using the parameters α = −0.1, γ = 0.4 and p = 1. The simulations were performed
using the finite-difference method (18) over the spatial domain D = [−30, 30] × [−30, 30], with step sizes1x = 1y = 2 and1t = 0.1.
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0

(a) Numerical approximation (t = 10). (b) Absolute error.

Fig. 4. Graphs of the numerical approximation at time t = 10 with 1t = 0.1 versus the spatial coordinates x and y (left column) and the temporal
evolution of the absolute error (right column) with 1x = 1y = 2 for the Burgers–Huxley model (1) subject to initial and boundary conditions given by
the exact solution (9), using the parameters α = −0.2, γ = 0.4 and p = 1. The simulations were performed using the finite-difference method (18) over
the spatial domain D = [−30, 30] × [−30, 30].

in those points is insignificant. As we will notice in the following example, this difference decreases as the values of the
computational parameters tend to zero.

Example 15. We show now that the method performs well with solutions of the Burgers–Huxley equation which are
boundedwithin (0, γ 1/p). Consider the particular solution (9) with α = −0.2, γ = 0.4 and p = 1, and fix the computational
parameters1x = 1y = 2. Fig. 4(a) presents the approximate solution at time t = 10 for a temporal step-size equal to 0.1;
evidently, it shows that the approximation at that time is bounded within (0, 0.4), as desired. On the other hand, Fig. 4(b)
shows the temporal behavior of the absolute error for several values of1t , namely, 0.2, 0.1, 0.05 and 0.01. The results show
a decrease in the propagation of the absolute error as the temporal step-size is decreased. �

Our last simulations illustrate the property of preservation of the skew-symmetry of our method. To that end, we will
take p to be an even positive integer in the reaction factor of the Burgers–Fisher equation, so f will be an even function.

Example 16. Let us fix the parametersα = 0.45 and p = 2, and let us consider the exact solution u given by Remark 2 on the
spatial domain D = [−20, 70]× [−20, 70]. Computationally, let1x = 1y = 3 and1t = 0.005. Each of the graphs of Fig. 5
presents snapshots of the approximate solution of (1) at the times 0, 2.5, 5, 7.5, 10 and 12.5, for initial–boundary conditions
prescribed by u (top graph) and−u (lower graph). These figures corroborate qualitatively the fact that themethod preserves
the skew-symmetry of approximate solutions. �

6. Conclusions

In this work, we introduced a finite-differencemethod to approximate the solutions of a two-dimensional generalization
of the classical Burgers–Fisher and Burgers–Huxley equations. The numerical technique proposed is non-standard in the
way that it approximates the nonlinear terms of advection/convection and reaction, and the linearized form of the method
is consistent of first order in time, and of second order in space. The finite-difference scheme can be rewritten in vector form
in terms of a squarematrix that, under suitable conditions, is anM-matrix. The facts that suchmatrix is non-singular and that
the components of its inverse are positive numbers, follow at once from the elementary properties ofM-matrices. Moreover,
some relatively flexible constraints were also imposed in order to guarantee that new bounded and positive estimates are
derived from old bounded and positive approximations.

We derived some supplemental properties of the method presented in this work, like the property of the preservation
of the anti-symmetry of solutions. Computer simulations were performed in order to assess the validity of our results,
particularly those related to the preservation of the positivity and the boundedness of the numerical solutions. Our results
indicate that our finite-difference scheme approximates well the solutions of the models under investigation, and that the
sufficient conditions for the positivity and the boundedness of the approximations are valid in the cases considered. The
qualitative comparisons were performed against some traveling-wave solutions for the one-dimensional case.

After these results, several avenues of research open ahead in the near future. For instance, the authors are interested
in designing positivity- and boundedness-preserving differential quadrature methods to approximate the solutions of two-
dimensional generalized Burgers–Fisher and Burgers–Huxley equation. The design of differential quadrature techniques
has been popularized mainly by S. Tomasiello in various of her works [34–37]. The extensions of the results reported in this
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(a) t = 0. (b) t = 2.5.

(c) t = 5. (d) t = 7.5.

(e) t = 10. (f) t = 12.5.

Fig. 5. Graphs of the numerical approximations versus the spatial coordinates x and y at six different times for the Burgers–Fisher model (1). Each graph
provides the approximations for two sets of initial–boundary conditions: the top graph in each graph corresponds to initial–boundary conditions given by
the exact solution u of (7), while the bottom graph corresponds to−u. We have used the parameters α = 0.45 and p = 2. The simulations were performed
using the finite-difference method (18) over the spatial domain D = [−20, 70] × [−20, 70], with step sizes1x = 1y = 3 and1t = 0.005.

work to the design of positivity- and boundedness-preserving finite-element and differential quadrature-element methods
are also topics of interest to the authors of the present manuscript. Of course, the design of positivity- and boundedness-
preserving techniques for advection–diffusion equations may be expanded in order to consider different forms of the
reaction law. In this work, we explored two particular forms of reaction which are relevant in the physical sciences, namely,
the well-known Fisher’s law from population dynamics and Huxley’s law from fluid dynamics. However, other different
expressions of the reaction term are important in various branches of the sciences and engineering. In any case, we aim at
designing dynamically consistent techniques for those systems.
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