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a b s t r a c t

Multi-dimensional level-dependent Markov chains with the upper block-Hessenberg
structure of the generator have found extensive applications in applied probability for
solving the problems of queueing, reliability, inventory, etc. However, the problem of
computing the stationary distribution of such chains is not completely solved. There is
a known algorithm for multi-dimensional Asymptotically Quasi-Toeplitz Markov Chains,
but, it is required a large amount of computer resources and time-consuming. In this
paper, we propose a new effective algorithm that is much less time- and memory-
consuming. The new algorithm can be used for analyzing any multi-dimensional Markov
chain with the considered structure of the generator. To numerically demonstrate the
advantages of this algorithm over the known one, we use it for analysis of a novel
single-server retrial queueing system with the batch Markovian arrival process (BMAP), a
finite buffer, non-persistent customers and an unreliable server. We derive a transparent
ergodicity condition for this queueing system. Then, assuming that this condition is
fulfilled, we apply the new algorithm and demonstrate its advantages over the known
one.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Queueing theory is very useful for solving numerous problems of capacity planning, performance evaluation and
optimization of various real-world systems. The majority of the research in the borders of this theory assumes the
existence of buffers in which arriving customers are stored in the case they cannot be accepted for service immediately
upon arrival. However, it is typical in many practically important systems, see, e.g., [1–3] that the customers that cannot
be immediately accepted or stored in some buffer temporarily leave the service area and make the repeated attempts
(retrials) to obtain service.

An analysis of queueing systems with retrials is more complicated than the analysis of their counterparts with an
infinite buffer due to the following two reasons.
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(a) One of the main random processes describing any queueing system is the number of customers in the system. In
the simplest settings, when all distributions characterizing the dynamics of the system are exponential, this process is a
partial case of one-dimensional Markov chain (the so-called birth-and-death process), which represents a very well studied
in the probability theory subject, see, e.g. [4]. The generator of the birth-and-death process has the following tridiagonal
structure:

Q =

⎛⎜⎜⎜⎜⎝
−λ0 λ0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 . . .

0 0 µ3 −(λ3 + µ3) . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎠ (1)

where the parameters λi and µi are the rates (intensities) of the birth and the death at the state i, i ≥ 0.
For the corresponding systems with retrials, to construct the Markov process, it is necessary to split the number of

customers in the system into two dependent processes: the number of customers making retrials (these customers are
assumed to be staying at some virtual place called orbit) and the number of customers in the service area. Therefore, the
dynamics of the retrial system even in the simplest settings is described by a two-dimensional birth-and-death process
or quasi-birth-and-death (QBD) process having one denumerable component sometimes called as the level and one finite
component called as phase, see, e.g., [5,6] and [7].

The generator of this process has the following block-tridiagonal structure:

Q =

⎛⎜⎜⎜⎜⎝
Q0,0 Q0,1 O O . . .

Q1,0 Q1,1 Q1,2 O . . .

O Q2,1 Q2,2 Q2,3 . . .

O O Q3,2 Q3,3 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎠ (2)

where the entries of matrix (2) are not the scalars (as in matrix (1)), but the matrices.
If the blocks of matrix (2) are defined as Qi,i−1 = Q0, Qi,i = Q1, Qi,i+1 = Q2 for all i, i ≥ 1, the QBD process is called

as a level-independent QBD process. Otherwise, the QBD process is called as a level-dependent QBD process.
(b) In the majority of retrial queueing models (except a bit artificial case of the so-called constant retrial rate), the

process describing the behavior of the system is a level-dependent QBD process, while for the similar queueing models
with buffers this process is a level-independent QBD process. The investigation of level-dependent birth-and-death and
QBD processes is more complicated than the analysis of their level-independent analogs. For birth-and-death processes,
the analysis in the level-independent case is possible even for time-dependent probabilities of the states of the process.
While in the level-dependent version, only formulas for the stationary probabilities are known.

A situation in the analysis of QBD processes is worse. Explicit formulas for the stationary probabilities are not known.
In the case of the level-independent QBD process, there exist the elegant algorithmic results for the computation of the
stationary probabilities, see [5,6] and [7]. In the case of level-dependent QBD processes, only some algorithmic results for
the computation of the stationary distribution are presented in [8,9] and [10].

Often, in real-world systems customers can arrive in batches. The multi-dimensional Markov chains describing behavior
of such systems have a block upper-Hessenbergian structure of the generator

Q =

⎛⎜⎜⎜⎜⎝
Q0,0 Q0,1 Q0,2 Q0,3 . . .

Q1,0 Q1,1 Q1,2 Q1,3 . . .

O Q2,1 Q2,2 Q2,3 . . .

O O Q3,2 Q3,3 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎠ . (3)

This structure is more general than (2) and assumes that the denumerable component it of the Markov chain can make
jumps up from the state i not only to the state i + 1, but to the states i + 2, i + 3, . . . .

The important particular case of structure (3) is as follows:

Q =

⎛⎜⎜⎜⎜⎝
Q0,0 Q0,1 Q0,2 Q0,3 . . .

Q0 Q1 Q2 Q3 . . .

O Q0 Q1 Q2 . . .

O O Q0 Q1 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎠ . (4)

The matrix of form (4) is quasi-Toeplitz upper-Hessenbergian. The multi-dimensional Markov chains with structure (4)
of the generator are called as M/G/1-type (or Quasi-Toeplitz) Markov chains. Such Markov chains are comprehensively
studied in the book [11] by M. Neuts.
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Analysis of the queueing models with the generator of form (3) is a complicated problem. Except a series of papers
where the stationary distribution of queueing models with such a generator is found by means of direct truncation of
the system of equations for the stationary probabilities, or only the conditional probabilities of the states given that the
state of the denumerable component of the chain does not exceed a certain level, only the paper [10] is known in the
literature. In that paper, the Markov chains with the generator of form (3) are analyzed under an additional assumption
that the following limits exist:

Y (n)
= lim

i→∞

R−1
i Qi,i+n−1 + δn,1I, n ≥ 0, (5)

where Ri is a diagonal matrix with the diagonal entries defined as the moduli of the corresponding diagonal entries of
the matrix Qi,i, i ≥ 0, I is an identity matrix and δn,1 is the symbol of Kronecker. Such Markov chains are called in [10]
as Asymptotically Quasi-Toeplitz Markov Chains (AQTMC).

This additional assumption holds good for many retrial queues, queues with impatient customers, tandem queues,
etc. This makes the range of application of results for AQTMC quite wide. In [10], the AQTMC with the discrete and
continuous-time are investigated. Sufficient conditions for ergodicity and non-ergodicity are derived. An algorithm for
the computation of the stationary distribution is proposed. The main idea of this algorithm is not to solve the equilibrium
equations for the stationary probabilities, but to derive and solve an alternative system of equations for the stationary
probabilities. This system is derived by means of the construction of series of so-called censored Markov chains (see [12])
with various levels of censoring.

An important step of this algorithm is the computation of matrices Gi the entries of which define the probabilities of
transitions of finite components of the chain in the time interval during which the denumerable component first time
transits from the state i+1 to the state i. These matrices are computed from a backward recursion and the problem of the
choice of the initial state of this recursion arises. A certain solution to this problem is proposed in [10]. This solution leads
to the successful computation of the stationary probability vectors. However, this solution often implies the necessity of
the computation of a huge set of matrices Gi, i ≥ 0, which is both time- and memory-consuming.

Recently, an alternative way for the computation of the matrices Gi, i ≥ 0, and stationary distribution of the Markov
chain is offered and its advantages are illustrated in [9] for the level-dependent QBD process with block tridiagonal
structure (2) of the generator and property (5).

In many cases, the blocks Qi,j of the generator (3) are equal to zero matrix for sufficiently large values of j, e.g., when
j > i + L where L is a certain constant. In application to analysis of real-world systems, the parameter L corresponds to
the maximum of the size of arriving batch of customers. Therefore, it is important to analyze Markov chains with the
generator of form (6):

Q =

⎛⎜⎜⎜⎜⎝
Q0,0 Q0,1 Q0,2 Q0,3 . . . Q0,L O O O O . . .

Q1,0 Q1,1 Q1,2 Q1,3 . . . Q1,L Q1,L+1 O O O . . .

O Q2,1 Q2,2 Q2,3 . . . Q2,L Q2,L+1 Q2,L+2 O O . . .

O O Q3,2 Q3,3 . . . Q3,L Q3,L+1 Q3,L+2 Q3,L+3 O . . .
...

...
...

...
. . .

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎠ . (6)

In this paper, we extend the results from [9] obtained for the level-dependent QBD process with block tridiagonal
structure (2) of the generator to a more general case of the Markov chain with the generator of form (6). It is important
to mention that our algorithm does not exploit, in contrast to [10], the asymptotic properties of the Markov chain and
can be applied for the analysis of an arbitrary ergodic level-dependent Markov chain with the upper block-Hessenberg
structure of the generator of form (6).

The remainder of the paper is organized as follows. In the next section, the known algorithm for the computation
of the stationary probability vectors is given in brief. New algorithms for the computation of the stationary distribution
of the Markov chains with the generator of form (6) are presented in Section 3. The rest part of the paper is devoted
to the illustration of the application of the proposed algorithm. In Section 4, we describe the mathematical model of the
BMAP/PHF/1/N retrial system with a finite buffer and non-persistent customers. The dynamics of the system is described
by a multi-dimensional continuous-time Markov chain with the generator of type (6). The explicit form of the generator
is presented. The sufficient condition for the ergodicity of the Markov chain is derived. Formulas for computing the key
performance indicators of the system are presented. The results of numerical experiments are presented. Finally, some
conclusions can be found in Section 5.

2. Known algorithm for computation of the vectors of stationary probabilities of the Markov chain

We consider a multi-dimensional Markov chain with one countable component it and the generator of form (6). We
call as level i the set of the states of this Markov chain having the value i of the denumerable component, i ≥ 0. We
assume that the Markov chain is ergodic. Then, the row vectors πi consisting of the stationary probabilities of the states
from the level i, i ≥ 0, exist.
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It is well known that the probability vectors πi, i ≥ 0, can be found from the system of Chapman–Kolmogorov
equations

(π0, π1, . . . )Q = 0, (7)

(π0, π1, . . . )e = 1. (8)

Here, e is a column vector of 1’s and 0 is a row vector of 0’s.
System (7), (8) has the infinite number of equations and the problem of solving this system is very difficult except the

case when the matrix Q has the level-independent structure. The more detailed form of Eq. (7) is
l+1∑
i=0

πiQi,l = 0, l ≥ 0. (9)

Theoretically, it could be possible to organize a recursive procedure for the computation of the vectors πi, i ≥ 0, like

πi+1 =

i∑
k=0

πkQk,i(−Qi+1,i)−1, i ≥ 0. (10)

However, such a procedure does not work due to two reasons:
(i) a realization of such a procedure requires the knowledge of the vector π0 as the initial condition of the recursion.

Indeed, the problem of computing this vector is very difficult and is solved only in the case of level-independent Markov
chains with the generator in form (4) (using considerations of analyticity of the generating function of the vectors πi, i ≥ 0,
in the unit disk of the complex plane or an interpretation of the stationary probability of a state of the Markov chain in
terms of the expectation of the number of jumps between two consecutive visits to this state).

(ii) very often, the matrix Qi+1,i is singular and its inversion in (10) is illegal.
Therefore, to compute unknown vectors πi, i ≥ 0, it was proposed in [10] not to solve system (7) but to derive another

infinite system of equations for these vectors. This was done in [10] by means of the construction of a series of the so-called
censored Markov chains (see [12]) with various levels of censoring. As the result, the following system of equations was
derived:

l∑
i=0

πiAi,l = 0, l ≥ 0. (11)

Details of derivation of system of equations (11) can be found in [10]. Having system (11), we do not have principal
difficulties in its solving. If we set in (11) l = 0, we obtain the equation

π0A0,0 = 0 (12)

for the unknown vector π0. When the ergodicity condition is fulfilled, the matrix A0,0 is singular, but its rank is equal
to the dimension of the vector π0 minus one. So, by replacing one equation in (12) with the inhomogeneous equation
derived from normalization condition (8), we can compute the unique solution of this equation.

The rest of the vectors πi, i ≥ 1, are easily computed from the recursion that evidently follows from (11):

πl =

l−1∑
i=0

πiAi,l(−Al,l)−1, l ≥ 1.

Here, the matrix Al,l for all l, l ≥ 1, is non-singular as the irreducible sub-generator.
The key roles in the computation of the matrices Ai,l for system (11) are played by the matrices Gi, i ≥ 0, the entries

of which define the probabilities of transition of finite components of the chain in the time interval during which the
chain first time transits from the level i + 1 to the level i. The brief outline of the algorithm for the computation of the
matrices Ai,l, which was elaborated in [10], adapted to the Markov chain with the generator of form (6) is as follows.

• Compute the matrices Gi by recursion

Gi = (−
i+1+L∑
n=i+1

Qi+1,nGn−1Gn−2 . . .Gi+1)−1Qi+1,i, i ≥ 0. (13)

• Compute the matrices Ai,l as

Ai,l = Qi,l +

i+L∑
n=l+1

Qi,nGn−1Gn−2 . . .Gl, l = i, i + L, i ≥ 0.
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• Compute the matrices Fl, l ≥ 0, as

F0 = I, Fl =

l−1∑
i=max{0,l−L}

FiAi,l(−Al,l)−1, l ≥ 1. (14)

• Compute the vector π0 as the unique solution to the system⎧⎪⎨⎪⎩
π0(−A0,0) = 0,

π0

∞∑
l=0

Fle = 1.
(15)

• Compute the vectors πl, l ≥ 1, as

πl = π0Fl, l ≥ 1. (16)

The presented scheme looks quite simple. However, some technical problems arise at the stage of its computer
implementation. Two main problems are the following ones.

(a) Recursion (13) is the backward one. To compute the matrix Gl, l ≥ 0, we have to know all matrices Gk, k > l.
Therefore, the problem of fixing the initial (terminal) condition for this recursion exists.

(b) The second equation in (15) contains the sum of an infinite number of summands and it is necessary to decide
how to truncate this sum.

To solve the problem (a), the following reasonings can be used. It follows from the definition of AQTMC , that for
large values of the denumerable component it of Markov chain ξt , t ≥ 0, the behavior of AQTMC becomes very close
to the behavior of Markov chain of M/G/1 type with the transition probability matrix of form (4) where the blocks Qk
are replaced with the matrices Y (k) from the definition of AQTMC . Thus, the sequence of the matrices Gi tends, when i
approaches infinity, to the matrix G that defines the probabilities of transitions of finite components of the M/G/1 type
Markov chain in the time interval during which the denumerable component first time transits from the state i+1 to the
state i. Because the M/G/1 type Markov chain has a level-independent transition probability matrix, this matrix indeed
does not depend on the value of i.

It is well known, see, e.g., the book [11], that the matrix G is the minimal nonnegative solution to the matrix equation

G =

∞∑
k=0

QkGk.

This matrix equation can be solved by means of the various variants of iteration method, see, e.g., [13]. One of the
simplest versions of iterations organization is as follows:

G(0)
= O, G(m+1)

=

L+1∑
k=0

Qk(G(m))k, m > 0.

Iterations are stopped when the norm of matrix G(m+1)
− G(m) becomes less than the pre-assigned small value. After that

the matrix G is set to be equal G(m+1).
Because we mentioned above that the sequence of the matrices Gi tends when i approaches infinity, to the matrix G

(formally this is stated in [10]), according to the definition of the limit this implies that for any predefined small number
εG > 0, there exists such a value i∗ that the norm of the matrix Gi − G is less than εG for all i, i ≥ i∗.

Therefore, to choose the value i0 such as the matrices Gi will be set equal to the matrix G for all i, i ≥ i0, we have to
implement the following steps:

Step 1. Fix an arbitrary small number εG > 0, and i∗ as an arbitrary positive integer, say, i∗ = 1000.
Step 2. Set Gi∗+k = G for all k, k ≥ 1, and compute the matrix Gi∗ from relation (13).
Step 3. Compare the norm of the matrix Gi∗+1 − Gi∗ with the value εG. If this norm is less than εG, we set i0 = i∗ and

stop computations. The required value i0 is found. Otherwise, we increase the value i∗, e.g., multiply it by the factor 2,
and go to Step 2.

Problem (b) is solved more easily. All the matrices (−Al,l)−1 in direct recursion (14) exist and are non-negative because
the matrices Al,l for all l, l ≥ 1, are the irreducible sub-generators. Thus, it is clear from (14) that all matrices Fi, i ≥ 0,
have non-negative entries and, because we assume that the considered Markov chain is ergodic, the norm of the matrix
Fi tends to zero when i approaches infinity. So, recursive calculation of the matrices Fi from (14) can be stopped when
the norm of the matrix Fi becomes less than some preassigned accuracy level εF .

Therefore, in principle, problems (a) and (b) are solved. However, the use of this solution in computer implementation
meets significant difficulties such as a very long computational time and the excessive use of computer resources. Although
the number, say i∗, of matrices Gi directly used for computation of the stationary probabilities may be relatively small,
to compute the matrices Gl, l = 0, i∗, it is necessary to implement a huge number of steps of the backward recursion.
E.g., to compute the stationary probabilities of the retrial queueing system, which parameters are presented in Section 4
(for N = 10), using the algorithm from [10], it is required to compute i0 = 342 200 matrices Gi. While only 397 of them
(about 0.116%) are indeed required for computation of the required number of stationary probability vectors.
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3. New algorithm for the computation of stationary distribution of AQTMC

3.1. Key idea

For developing a new algorithm we should overcome the disadvantage of the known algorithm, i.e., we need to avoid
the necessity to compute a large number of the matrices Gi that is not directly used for computation of the stationary
probabilities. Namely, we need to elaborate a procedure for computing the matrices Gi, . . . ,G0 for some arbitrary iwithout
computing all the matrices Gk, k > i. To this end, let us formulate the following assertion.

Lemma 1. For any value i, i ≥ 1, of the countable component it of the ergodic Markov chain ξt , t ≥ 0, and for any fixed
arbitrarily small value ϵ, ϵ > 0, there exists s0, s0 < ∞, such that, for all s ≥ s0, the probability of the transition of the chain
ξt , t ≥ 0, from the level i + 1 to the level i + s without visiting the level i is less than ϵ.

The validity of the lemma follows from the fact that if there exists such a value ϵ that for all s0 there exists s ≥ s0,
such that the probability of the transition of the chain ξt , t ≥ 0, from the level i+ 1 to the level i+ s without visiting the
level i is greater than ϵ, then the chain is evidently not ergodic.

We already mentioned that the entries of the matrix Gi define the transition probabilities of the finite components
of the Markov chain ξt during the time when the chain first time transits from the level i + 1 to the level i. It can be
shown by repeating recursion (13) s times that the matrix Gi can be expressed via the generator blocks and the matrices
Gi+s+l, l ≥ 0. Based on Lemma 1, we can conclude that for sufficiently large s, the probability of reaching the level i + s
starting from the level i + 1 without visiting the level i is negligible. Thus, entries of the matrix Gi do not depend on
transitions that the finite components of the chain make starting from the level i+ s because the chain has no chance to
reach the level i + s starting from the level i + 1 without falling to the level i. Therefore, the matrix Gi does not depend
on the matrices Gi+s+l, l ≥ 0, where the value s is sufficiently large.

So, to compute the matrices Gm, m = 0, i, we can fix some sufficiently large s, set Gi+s+l = C, l ≥ 0, where C is some
arbitrary matrix of the corresponding dimension which does not entail the degeneracy of the matrices

∑i+1+L
n=i+1 Qi+1,nCn−i−1

and use recursion (13). Now, we should solve the problem of choosing the sufficiently large value s. This problem as well
as the problem of computing the matrix Gl, l = 0, i, can be solved by means of Procedure 1.

Procedure 1.

1. We fix s as an arbitrary large integer value, e.g., s = 100, and some small εG, e.g., εG = 10−12.
2. We set G(1)

i+s+l = O, l ≥ 0, and G(2)
i+s+l = I, l ≥ 0.

3. Sequentially calculate the matrices G(1)
i and G(2)

i based on recursion (13).
4. Compute the norm of the matrix G(1)

i − G(2)
i . If the norm is less than εG, the chosen value s is sufficiently large, and

Gi does not depend on Gi+s+l, l ≥ 0, and we go to step 5. Otherwise, we increase s, e.g., multiply s by some factor,
and go to step 2.

5. We set Gi+l = G(1)
i+l, l ≥ 0, and compute the matrices Gk, k < i, by recursion (13).

Explanation. The main idea of Procedure 1 is the following. We fix some large level s and compute the matrix Gi from
recursion (13) assuming absolutely different initial conditions Gi+s+l = C1, l ≥ 0, and Gi+s+l = C2, l ≥ 0. If the matrices
Gi obtained with the use of different initial conditions coincide, we assume that the value s sufficiently large. Otherwise,
we increase s. As initial conditions we choose Gi+s+l = C1 = O, l ≥ 0, and Gi+s+l = C2 = I, l ≥ 0. Note, that the initial
conditions are not relevant to the actual values of the matrices Gi+s+l, l ≥ 0. Moreover, all matrices Gi, i ≥ 0 are stochastic
matrices. We formally set Gi+s+l = O, l ≥ 0, and Gi+s+l = I, l ≥ 0, to choose the value of s such that the value of Gi does
not depend on Gi+s+l, l ≥ 0. Such a choice of the initial conditions provide the non-degeneracy of all inverted matrices.
The entries of the inverse matrices are non-negative. If we found that the matrix Gi does not depend on Gi+s+l, l ≥ 0,
then all matrices Gk, k < i, also do not depend on Gi+s+l, l ≥ 0. Thus, assuming Gi+l = G(1)

i+l, l ≥ 0, we can compute all
matrices Gk, k < i.

After we succeed in developing Procedure 1, the scheme of computing the stationary distribution can be represented
as follows.

We fix some value i0 as the anticipated number of the matrices Fl, required for computing the stationary distribution,
and compute all the matrices Gi, i = 0, i0, based on Procedure 1. Then, we compute the matrices Fi for i = 0, i0, from
(14). If, during the computation we obtain that ∥Fl∗∥ < εF , l∗ ≤ i0, we can stop the computation of the matrices Fi and
find the stationary probabilities πi, 0 ≤ i ≤ l∗, of the system from (15)–(16) using the level l∗ as a truncation level of
the infinite sum. If the inequality ∥Fi∥ < εF is not fulfilled for all i = 0, i0, then the value of i0 is not large enough. We
increase this value and compute additional amount of the matrices Gi and Fi. We repeat these manipulations until the
norm of the matrix Fi becomes less than εF for some i.

Based on all the presented above reasonings, in the next section, we formulate a new algorithm for computing the
stationary distribution of level-dependent multidimensional Markov chain with the generator of form (6).
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3.2. New algorithm

Algorithm 1.
Step 1. (Initialization of parameters) Let us fix the small values ϵG > 0 and ϵF > 0, e.g., ϵG = ϵF = 10−12, set i0 as a

large integer value, e.g. i0 = 100, and set the number nF of already computed matrices Fi equal to 0.
Step 2. (Computation of matrices Gk∗+l, l = 0, L − 1, for some k∗

≥ i0)
This step consists of the following sub-steps:
Step 2.1. Set the parameter s as an arbitrary large integer number, e.g., s = 100.
Step 2.2. Set k = i0 + s + L,

Cl = O, Bl = I, l = 1, L.

Step 2.3. Compute the matrices

C = −(Qk+1,k+1 +

k+1+L∑
n=k+2

Qk+1,nCn−k−1Cn−k−2 . . . C1)−1Qi+1,i, (17)

B = −(Qk+1,k+1 +

k+1+L∑
n=k+2

Qk+1,nBn−k−1Bn−k−2 . . . B1)−1Qi+1,i.

Then, redefine the matrices Cl, Bl, l = 2, L, as

Cl+1 = Cl, Bl+1 = Bl, l = L − 1, . . . , 1.

Then, set

C1 = C, B1 = B.

Step 2.4. Compute the norm of the matrix C1 − B1. If ∥C1 − B1∥ < ϵG, then set k∗
= k − L + 1 and go to Step 2.5.

Otherwise, set k := k−1. In the case when k = i0 +L−1, increase the value s, e.g., s := 2s and go to Step 2.2. If k ≥ i0 +L,
return to Step 2.3.

Step 2.5. Set Gk∗+L−1 = C1.
Set m = 2.
While m ≤ L do the following steps:

• Set k := k − 1;
• Compute the matrix C by formula (17);
• Redefine the matrices Cl, l = 2, L, as

Cl+1 = Cl, l = L − 1, . . . , 1;

• Set C1 = C;

• Set Gk∗+L−m = C1;

• Set m := m + 1.

Step 3. (Computation of the matrices Gi for i < k∗)
Further, we compute all matrices Gi, via the backward recursion

Gi = −(Qi+1,i+1 +

i+1+L∑
n=i+2

Qi+1,nGn−1Gn−2 . . .Gi+1)−1Qi+1,i

where i = k∗
− 1, k∗

− 2, . . . , 0 if nF = 0 and i = k∗
− 1, k∗

− 2, . . . , nF + L if nF > 0.
Explanation. Steps 2–3 correspond to the implementation of Procedure 1.
Step 4. (Computation of matrices Al,m and Fl)
Step 4.1. Set l = nF + 1. If l = 1, we set F0 = I and calculate the matrices A0,m by the formulae

A0,m = Q0,m +

L∑
n=m+1

Q0,nGn−1Gn−2 . . .Gm, m = 0, L.

Step 4.2. Calculate the matrices Al,m by the formulae

Al,m = Ql,m +

l+L∑
n=m+1

Ql,nGn−1Gn−2 . . .Gm, m = l, l + L.
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Step 4.3. Compute the matrix Fl as

Fl =

l−1∑
i=max{0,l−L}

FiAi,l(−Al,l)−1.

Step 4.4. Calculate the norm of the matrix Fl. If ∥Fl∥ < ϵF , then set l∗ = l and go to Step 5. Otherwise, if l < k∗, increase
l by 1 and go to Step 4.2. If l = k∗, set i0 = k∗

+ s1 where s1 is some large integer value, e.g., s1 = 100, and set nF = k∗

and go to Step 2.1.
Explanation. If the termination condition ∥Fl∗∥ < ϵF is fulfilled, we can compute the stationary distribution of the

system. If ∥Fk∗∥ ≥ ϵF , the number k∗ is not large enough and we need to increase it and go to Step 2.1. Note, that we do
not need recalculate the computed matrices Fl, l = 1, k∗, thus we set nF = k∗.

Step 5. (Computation of the vectors πl, l = 0, l∗)
Compute the vector π0 as the unique solution to the system of the linear algebraic equations

π0(−A0,0) = 0, π0

l∗∑
l=0

Fle = 1,

and calculate the stationary distribution of the Markov chain as

πl = π0Fl, l = 1, l∗.

It is worth noting that it is clear that, due to the ergodicity of the Markov chain, ∥πi∥ → 0 and ∥Fi∥ → 0 when i → ∞.
Therefore, the algorithm stops its work (the termination condition ∥Fl∗∥ < ϵF is fulfilled) after a finite number of steps.
But, we do not consider here the rate of its convergence due to the possible description of the chain by lots of parameters.
Results of the numerical experiments for several queueing systems show that this rate essentially depends on too many
factors like the load of the system, rate of convergence of retrial intensities, correlation in the arrival process, variance of
inter-arrival and service times, higher moments of their distributions, probabilities of the service without the error, etc,
and various combinations of these factors.

3.3. Modification of the new algorithm

The new algorithm can be optimized by means of calculation of the vectors φi instead of the matrices Fi as follows.

Algorithm 2.
Step 1. Let us fix the small values ϵG > 0 and ϵφ > 0, e.g., ϵG = 10−12, ϵφ = 10−14, and set i0 as an arbitrary positive

integer large value, e.g. i0 = 100, and set nφ = 0.
Step 2. Implement Steps 2–3 from Algorithm 1, only replace the parameter nF by the parameter nφ .
Step 3.1. Set l = nφ + 1. If l = 1, calculate the matrices A0,m by the formulae

A0,m = Q0,m +

L∑
n=m+1

Q0,nGn−1Gn−2 . . .Gm, m = 0, L,

and find the vector φ0 as the unique solution to the system

φ0(−A0,0) = 0, φ0e = 1.

Step 3.2. Calculate the matrices Al,m by the formulae

Al,m = Ql,m +

l+L∑
n=m+1

Ql,nGn−1Gn−2 . . .Gm, m = l, l + L.

Step 3.3. Calculate the vectors φl using the formulae

φl =

l−1∑
i=max{0,l−L}

φiAi,l(−Al,l)−1.

Step 3.4. Compute the norm of the vector φl. If ∥φl∥ < ϵφ , then set l∗ = l and go to Step 4. Otherwise, if l < k∗, increase
l by one and go to Step 3.2. If l = k∗, set i0 = k∗

+ s1, where s1 is some arbitrary positive integer large value, set nφ = k∗

and go to Step 2.

Step 4. Compute a constant a =

(∑l∗
l=0 φle

)−1

.

Then calculate the vectors πl, l = 0, l∗, as

πl = aφl, l = 0, l∗.
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Remark 1. It is worth to note that the results elaborated in [10] essentially exploit asymptotic assumption (5)
for construction of the algorithm, namely, for choosing the terminal condition for the backward recursion (13). This
assumption is quite natural for Markov chains describing the behavior of a variety of practically important queueing
systems, including retrial systems with the classical and linear strategy of retrials, systems with impatient customers,
systems with the infinite number of servers, tandem queueing systems, etc. This property holds true, in particular, for
the queueing system under study in the next section. However, definitely, there are situations when the asymptotic
assumption (5) is not fulfilled, e.g., when the total retrial rate of customers αi when i customers are in the orbit cyclically
depends on i, e.g., it is equal to a1 for odd values of i and is equal to a2, otherwise. The algorithms developed in our paper,
exploit only the ergodicity of the Markov chain and do not use asymptotic properties (5). Therefore, these algorithms can
be applied to compute the stationary distribution of an arbitrary ergodic level-dependent multidimensional Markov chain
with the generator of form (6).

4. Application of algorithms to analysis of a single-server retrial queueing system with the batch Markovian arrival
process, a finite buffer, non-persistent customers and an unreliable server

4.1. Motivation of the model and its novelty

The elaborated algorithms can be applied for computation of the stationary distribution of the states and optimization
of a variety of queueing and inventory models, especially models with customer retrials and impatience. To illustrate
their application to the analysis of a concrete retrial queueing model, we consider in brief a novel single-server retrial
queueing system with the BMAP , a finite buffer, non-persistent customers and an unreliable server. The BMAP was
proposed by the research team of M. Neuts as a significant generalization of the stationary Poisson arrival process.
The stationary Poisson process is still popular in the engineering literature but badly describes real information flows
in modern telecommunication networks and contact centers. These flows exhibit fluctuation of instantaneous arrival
rate and correlation of inter-arrival times. The BMAP ideally fits to take into account these features of real-world
processes. The single-server queueing system with the BMAP , general service time distribution, and infinite buffer was
first comprehensively analyzed in [14] and [15]. The first paper where a single-server retrial queueing system with the
BMAP was analyzed is [16]. Here, we consider the model that differs from [16] in the following aspects.

(i) A pure retrial model was considered in [16]. There is no buffer in the system and an arriving customer, which
meets busy server, moves the orbit for making repeated attempts. However, in some real-world systems, an additional
small buffer exists. E.g., in modeling cellular networks, the customer that requires handover procedure during moving to
another cell has a chance to wait during his/her sojourn in the overlapping area of current and target cells. Therefore, the
account of the existence of a buffer is important and practically motivated.

(ii) Customers were supposed to be absolutely persistent in [16] while in the real-world systems they can terminate
retrials and leave the system permanently. The technique of embedded Markov chains applied in [16] cannot be effectively
extended to the case of non-persistent customers.

(iii) The server was supposed to be absolutely reliable in [16]. However, in reality, the servers can be unreliable.
Unreliable retrial queues were considered, e.g., in [17,18]. The model considered in [17] has many servers and phase-
type service time distribution. The model considered in [18] assumes a general distribution of service and repair times.
It is assumed in both these papers that the server may fail. Service is terminated and the server becomes broken and has
to be repaired during a certain random time. In our model, we assume that the failure occurrence does not imply the
breakdown of the server and the necessity of its recovering.

The model considered in this section can be applied for performance evaluation and capacity planning of telecom-
munication networks, in particular, wireless networks, including sensor networks designed for security provisioning of
some objects under the impact of external influences. In the application of retrial queueing models for modeling wireless
communications, the unreliability of the server is related mainly to the noise in the transmitting thread. Therefore, a
failure in transmission does not require the repair of the server. Only the repeated service of a customer, during service
of which an error occurs, is required. Thus, the results from [17] and [18] cannot be directly applied for modeling systems
with unreliable wireless transmission of information, while the mechanism of unreliable service considered in our paper
ideally fits such systems.

4.2. Description of the mathematical model

The structure of the considered queueing system is given in Fig. 1.
Customers arrive at the system in batches according to the BMAP , see, e.g., [19] and [14]. In the BMAP , the potential

moments of batches arrival are defined as the moments of jumps of the irreducible continuous-time Markov chain
νt , t ≥ 0, with the finite state space {0, 1, . . . ,W } that is called as the underlying process of the BMAP . The BMAP is
completely characterized by the matrices Dk which consist (except the diagonal entries of the matrix D0) of the intensities
of jumps of the process νt that are accompanied by the arrival of a batch of k customers. In this paper, we suppose that
the BMAP has finite support, i.e., the maximum size of the batch is L where L < ∞. The matrix D(1) =

∑L
k=0 Dk represents

the generator of the process νt . The average arrival rate (fundamental rate) λ of the BMAP is defined by λ = θ
∑L

k=1 kDke
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Fig. 1. Structure of queueing system under study.

where θ is the invariant vector of the stationary distribution of the process νt . This vector is the unique solution to the
system θD(1) = 0, θe = 1.

The system has a single server and a finite buffer of capacity N −1, N > 1. The presence of a finite buffer in the retrial
model is assumed, e.g., in [20]. If the server is idle at the moment of a batch arrival, one customer of a batch immediately
starts service. The rest of the batch occupies the corresponding number of places in the buffer. If there is no place in the
buffer for all customers, the redundant customers join the orbit of infinite capacity. If the server is busy at the moment
of a batch arrival, the customers of this batch occupy the corresponding number of places in the buffer. Analogously, if
there is no place in the buffer for all customers, the redundant customers join the orbit.

The customers staying in the orbit try to obtain access, independently of each other. The total retrial rate when i
customers are in the orbit is equal to αi, i ≥ 1, such as αi → ∞ when i → ∞. If the buffer is full at the moment of a
retrial attempt, the customer leaves the system permanently with probability p, 0 ≤ p ≤ 1. With the complementary
probability, the customer returns to the orbit.

We assume that the server is not absolutely reliable and errors can occur during service. The account of the unreliability
of the server is very important for the correct prediction of the values of performance measures of any queueing system,
for references see, e.g., [17,21]. In our model, we assume that error occurrence does not mean the server breakdown and
the necessity of its repairing. Error occurrence just implies the termination of a customer’s service. The customer, during
service of which the error occurs, joins the orbit or repeats service from the early beginning or from the phase at which
the error occurs. To take these features into account, we suppose that the service time of the customer has the so-called
PHF (phase type with failures) distribution, that is the natural extension of the classical PH (phase-type) distribution,
see [5] and [7], to the case when the server is unreliable.

The PHF distribution was recently introduced in [22]. This distribution is defined by the underlying irreducible
continuous-time Markov chain ηt , t ≥ 0, with a finite state space {1, 2, . . . ,M,M + 1, M + 2} and the set of parameters
(β, S, S1, S2, q1, q2). The row vector β = (β1, . . . , βM ) defines the choice of the state of the process ηt from the set
{1, 2, . . . ,M} at the service beginning instant. The sub-generator S defines the transition rates of the chain within this
set. The column vector S1 defines the rates of transition to the absorbing state M +1 which corresponds to the successful
service completion. The column vector S2, S2 = −Se − S1, defines the rates of transition to the absorbing state M + 2
which corresponds to a failure occurrence. After the failure occurrence the customer, service of which is terminated, joins
the orbit with probability q1, restarts service from the beginning with probability q2, and restarts service from the phase,
at which the failure occurred, with probability 1 − q1 − q2. For more information about the PHF distribution, see [22].

4.3. The process of system states

The dynamics of the system under study is described by the process

ξt = {it , nt , νt , ηt}, t ≥ 0,

where, at the moment t, t ≥ 0,
it is the number of customers in the orbit, it ≥ 0;
nt is the number of customers in the system (in service and in the buffer), nt = 0,N;

νt is the state of the underlying process of the BMAP , νt = 0,W ;

ηt is the state of the PHF underlying process, ηt = 1,M , if nt > 0. When nt = 0, the component ηt is not defined and
is not included into the process ξt .

It is easy to see that the process ξt is the regular irreducible continuous-time Markov chain.
Let us enumerate the states of the Markov chain ξt in the lexicographic order and call the set of the states having the

value i of the first component as the level i. Each level consists of (W + 1)(NM + 1) states. Let Q be the generator of the
Markov chain.
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Lemma 2. The infinitesimal generator Q of the Markov chain ξt , t ≥ 0, has structure (6) with the non-zero blocks Qi,j having
the following form:

Qi,i−1 = αiH,

where

H =

⎛⎜⎜⎜⎜⎝
O IW̄ ⊗ β O . . . O
O O IW̄M . . . O
...

...
...

. . .
...

O O O . . . IW̄M
O O O . . . pIW̄M

⎞⎟⎟⎟⎟⎠ ,

Qi,i+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

O O O . . . O δN+1≤LDN+1 ⊗ β

q1IW̄ ⊗ S2 O O . . . O D̃N

O q1IW̄ ⊗ S2β O . . . O D̃N−1
...

...
. . .

. . .
...

...

O O O . . . O D̃2

O O O . . . q1IW̄ ⊗ S2β D̃1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Qi,i+k =

⎛⎜⎜⎜⎜⎜⎜⎝

O . . . O δk+N≤LDk+N ⊗ β

O . . . O D̃k+N−1

O . . . O D̃k+N−2

...
. . .

...
...

O . . . O D̃k

⎞⎟⎟⎟⎟⎟⎟⎠ , k = 2, L,

(Qi,i)n,n′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O n′ < n − 1, n = 2,N,

IW̄ ⊗ S1, n′
= 0, n = 1,

IW̄ ⊗ S1β, n′
= n − 1, n = 2,N,

D0 − αiIW̄ , n′
= n = 0,

A − αiIW̄M , n′
= n, n = 1,N − 1,

A − pαiIW̄M , n′
= n = N,

δl≤LDl ⊗ β, n′
= l, l = 1,N, n = 0,

D̃l, n′
= n + l, l = 1,N − n, n = 1,N,

i ≥ 0.

Here, δcondition is an indicator, which is equal to 1 if the condition is fulfilled, and is equal to 0 otherwise,

D̃k = δk≤LDk ⊗ IM , k ≥ 1,
A = D0 ⊕ S + (1 − q1 − q2)IW̄ ⊗ diag{S2} + q2IW̄ ⊗ S2β,

⊕ and ⊗ are symbols of the Kronecker sum and product of matrices, respectively, see, e.g., [23], W̄ = W + 1.

Proof of the lemma is implemented via the analysis of the intensities of transitions of the process ξt , t ≥ 0.

Lemma 3. The Markov chain ξt , t ≥ 0, with the generator defined by Lemma 2 is AQTMC, see [10].

Proof. To prove this lemma, it is required to verify that limits (5) for the Markov chain ξt with the generator defined by
Lemma 2 exist.

It can be shown that if p > 0, the matrices Y (n), n ≥ 0, have the following form:

Y (0)
= H,

Y (1)
=

⎛⎜⎜⎜⎜⎝
O O O O . . . O O
O O O O . . . O O
...

...
...

...
. . .

...
...

O O O O . . . O O
O O O O . . . O (1 − p)IW̄M

⎞⎟⎟⎟⎟⎠ , Y (n)
= O, n = 2, L + 1.



12 S. Dudin, A. Dudin, O. Kostyukova et al. / Journal of Computational and Applied Mathematics 366 (2020) 112425

If p = 0, these matrices have the following form:

Y (0)
=

⎛⎜⎜⎜⎜⎝
O IW̄ ⊗ β O O . . . O O
O O IW̄M O . . . O O
...

...
...

...
. . .

...
...

O O O O . . . O IW̄M
O O O O . . . O O

⎞⎟⎟⎟⎟⎠ , Y (1)
=

⎛⎜⎜⎜⎜⎝
O O . . . O O
O O . . . O O
...

...
. . .

...
...

O O . . . O O
O O . . . Z−1(IW̄ ⊗ S1β) Z−1A + I

⎞⎟⎟⎟⎟⎠ ,

Y (2)
=

⎛⎜⎜⎜⎜⎝
O O . . . O O
O O . . . O O
...

...
. . .

...
...

O O . . . O O
O O . . . Z−1(q1IW̄ ⊗ S2β) Z−1D̃1

⎞⎟⎟⎟⎟⎠ , Y (n)
=

⎛⎜⎜⎜⎜⎝
O O . . . O O
O O . . . O O
...

...
. . .

...
...

O O . . . O O
O O . . . O Z−1D̃n−1

⎞⎟⎟⎟⎟⎠ , n = 3, L + 1,

where Z is the diagonal matrix the diagonal entries of which are defined as the modulus of the corresponding diagonal
entries of the matrix A. Therefore, for the Markov chain under study all the limits in the definition of AQTMC exist and,
hence, this chain belongs to the class of AQTMC .

Theorem 1. In the case p = 0, the Markov chain ξt , t ≥ 0, is ergodic if the inequality

µS1 > λ

holds true where the vector µ is the unique solution to the system

µ(S + S1β + (1 − q1 − q2)diag{S2} + (q1 + q2) ⊗ S2β) = 0, µe = 1.

In the case p > 0, the Markov chain ξt , t ≥ 0, is ergodic for all values of the system parameters.

Proof. To obtain the sufficient condition for the ergodicity of the Markov chain ξt we apply the theory of AQTMC from [10].
This condition is formulated in terms of the matrix generating function Y (z) =

∑L
k=0 Y

(k)zk, |z| ≤ 1. The condition has
different form depending on whether or not the matrix Y (z) is irreducible. In our case, we have more complicated case
of the reducible matrix. In this case, the sufficient condition for the ergodicity has the following form. AQTMC is ergodic
if, for all irreducible blocks Yl(z) of the canonical normal form of the matrix Y (z) (for definition see [24]), the inequalities

yl
dYl(z)
dz

|z=1e < 1 (18)

are fulfilled where the vectors yl are the unique solutions to the equations

ylYl(1) = yl, yle = 1. (19)

The explicit form of the matrix generating function Y (z) in the case p = 0 is as follows:

Y (z) =

⎛⎜⎜⎜⎜⎝
O IW̄ ⊗ β O O . . . O O
O O IW̄M O . . . O O
...

...
...

...
. . .

...
...

O O O O . . . O IW̄M
O O O O . . . Z−1((IW̄ ⊗ S1β)z + q1(IW̄ ⊗ S2β)z2) zIW̄M + Z−1(Az +

∑L
k=1 D̃kzk+1)

⎞⎟⎟⎟⎟⎠ .

By means of matched permutations of block rows and columns of the matrix Y (z), it is possible to check that the single
irreducible block Y1(z) of the matrix Y (z), which participates in formulation of the ergodicity condition, has the following
form:

Y1(z) =

(
O IW̄M

Z−1((IW̄ ⊗ S1β)z + q1(IW̄ ⊗ S2β)z2) zIW̄M + Z−1(Az +
∑L

k=1 D̃kzk+1)

)
.

For z = 1, this matrix has the form:

Y1(1) =

(
O IW̄M

Z−1X1 Z−1X2 + I

)
where

X1 = IW̄ ⊗ S1β + q1IW̄ ⊗ S2β,

X2 = D(1) ⊗ IM + IW̄ ⊗ S + (1 − q1 − q2)IW̄ ⊗ diag{S2} + q2IW̄ ⊗ S2β.
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Let us represent the vector y1, which is the solution to system (19), in the form

y1 = (y(N−1), y(N)). (20)

By substituting the vector y1 in form (20) into system (19), one can verify that the vector y(N)Z−1 is the solution of the
equation

y(N)Z−1
(
IW̄ ⊗ S1β + q1IW̄ ⊗ S2β + D(1) ⊗ IM + IW̄ ⊗ S + (1 − q1 − q2)IW̄ ⊗ diag{S2} + q2IW̄ ⊗ S2β

)
= 0,

or

y(N)Z−1
(
IW̄ ⊗ (S1β + S + (1 − q1 − q2)diag{S2} + (q1 + q2) ⊗ S2β) + D(1) ⊗ IM

)
= 0 (21)

while the vector y(N−1) is computed by

y(N−1)
= y(N)Z−1(IW̄ ⊗ (S1 + q1S2)β). (22)

By the direct substitution into Eq. (21), it can be verified that the vector y(N)Z−1 has the form

y(N)Z−1
= a(θ ⊗ µ) (23)

where a, a > 0, is a normalizing constant, θ is the stationary distribution vector of the underlying process of the BMAP ,
and µ is the unique solution to the system

µ(S + S1β + (1 − q1 − q2)diag{S2} + (q1 + q2) ⊗ S2β) = 0, µe = 1.

From (22), we obtain

y(N−1)
= a(θ ⊗ µ)(IW̄ ⊗ (S1 + q1S2)β). (24)

Substituting the vector y1 in form (20) into inequality (18), it is possible to verify that this inequality can be transformed
to the form

a(θ ⊗ µ)(IW̄ ⊗ (S1 + q1S2)β)e > a(θ ⊗ µ)(
L∑

k=1

kDk ⊗ IM + q1IW̄ ⊗ S2β)e.

After some algebra, using the mixed product rule for the Kronecker product of matrices (see [23]) we can rewrite this
inequality into the form

(θIW̄ ⊗ µ(S1 + q1S2)β)(eW̄ ⊗ eM ) > (θ
L∑

n=1

nDn ⊗ µIM + q1θIW̄ ⊗ µS2β)(eW̄ ⊗ eM ),

and, then,

µ(S1 + q1S2β)eM > λ + µq1S2βeM ,

or

µS1 > λ.

Let us now consider the case p > 0. In this case, the irreducible stochastic blocks of the matrix Y (1) all are equal to
scalar 1 and the inequalities of type (18) are reduced to the inequality 1 − p < 1 that is always true in the considered
case. The theorem is proved.

Remark 2. Condition µS1 > λ is easily tractable. The vector µ defines the stationary distribution of the underlying
process ηt of service when the system is overloaded. The number µS1 defines the rate of customers departure from the
system when it is overloaded. It is intuitively clear that the system is stable (the Markov chain describing its behavior is
ergodic) if the rate of customers departure from the system when it is overloaded exceeds the arrival rate of customers
λ.

Remark 3. As follows from [10], the condition

µS1 < λ

is sufficient for the non-ergodicity of the Markov chain ξt , t ≥ 0.

Let us assume that conditions of Theorem 1 are fulfilled. Then the following limits exist

π (i, 0, ν) = lim
t→∞

P{it = i, nt = 0, νt = ν},
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π (i, n, ν,m) = lim
t→∞

P{it = i, nt = n, νt = ν, ηt = m},

i ≥ 0, n = 1,N, ν = 0,W ,m = 1,M,

and are called as the stationary probabilities of the states of the Markov chain ξt , t ≥ 0.
Let us form the row vectors π(i, n) i ≥ 0, n = 1,N , of the probabilities π (i, n, ν,m) enumerated in the direct

lexicographic order of the components (ν,m). Then, let us form the row vectors

πi = (π(i, 0), π(i, 1), . . . ,π(i,N)), i ≥ 0.

To compute these vectors, we can apply one of the algorithms elaborated in Section 3. Then, we can compute the key
performance measures of the system.

4.4. Performance measures

The average number Nsystem of customers in the system (in the server and in the buffer) is computed by

Nsystem =

∞∑
i=0

N∑
n=1

nπ(i, n)e.

The average number Lorbit of customers in the orbit is computed by

Lorbit =

∞∑
i=1

iπie.

The average intensity λout of the flow of customers, who successfully obtain service, is computed by

λout =

∞∑
i=0

N∑
n=1

π(i, n)(IW̄ ⊗ S1β)e.

The loss probability Ploss of an arbitrary customer is computed by

Ploss = 1 −
λout

λ
.

4.5. Numerical examples

For computations, we use a PC with an Intel Core i7-8700 CPU and 16 GB RAM.

Example 1. Effectiveness of old and new algorithms
To construct the BMAP , we use the MAP defined by the matrices

D0 =

(
−25.53984 0.393329 0.361199
0.14515 −2.2322 0.200007
0.295961 0.387445 −1.752618

)
, D1 = D =

( 24.24212 0.466868 0.076324
0.034097 1.666864 0.186082
0.009046 0.255481 0.804685

)
. (25)

This arrival process has the average arrival rate λ = 5, the coefficient of correlation of two successive intervals between
arrivals ccor = 0.3, and the squared coefficient of variation of the intervals between customer arrivals cvar = 2.

We assume that the number of customers in a batch has a truncated geometric distribution, i.e., the probability that an
arbitrary batch consists of k customers is equal to q(k) = qk−1 1−q

1−qL
, k = 1, L, where q is the parameter of the distribution

and L = 5. Based on the described MAP , we construct the BMAP as follows. We set the matrix D0 the same as above. The
matrices Dk, k = 1, 5, are initially defined by Dk = Dq(k), k = 1, 5, where the matrix D is given in (25) and q = 0.8. After
that, we multiply all the matrices Dk, k = 0, 5, by the factor 5

12.8153 to obtain the BMAP having the fundamental intensity
λ = 5.

The service time of a customer has a PHF distribution with the following parameters:

β = (0.5, 0.3, 0.2),

S =

(
−13 2 1
0 −12 2
1 1 −15

)
,

S1 = (9.5, 9.8, 12.9)T , S2 = (0.5, 0.2, 0.1)T , q1 = 0.5, q2 = 0.3.

Under these parameters, the probability of successful completion of an arbitrary service is equal to 0.971262. Correspond-
ingly, the probability of interruption of an arbitrary service is equal to 0.028738.

The individual intensity of customers’ retrial is α = 0.5, the total retrial intensity when i customers stay in the orbit
is αi = iα, i ≥ 0. The probability that the customer leaves the system after unsuccessful retrial is p = 0.1.
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Table 1
Information related to the implementation of the known algorithm.
N Size nG nπ Runtime

2 21 341 600 402 242 s
3 30 342 000 399 420 s
4 39 342 200 398 670 s
5 48 342 200 397 981 s
6 57 342 200 397 1318 s
7 66 342 200 397 1815 s
8 75 342 200 397 2290 s
9 84 342 200 397 2842 s
10 93 342 200 397 3453 s

Table 2
Information related to the implementation of Algorithm 2.
N Size nG nπ Runtime

2 21 641 409 1.6 s
3 30 641 407 2.4 s
4 39 641 406 3.5 s
5 48 641 406 5.4 s
6 57 641 406 7.3 s
7 66 641 406 9.5 s
8 75 641 405 11.7 s
9 84 641 405 14.7 s
10 93 641 405 18 s
15 138 641 403 37 s
20 183 641 402 60 s
30 273 641 399 81 s
40 363 641 397 154 s
50 453 641 395 267 s

Let us fix ϵG = 10−3 and ϵF = 10−11 and use the known algorithm for AQTMC from [10]. We compute the stationary
distribution of the system with capacity N varying in the interval [2, 10]. The information related to the implementation
of the known algorithm (the size of generator’s blocks Size = W̄ (1 + NM), the number nG of computed matrices Gi, the
number nπ of computed stationary probabilities vectors, and the runtime) is presented in Table 1.

Now, we vary the system capacity N over the interval [1, 50] and compute the performance measures of the system
based on Algorithm 2. All the constants in the algorithm are assumed the same as in Section 3.

The information related to the implementation of Algorithm 2 for each number N is presented in Table 2.
Comparing Tables 1 and 2, we observe a huge advantage of the new algorithm with respect to the runtime. E.g., for the

capacity N = 2 of the system the new algorithm is 151 times faster and requires the computation of 532 times smaller
number of matrices Gi. For the capacity N = 10 of the system the new algorithm is 191 times faster. The runtime is only
18 s, while the known algorithm requires about 58 min. The new algorithm requires a bit more than 4 min for N = 50.
While the known algorithm has essential difficulties with available computer memory even for N = 11.

Note, that all the data presented in Table 2 are obtained for values i0 = s = 100 that are default fixed in the algorithm
as the initial values. Taking into account the features of the queueing model, to which the algorithm is applied, one could
be more flexible in choosing the initial values. It is seen from Table 2 that for N = 2 the number of non-negligible
probability vectors πi is about 410. It is clear that the increase of the buffer size N −1 causes the decrease in the number
of customers in the orbit. Thus, for N > 2 the number of non-negligible probability vectors πi is not larger than 410.
Therefore, it is reasonable to increase the initial values of i0 and s in the computation of the stationary distribution of the
system states for N > 2. E.g., if one chooses i0 = 400 and s = 150, the runtime for N = 50 will be about 141, i.e., almost
twice less than in Table 2.

Example 2. Illustration of the effect of batch arrivals
The necessity of the account of correlation and variation of inter-arrival times in the BMAP is quite well illustrated

in the literature. Therefore, we will briefly illustrate the effect of the batch arrivals. To build BMAPs with various batch
size distributions, we again use the MAP defined by formula (25). The number of customers in a batch has a truncated
geometric distribution. We consider the following three different values of the parameter q of this distribution: 0.2, 0.5
and 0.8. The maximal batch size is 5. For each fixed q, we scale the matrices Dk, k = 0, 5, to get the same fundamental
rate λ = 5 for all these BMAPs. Note, that the larger is the parameter q the larger is the average batch size (it is equal
to 1.2484, 1.8387 and 2.5630 for q equal to 0.2, 0.5 and 0.8, correspondingly). Because we set the fundamental rates for
these BMAPs equal, a smaller number of q implies that the customers arrive more frequently, but in batches of smaller
size.
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Fig. 2. Dependence of the average number Lorbit of customers in the orbit on the value N for various values of q.

Fig. 3. Dependence of the average number Nsystem of customers in the system on the value N for various values of q.

Figs. 2–4 illustrate the dependence of the average number Lorbit of customers in the orbit, the average number of
customers in the system Nsystem (excluding the number of customers in the orbit) and the probability of an arbitrary
customer loss Ploss on the values of N for various values of q.

It is easy to see from these figures, that the performance measures of the system are better for smaller values of q.
This is explained by the made above conclusion that smaller value of q implies more regular arrival of customers (more
frequent and in smaller batches) and, therefore, higher chances of an arbitrary customer to avoid visiting the orbit. The
last fact is evident from the following observations. When q = 0.2, the average batch size is 1.2484 and, if the arriving
batch sees the server idle, with probability 1

1.2484 = 0.8 an arbitrary customer succeeds to start service immediately. In
the case q = 0.8, the average batch size is 2.5630 and the corresponding probability is 1

2.5630 = 0.39.

5. Conclusion

In this paper, new numerically stable algorithms for computation of the stationary distribution of ergodic multi-
dimensional Markov chains with the level-dependent structure of the generator are developed. To demonstrate the
application of these algorithms, we analyze a novel single-server retrial queue with the batch Markov arrival process
and a finite buffer. The total retrial intensity arbitrarily depends on the number of customers in the orbit. Customers in
the orbit may be non-persistent and depart from the orbit without service after each unsuccessful attempt. The server
is unreliable. Service consists of a random number of phases. Service can be interrupted what implies the transition of
the customer to the orbit or service repetition from the beginning or from the phase at which the interruption occurred.
For this system, the ergodicity condition is derived. Under fulfillment of this condition, the stationary distribution of a
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Fig. 4. Dependence of the probability of an arbitrary customer loss Ploss on the value N for various values of q.

multi-dimensional Markov chain that describes the behavior of the system is computed via the known algorithm and the
algorithm developed in this paper. The essential advantages of the new algorithm in terms of runtime and requirements
to computer memory over the known algorithm are numerically demonstrated.
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