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Abstract
A new class of nonlinear one-step methods based on Euler’s integration formula for the numerical solution of ordinary
differential equations is presented. The accuracy and stability of the proposed methods is considered and their

applicability to stiff problems is also discussed.
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1. Introduction

The class of linear one-step methods of order one is given by

Ynt1=Yu+ h0fn + (1 = 0)for1); (1.1)

these methods are often referred to as “6-methods” [2, p. 240], where y’ = f(x, y). The formula (1.1)
is shown to be A-stable if and only if § < 3 [2]. Further it can be shown that these methods have
truncation error

Toe1 =0 —Dh?y; + (30 — )3y, + O(h*). (1.2)

This error is smallest when @ =  in which case the method has order 2, called the trapezoidal rule

rr

whose truncation error is —1/12h%y,”. Formula (1.1) can be obtained as follows. Consider the
following two formulae of Euler:

Yn+1 _yn=hyr,l, (13)
Vut1 = Yn=hyns1. (1.4)
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The first formula is the forward Euler and the second is the backward Euler formula. Multiplying
Eq. (1.3) by # and Eq. (1.4) by (1 — 6) and adding we obtain equation (1.1). By taking arithmetic
mean of Egs. (1.3) and (1.4) we obtain the well known trapezoidal formula

Ya+1=Yn+3h(ys + Yas1). (1.5)

Evans and Sanugi [1] have developed equivalent formulae in the geometric mean (GM) sense
which is implicit, high-order, A-stable and moreover it is also L-stable. But this formula is
computer-expensive compared to the trapezoidal method. In the present investigation a method
based on the harmonic mean (HM) sense is considered and its applicability to ODEs is investi-
gated.

2. Nonlinear formulae based on Euler formulae

The formula given by Evans and Sanugi [1] which is referred to as GM Euler method is of the
form

V1 =Yn+h/VaVn+1. (2.1)

Now by taking the harmonic mean of the formulae (1.3) and (1.4), a nonlinear equivalent of the
trapezoidal formula is obtained as

yt/lyr/H"l
i1 = a4 2p 2Pl 22
Yn+1 Y y;‘ Vi1 ( )

We will refer to this formula as the HM Euler formula. In general if we multipy (1.3) by 0 and (1.4)
by (1 — 0) and take the harmonic mean, we obtain

YnYn+1 (23)

n _n=h ; 7 .
Pt = = )y + Oyaes

Formula (2.3) contains, as special cases, forward Euler (6§ = 1), backward Euler (§ = 0) and formula
(2.2) (0 = %).

3. Accuracy of the formula (2.3)

Based on the Taylor’s series expansion of y(x,+ ;) about x,, which is denoted by y, . ;, we obtain
the expansion for y, ., as

Var1=Yn+ byl +3h2y +

hy,’,’ th/// ):I
_ 1+<_’+ V)] 3.1
g [ Yo 2V G
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Using Eq. (3.1) in the expression (1 — 6)y, + 8y,+1 we obtain
h ” h2 '/l//
(1= 0)ys + Oyner = (1 = )3 + ey:,[l + ( i ek )]

, hy h2 e
—yn[1+9<yn Syt ﬂ (3.2)

Substituting Eq. (3.2) in Eq. (2.3) we obtain

h
Yne1=Yn + y, yn(Yn + hy,’,’ + 2h2ym )

hy h2 1" )]—1
1+46 — 4 . . 3.3
[ ( Vn 2y, (3)

The terms in the square bracket of (3.3) are in the form (1 + x)~ !, where

" h2 "
x=9<hy,.. LR >
Yn  2¥n

Using binomial theorem in Eq. (3.3) we obtain

Yn+1 = Yn+ hlys +hyy +3h2y" + -]
h ’ h2 "t 'rl/ 2 /u 2
x{l—@(’v, +--->+02<hy, +h : +>
Vn 2y, Vn 2y,
2 .. 3
03<hy, h y:’ + > + }
Vn 2yn

On further simplification, we obtain

e "2
yn+1=yn+hy,:+h2(1—0>y,:'+h3[<1— 0)%-— 601 0)> ] (34)

The Taylor series expansion of y(x,+) about x, is
V(s 1) = Yu + hys + 302y + 5R3 Y

Hence

6 1 -
y(x.,ﬂ)—y,.ﬂ=h2(9—%)y:+h3[(§—§> ;=06 -1, ] (33)

n

It can be clearly seen that the method agrees with the Taylor series expansion up to the first
order term when 6 # . But when 6 = § the second order terms also match and the principal error
term becomes

11 "2
_ 13 Yn
Tptq=h [ 12+4,,]' (3.6)

Therefore the formula (2.3) has the least error when used with 6 = 1.
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4. Stability analysis

To study the stability properties of the formula (2.3) we apply the formula to the test equation
y' = Ay. So we obtain the following difference equation:

y =y + h(/lyn)(j'yn+l)
T T 0y s) + (1 = 0)(Ayy)

When 6 = § Eq. (4.1) becomes

4.1)

YnVn+1
. = n+2h/{___.__, 4.2
y +1 .V yn yn+1 ( )

which can be rewritten as

yn+1 yn+1/yn
=142 4.3
Vn L+ (Vus1/Yn) *3)

Letting y,+ /¥, = R,, Eq. (4.3) becomes

R
=1+ 2h——,
R, +h1+R,,

which can be rewritten as
R?2 —2hiR,—1=0. 4.4

From (4.4) we get the roots as R, = hi + ./h*A? + 1. Taking only the positive sign we have

R, = hi+ /h?)? + 1. Absolute stability requires that |y,:;/y.| = |R,| < 1. This condition
implies

lhi + /h?22 + 1| < 1.

To see for what values of h4 this inequality is valid, we have to consider two possibilities:
(a) hA is real. Let hi = x, where x is real. Then the inequality becomes

[x +/x2+1] <1
It is easy to verify that the function f(x) = x + ./x? + 1 satisfies the conditions
[f(x)] <1 forx<0,

|f(x) >1 forx>0.
(b) hA is purely imaginary. Let hA = iy, where y is real. Then the inequality becomes

liy +/({iy)? + 1| <1
=iy +. /1 -y <1
=/ +1-y)<1
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= ./1<1
= 4+1<1.

This implies that the imaginary axis of the complex plane is the boundary for the region of absolute
stability of the method. This means that the region of absolute stability contains the whole of the
left-hand half-plane Re hA < 0. Hence the method is A-stable.

Moreover a one-step numerical method is said to be L-stable [2] if it is A-stable and in addition
when applied to the scalar test equation y’ = Ay, 4 a complex constant with Re 1 < 0, it yields
Vu+1 = R(hA)y,, where |R(hi)| -0 as Rehi - — 0.

By applying Euler’s method, backward Euler’s method, trapezoidal method, GM Euler method
and HM Euler method to the scalar test equation y' = 1y, where 4 < 0, we obtain the following
expressions for R(hA).

(1) Euler’s method: R(h1) =1 + hA.

(2) Backward Euler’s method: R(h4) = 1/(1 — hi).

(3) Trapezoidal method: R(hA) = (1 + hA/2)/(1 — hi/2).

(4) GM Euler method: R(hA) = [(hA + /h?A% + 4)/2]>.

(5) HM Euler method: R(hi) = hi + /h?A* + 1.

For the backward Euler formula and GM Euler method R(h1) - 0 as hi -» — co. But for the
trapezoidal method we have R(hA) > —1 as hd - — oo. For the HM Euler method also R(hl) — 0
as hA — — oo which is obtained as follows:

lim hi+ /h*A*+1=1lim —x+ . /x> +1

hi— — oo x =0
= lim -1
oo — X — \/;2 +1
=0.

Therefore the present method is L-stable.

Hence the present method has all the properties for a method one look for, viz, high-order,
A-stable and more importantly it is L-stable. Hence it can be readily applied to stiff equations.
Even though the GM Euler method (2.1) [1] has all the above-mentioned properties there are some
drawbacks, viz.,

(1) GM Euler formula is computer-expensive since it involves execution of the sqrt function;

(2) Moreover, some constraints have to be incorporated in the function evaluation to make the
argument of the sqrt function positive. We give a detailed explanation for this observation when we
consider numerical results.

5. Class of equations in which the HM Euler formula gives improved accuracy over the trapezoidal
method and the GM Euler method

Now we will consider the conditions for which HM Euler method gives better results than the
trapezoidal method and the GM Euler method for a class of differential equations.
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The principal error term for all the three methods are given as

Trapezoidal method: E; = — h3y;"/12.

GM Euler method: Eg = — h3y,"/12 + h3y.2/(8y,).

HM Euler method: Ey = — h3y,"/12 + h3y;?/(4y.).

Suppose if we want | Ey| < | E1|, then by substituting the related terms in the inequality we obtain

h3y.',” h3y'/l/2 hay'/'u
12 4y, 12
or
h3yrI|” h3y;,1” B h3y'1112 h3y,'."
12 12 4y, 12

e

(a) Suppose if y,” > 0. The inequalities become
Wy Wy Byt By
12 12 4y, 12

or
h3ym h3y//2
- =<0
6 4y,
ie, y,>0and y,y" > 3yi2.
(b) Suppose if y,' < 0. We let y,” = —x, where x > 0, and the inequalities become
h3x Rx  h3y;?  hx
12 12 4y, 12
or
3,72 3
o<ty kHx
4y, 6

The inequality on the left suggests that y, < 0. By letting — y, = z > 0, the inequality on the right
becomes

_h3y'1112 h3x
—4z 6
or
3ya 2
—_— < ,
) XZ

r 1 "2

which implies y,y,’ > 3ys? as in the case of y;” > 0.
Therefore the conditions for |Ey| < | E1| to be satisfied can be incorporated in the inequalities

ror ’ oL 3.n2

Yoy >0 and y,y, > 3y,*, or more simply as

Vayd > 3ynt. (5.1)
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In a similar way it can be proved that the condition

A4 e (52)
is necessary for the inequality | Ey| < |Eg| to be satisfied. Failure to meet these conditions mean
that | Ey| > | Er| and | E4| > | Eg|- Thus we have established the necessary and sufficient conditions
for the HM formula to be more accurate than the trapezoidal and GM Euler method. In addition,
we have the situation Ey = 0 and y,y,’ = 3y, ? in which case the HM Euler method is equivalent to
a method of order three. Now from the differential equation we have y' = f(x,y), y” = f. + ff, and
V" = fax + 2y + oSy + 2y + P

By substituting these quantities into Eq. (5.1) we have

[l ¥ 2 2o + S + 25y + 257 > 302 + 257 + 255])

Simplifying we have

ffxx + 2f2fxy - szxf;: +f3fyy - %fzfyz - %fx2 > 0. (53)
Similarly by performing this substitution in Eq. (5.2) we obtain the condition
ffxx + 2f2fxy - %ffxfy +f3fyy - %fzfyz - %fxz > O’ (54)

i.e., the HM formula will produce smaller error than the GM formula when the function satisfies
the condition (5.4). However we will not know whether this condition is satisfied throughout the
region of integration until we have obtained the solution throughout the interval. In practice we
would therefore use this method if the inequality is satisfied at the initial point. If this condition is
not satisfied, other two methods are preferred.

Suppose we have f(x, y) = f(y), a function of y only, then the inequality simplifies to

fsfyy "'%fzfyz >0
or

aff,, — 5 > 0.

6. Numerical results

By using the Picard’s iteration procedure, the application of the trapezoidal, GM and HM Euler
formulae results in the following recurrence equations:

Trapezoidal: y,+; =y, + %h[f(xm VYa) +f Xnt1Vn+1)]s
GM Euler [1]: yyr1 = Yo + A/ S s Yu) f Ot 15 Yns 1)s

f(xna _Vn)f(xn+ 15 Yn+ 1)
f(xmyn) +f(xn+lsyn+ 1),
where y, ., on the right-hand side is the last calculated value of the left-hand side which initially

may be taken arbitrarily. The computation is carried out until two successive values of y,, are
acceptably close to each other. While implementing the GM Euler formula in computer, efforts

HM Euler: y,+y =y, + 2h
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should be taken to make the function values inside sqrt function positive each time when we use
this formula. This involves checking another condition before applying this formula. Moreover, if
f(x,y) is negative GM Euler formula changes as

Ynt1 =Y — W/ fOn, a) [ (s 1, Vs 1)- (6.1)

So this is the main drawback of this formula.

Example 1. Consider the problem of solving

y=-y  y0)=1,

whose exact solution is y(x) = exp(—x). Here since f(x, y) is negative, Eq. (6.1) is used for GM
Euler formula. With stepsize h = 0.1, the errors (result obtained by the respective formulae — exact
value) observed in these three formulae are shown in Table 1.

Table 1
x Exact Error Error Error

solution (trapezoidal) (GM Euler) (HM Euler)
0.0 1.000000
0.1 0.904837 —0.755787-10~4 0.376105-10~4 0.150144-1073
02 0.818731 —0.136733-1073 0.680685-10" 0.271738-1073
03 0.740818 —0.185490-1073 0.924468- 104 0.368893- 103
04 0.670320 —0.223756-1073 0.111580-1073 0.445068-1073
0.5 0.606531 —0.253081-10°3 0.126183-1073 0.503421-1073
0.6 0.548812 —0.274718-1073 0.137031-1073 0.546694-10~ 3
0.7 0.496585 —0.290006- 103 0.144660-103 0.577122-1073
0.8 0.449329 —0.299871-1073 0.149608 - 103 0.596851-10"3
0.9 0.406570 —0.305235-1073 0.152290-1073 0.607610- 103
1.0 0.367879 —0.306875-1073 0.153124-1073 0.610918-103
Table 2
x Exact Error Error Error

solution (trapezoidal) (GM Euler) (HM Euler)
0.0 1.00000
0.1 1.09545 0.190496- 103 0.950098- 10~ —0.476837-10"6
0.2 1.18322 0.302196-103 0.150800- 103 —0.596046- 10~
0.3 1.26491 0.370860-10°3 0.185132-1073 —0.715256-107¢
04 1.34164 0.414371-1073 0.206947-103 —0.953674-10"¢
0.5 1.41421 0.442147-1073 0.220776-1073 —0.953674-10°°
0.6 1.48324 0.459790-1073 0.229597-103 —0.119209-10¢
0.7 1.54919 0.470757-1073 0.235081-1073 —0.119209-10°°
0.8 1.61245 0.477195-1073 0.238299-10~ 3 —0.119209-1075
09 1.67332 0.480294-10°3 0.239849-1073 —0.119209-10°3

1.0 1.73205 0.481248- 1073 0.240326-1073 —0.119209-10°°
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Even though the HM Euler formula gives errors which are slightly higher than the GM Euler
formula we need not incorporate any additional conditions as in the GM Euler formula. Also it
was observed that the number of iterations taken to converge is less for the HM Euler method
compared to the GM Euler and trapezoidal methods.

Example 2. Consider the problem
y=1y y0)=1
whose exact solution is y(x) = /2x + 1. With stepsize h = 0.1 the results are shown in Table 2.

The fact that the HM Euler formula produces more accurate results in this example coincides
with the fact that the inequalities (5.1) and (5.2) are satisfied.

7. Conclusions

A new class of nonlinear one-step methods based on Euler’s integration formula for the
numerical solution of ordinary differential equations is presented. These methods are implicit,
high-order, A-stable and, more importantly, L-stable for solving stiff differential equations. Accu-
racy and stability of the proposed methods and their applicability to ordinary differential equations
is presented with supporting numerical evidence.
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