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Abstract 

A new class of nonlinear one-step methods based on Euler's integration formula for the numerical solution of ordinary 
differential equations is presented. The accuracy and stability of the proposed methods is considered and their 
applicability to stiff problems is also discussed. 
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1. Introduction 

The class of  l inear one-step me thods  of order  one is given by 

Y ,+I  = Y,  + h(Of .  + (1 - 0 ) f ,+  1); (1.1) 

these me thods  are often referred to as "0-methods"  [2, p. 240], where y '  = f ( x ,  y). The formula  (1.1) 
.<± is shown to be A-stable if and  only if 0 ..~ 2 [2]. Fu r the r  it can be shown that  these me thods  have 

t runca t ion  error  

r , +  1 : ( 0  1 - - 2  " - -~) t t  y.  + (½0 1~t,3 ,,, -- ~j,, y .  + O(h4).  (1.2) 

This error  is smallest when  0 = ½ in which case the m e t h o d  has order  2, called the t rapezoidal  rule 
whose t runca t ion  error  is - 1 / 1 2 h a y 2  '. F o r m u l a  (1.1) can be obta ined  as follows. Consider  the 
fol lowing two formulae  of  Euler: 

Y,+ I - Y,  = h y ' ,  (1.3) 

Y,  + 1 - Y,  = hy" + 1. (1.4) 
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The first formula is the forward Euler and the second is the backward Euler formula. Multiplying 
Eq. (1.3) by 0 and Eq. (1.4) by (1 - 0) and adding we obtain equation (1.1). By taking arithmetic 
mean of Eqs. (1.3) and (1.4) we obtain the well known trapezoidal formula 

Y,+I = Y, + ½h(y~, + Y~,+I). (1.5) 

Evans and Sanugi [1] have developed equivalent formulae in the geometric mean (GM) sense 
which is implicit, high-order, A-stable and moreover it is also L-stable. But this formula is 
computer-expensive compared to the trapezoidal method. In the present investigation a method 
based on the harmonic mean (HM) sense is considered and its applicability to ODEs is investi- 
gated. 

2. Nonlinear formulae based on Euler formulae 

The formula given by Evans and Sanugi [1] which is referred to as G M  Euler method is of the 
form 

Y.+I = Y. + hx/y~Y'+ l. (2.1) 

Now by taking the harmonic mean of the formulae (1.3) and (1.4), a nonlinear equivalent of the 
trapezoidal formula is obtained as 

! ! 

2h y y ,  Y.+, 1 (2.2) 
Y.+I = Y, + ~ + Y,+I 

We will refer to this formula as the H M  Euler formula. In general if we multipy (1.3) by 0 and (1.4) 
by (1 - 0) and take the harmonic mean, we obtain 

t ¢ 

Y. + 1 -- Y, = h Y" y" + 1 
(1 -- O)y~, + Oy;+ 1" 

(2.3) 

Formula  (2.3) contains, as special cases, forward Euler (0 = 1), backward Euler (0 = 0) and formula 
(2.2) (0 = ½). 

3. Accuracy of  the formula (2.3) 

Based on the Taylor's series expansion of y(x ,  + 1 ) about x,, which is denoted by y, + 1, we obtain 
the expansion for Y~+I as 

! t Y. + 1 = Y. + hy~' + ½hZy~" + ... 

' I  (hy~' h 2 .... ) ]  
= y .  l + \ y ~  + - ~ f ~  + ... . (3.1) 
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Using Eq. (3.1) in the expression (1 - O)y" + Oy~+ 1 we obtain 

I (hY[~'h2y'l----~' ) ]  
( 1 - O ) y ' + O y ' + ~ = ( 1 - O ) Y ~ , + O Y "  l + \ y ,  + 2y~ + "'" 

=y; ,  1 + O k ,  + + ... • 

Substituting Eq. (3.2) in Eq. (2.3) we obtain 

-~n 1142 tH Yn+l=Yn+ y ' (y~+hy2+~, ,  y, + "") 

x 1 + 0  h y " + _ _ +  ... 
y~, 2y" 

The terms in the square bracket of (3.3) are in the form (1 + x)-1, where 

x = O( hy~'y~ + h2yff-----~' "")" 

Using binomial theorem in Eq. (3.3) we obtain 
1 b, 2 . r  y,+l = y, + h[y~ + hy~' +-~,, y. + ...] 
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(3.2) 

(3.3) 

x{10   ) h2,: )2 
\ y.  + 2y,; + ' "  + 02 \ y" + --2y,;  + ' 

_03(hy~, h2y~,______ ~, ) 3 }  
\ y "  + 2y;, + "'" + "'" " 

On further simplification, we obtain 

Y , + I = Y . + h y ' + h 2 ( 1 - O ) Y [ ~ + h  3 ( 1 - 0 )  0 ( 1 - 0 )  y~ j +  .... (3.4) 

The Taylor series expansion of y(x.+ 1) about x. is 
l_.L2 tt 11,3 ttt y ( x , + ~ ) = y , + h y ' + 2 n  y, +~,,  y, + "". 

Hence 

y(x.+l) y.+, h2(O 1, ,, h3[ (~  ~)y;,, O(O_l)Y;,'2] 
_ = _ - ~ y .  + - y~ J + .... 

(3.5) 

It can be clearly seen that the method agrees with the Taylor series expansion up to the first 
order term when 0 4= ½. But when 0 = ½ the second order terms also match and the principal error 
term becomes 

[ y;,, y,~,2] (3.6) 
T,+I = h3 , -  - ~  + 4y'_]" 

Therefore the formula (2.3) has the least error when used with 0 = 1 
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4. Stability analysis 

To study the stability properties of the formula (2.3) we apply the formula to the test equation 
y'  = 2y. So we obtain the following difference equation: 

h(2y,)(2y, + 1) 
Y,+ 1 = Y. + 0(Ay,+l) + (1 - 0)(2y,)" (4.1) 

When 0 = ½ Eq. (4.1) becomes 

Y.+I = Y, + 2h2 Y,Y.+I (4.2) 
Y, + Y.+I '  

which can be rewritten as 

Y. + 1 Y, + 1/Y, - 1 + 2h2 (4.3) 
y,  1 + (y,+ ~/y,)" 

Letting y,+ 1/Y. = R,, Eq. (4.3) becomes 

R . = l + 2 h 2  R. 
I + R , '  

which can be rewritten as 

R. z - 2h2R. - 1 = 0. (4.4) 

From (4.4) we get the roots as R. = h2 + ~/h222 + 1. Taking only the positive sign we have 

R. = h2 + ~/h222 + 1. Absolute stability requires that ly .+l /y . I  = IR.I < 1. This condition 
implies 

[hA + ~/h222 + 11 < 1. 

To see for what values of h2 this inequality is valid, we have to consider two possibilities: 
(a) h2 is real. Let h2 = x, where x is real. Then the inequality becomes 

Ix + ~j~-2 + II < 1. 

It is easy to verify that the func t ionf (x)  = x + ~/%-2 + 1 satisfies the conditions 

If(x)l  < 1 for x < 0, 

If(x)l  > 1 for x > 0. 

(b) h2 is purely imaginary. Let hA = iy, where y is real. Then the inequality becomes 

[iy + ~,/(iy) 2 + 1] < 1 

liy + ~ -  y21 < 1 

~ /y2  + (1 -- yZ) < 1 
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~ _ _ 1 <  1. 

This implies that the imaginary axis of the complex plane is the boundary  for the region of absolute 
stability of the method.  This means that the region of absolute stability contains the whole of the 
left-hand half-plane Re h2 < 0. Hence the method is A-stable. 

Moreover  a one-step numerical method is said to be L-stable [2] if it is A-stable and in addition 
when applied to the scalar test equation y' = 2y, 2 a complex constant with Re 2 < 0, it yields 
Y , + I  = R ( h 2 ) y , ,  where IR(h2)l--+0 as Reh2--+ - oo. 

By applying Euler's method,  backward Euler's method,  trapezoidal method, G M  Euler method 
and H M  Euler method to the scalar test equation y' = 2y, where 2 < 0, we obtain the following 
expressions for R(h2). 

(1) Euler's method: R(h2) = 1 + h2. 
(2) Backward Euler's method: R(h2) = 1/(1 - h2). 
(3) Trapezoidal method: R(h2) = (1 + h 2 / 2 ) / ( 1  - h2/2). 

(4) G M  Euler method: R(h2) = [(h2 + x/h2). 2 -t- 4)/2] 2. 

(5) H M  Euler method: R(h2) = h2 + x/h222 + 1. 
For  the backward Euler formula and G M  Euler method R(h2)--+ 0 as h 2 - - , -  oo. But for the 
trapezoidal method we have R(h2) --+ - 1 as h2 --+ - oo. For  the H M  Euler method also R(h2) --+ 0 
as h2 --+ - oo which is obtained as follows: 

lim hA q- N/h2/~ 2 q- 1 = lim 
h 2 ~ -  cc x ~ o o  

= lim 

- x  + ~/x  2 + 1 

- 1  

x+oo - x - x / T g +  1 

----- 0 .  

Therefore the present method is L-stable. 
Hence the present method has all the properties for a method one look for, viz, high-order, 

A-stable and more importantly it is L-stable. Hence it can be readily applied to stiff equations. 
Even though the G M  Euler method (2.1) [1] has all the above-mentioned properties there are some 
drawbacks, viz., 

(1) G M  Euler formula is computer-expensive since it involves execution of the sqrt function; 
(2) Moreover,  some constraints have to be incorporated in the function evaluation to make the 

argument  of the sqrt function positive. We give a detailed explanation for this observation when we 
consider numerical results. 

5. Class of equations in which the HM Euler formula gives improved accuracy over the trapezoidal 
method and the GM Euler method 

Now we will consider the conditions for which H M  Euler method gives better results than the 
trapezoidal method and the G M  Euler method for a class of differential equations. 
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o r  

The principal error term for all the three methods  are given as 
- h y . / 1 2 .  Trapezoidal  method:  Ea- = 3 ,,, 

G M  Euler method:  EG = - -  h3yn"/12 + h3y , ' 2 / (8y , ) .  
3 - 2 H M  Euler method:  En - h3y'"/12 + h y. /(4y.). 

Suppose if we want  I En [ < I Ea-[, then by substi tuting the related terms in the inequality we obtain 

hay ''' h3y , '2 l<lhay ,"  
12 4y, 12 

_ _  [h3y' '' h3y, '' hay, '' hayn '2 < 

- 1 2  < 1---2- 4y, 12 " 

(a) Suppose if y," > 0. The inequalities become 

h 3 y ,  '' h3yf f  ' h3y~  2 h a y ,  '' 
_ _ _ < - -  - - <  

12 12 4y, 12 

o r  

h a y ,  '' hay~  2 
- ~ <  - -  < 0 ;  

6 4y~ 

i.e., y, > 0 and y,y~" > ~y~ 2. 
(b) Suppose if y," < 0. We let y," = - x ,  where x > 0, and the inequalities become 

h 3 x  h 3 x  h3yff  2 h a x  
_ - - <  - - < - -  

12 12 4y, 12 

o r  

hayn '2 h 3 x  
0 <  - - < - -  

4y" 6 

The inequality on the left suggests that  y, < 0. By letting - y ,  = z > 0. the inequality on the right 
becomes 

- h a y n  '2 h a x  

- 4 z  6 

o r  

3y" 2 
~ XZ, 

2 
tl~ 3 tt 2 which implies y .y .  > ~y. as in the case of y," 1> 0. 

Therefore the condit ions for lEa[ < [Ew[ to be satisfied can be incorporated in the inequalities 
, i,v t t .  3 .2  y.y .  > 0 and y .y .  > ~y. , or more  simply as 

. . . .  3 .2 (5.1) y.y .  > -~y. . 



T.R. Sivakumar, S. Savithri / Journal of Computational and Applied Mathematics 67 (1996) 291-299 297 

In a similar way it can be proved that the condition 

. . . .  2 .... 2 (5.2) YnYn > 4Yn 

is necessary for the inequality I EHI < I E~l to be satisfied. Failure to meet these conditions mean 
that I Enl > lEvi and I Enl > [EGI. Thus we have established the necessary and sufficient conditions 
for the HM formula to be more accurate than the trapezoidal and GM Euler method. In addition, 
we have the situation En = 0 and y~y'," = 3y~ z in which case the HM Euler method is equivalent to 
a method of order three. Now from the differential equation we have y' = f ( x ,  y), y" =fx  + f f r  and 

y'" =f,,,, + 2ffxy + f,,fy + f z f r y  + f f r  z. 
By substituting these quantities into Eq. (5.1) we have 

ffx,, + 2fzf , ,y + f f x f r  +fafry + f 2 f ?  > 3 [ f 2  + f 2 f z  + 2ffxfy].  

Simplifying we have 

ffx~ + 2f2f~y - 2f fx fr  - b f 3 L y  - -  l f2fyz _ ~f2  > 0. (5.3) 

Similarly by performing this substitution in Eq. (5.2) we obtain the condition 

f f ~  + 2fZfxy _ ~ff~fy + f s f r  r _ ¼f2fyz _ 9 f z  > 0, (5.4) 

i.e., the HM formula will produce smaller error than the GM formula when the function satisfies 
the condition (5.4). However we will not know whether this condition is satisfied throughout  the 
region of integration until we have obtained the solution throughout  the interval. In practice we 
would therefore use this method if the inequality is satisfied at the initial point. If this condition is 
not satisfied, other two methods are preferred. 

Suppose we have f ( x , y )  =f (y ) ,  a function of y only, then the inequality simplifies to 

f 3 L y  5 / , 2 ¢ 2  - - ~ J s r  > 0  

o r  

4ffyy - 5fy2 > O. 

6. Numerical results 

By using the Picard's iteration procedure, the application of the trapezoidal, GM and HM Euler 
formulae results in the following recurrence equations: 

Trapezoidal: Y. + 1 = Y. + ½h [ f ( x . ,  y.) + f ( x .  + x, Y. + 1)], 

GM Euler [1]: Y.+I = Y. + h x / f ( x . , Y . ) f ( x . + l , Y . + l ) ,  

f ( x , , , y . ) f ( x , ,+ l , y .+ l )  
HM Euler: Y.+I = Y. + 2h f ( x . , y . )  

+ f (Xn+l ,Yn+l ) '  

where y. + x on the right-hand side is the last calculated value of the left-hand side which initially 
may be taken arbitrarily. The computat ion is carried out until two successive values of y. + ~ are 
acceptably close to each other. While implementing the GM Euler formula in computer, efforts 
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should be taken to make the function values inside sqrt function positive each time when we use 
this formula. This involves checking another condition before applying this formula. Moreover, if 
f ( x ,  y) is negative GM Euler formula changes as 

Y.+ I = Y. - h x / f ( x . , Y . ) f ( x . +  l ,Y .+ l). (6.1) 

So this is the main drawback of this formula. 

Example 1. Consider the problem of solving 

y ' =  - y ,  y(0) = 1, 

whose exact solution is y ( x ) =  exp(-x) .  Here since f (x, y) is negative, Eq. (6.1) is used for GM 
Euler formula. With stepsize h = 0.1, the errors (result obtained by the respective formulae - exact 
value) observed in these three formulae are shown in Table 1. 

T a b l e  1 

x E x a c t  E r r o r  E r r o r  E r r o r  

s o l u t i o n  ( t r apezo ida l )  ( G M  Euler )  ( H M  Euler )  

0.0 1.000000 

0.1 0.904837 - 0.755787" 10 - 4  0 . 3 7 6 1 0 5 . 1 0  - 4  0 . 1 5 0 1 4 4 . 1 0  -3  

0.2 0.818731 - 0 .136733 '  10 -3  0.680685- 10 - 4  0.271738-  10 -3  

0.3 0.740818 - 0 . 1 8 5 4 9 0 . 1 0  -3  0 .924468 '  10 - 4  0 .368893 '  10 -3  

0.4 0.670320 - 0 .223756 '  10 -3  0 . 1 1 1 5 8 0 . 1 0  -3  0.445068- 10 -3  

0.5 0.606531 - 0.253081" 10 -3  0 . 1 2 6 1 8 3 . 1 0 - 3  0 .503421 '  10 -3  

0.6 0.548812 - 0.274718" 10 -3  0.137031" 10 -3  0 .546694 '  1 0 - 3  

0.7 0.496585 - 0 .290006-  10 -3  0 . 1 4 4 6 6 0 . 1 0  -3  0 .577122 '  10 -3  

0.8 0.449329 - 0.299871" 10 -3  0 . 1 4 9 6 0 8 . 1 0  -3  0.596851- 10 -3  

0.9 0.406570 - 0 .305235 '  10 -3  0.152290- 10 -3  0 .607610 '  10 -3  

1.0 0.367879 - 0 .306875 '  10 -3  0 .153124 '  10 -3  0.610918" 10 -3  

T a b l e  2 

x E x a c t  E r r o r  E r r o r  E r r o r  

s o l u t i o n  ( t r apezo ida l )  ( G M  Euler )  ( H M  Euler )  

0.0 1.00000 
0.1 1.09545 0 . 1 9 0 4 9 6 . 1 0  -3  0 . 9 5 0 0 9 8 . 1 0  - 4  - 0 . 4 7 6 8 3 7 . 1 0  -6  

0.2 1.18322 0.302196- 10 -3  0 . 1 5 0 8 0 0 . 1 0  -3  - 0 . 5 9 6 0 4 6 . 1 0  -6  

0.3 1.26491 0 . 3 7 0 8 6 0 . 1 0  -3  0 . 1 8 5 1 3 2 . 1 0  -3  - 0 .715256-  10 -6  

0.4 1.34164 0 . 4 1 4 3 7 1 . 1 0  -3  0 . 2 0 6 9 4 7 . 1 0  -3  - 0 . 9 5 3 6 7 4 . 1 0  -6  

0.5 1.41421 0 . 4 4 2 1 4 7 . 1 0  -3  0 . 2 2 0 7 7 6 . 1 0  -3  - 0 . 9 5 3 6 7 4 . 1 0  - 6  

0.6 1.48324 0 . 4 5 9 7 9 0 . 1 0  -3  0 . 2 2 9 5 9 7 . 1 0  -3  - 0 . 1 1 9 2 0 9 . 1 0  -6  

0.7 1.54919 0.470757- 10 -3  0.235081- 10 -3  - 0 . 1 1 9 2 0 9 . 1 0  -5  

0.8 1.61245 0 . 4 7 7 1 9 5 . 1 0  -3  0 . 2 3 8 2 9 9 . 1 0  -3  - 0 . 1 1 9 2 0 9 . 1 0  -5  

0.9 1.67332 0 . 4 8 0 2 9 4 . 1 0  -3  0.239849- 10 -3  - 0 .119209-  10 -5  

1.0 1.73205 0 . 4 8 1 2 4 8 . 1 0  -3  0 . 240326 . 10  -3  - 0 . 119209 . 10  -5  
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Even though the HM Euler formula gives errors which are slightly higher than the GM Euler 
formula we need not incorporate any additional conditions as in the GM Euler formula. Also it 
was observed that the number of iterations taken to converge is less for the HM Euler method 
compared to the GM Euler and trapezoidal methods. 

Example 2. Consider the problem 

y ' =  l/y, y(O) = 1 

whose exact solution is y(x) = x/2x + 1. With stepsize h = 0.1 the results are shown in Table 2. 

The fact that the HM Euler formula produces more accurate results in this example coincides 
with the fact that the inequalities (5.1) and (5.2) are satisfied. 

7. Conclusions 

A new class of nonlinear one-step methods based on Euler's integration formula for the 
numerical solution of ordinary differential equations is presented. These methods are implicit, 
high-order, A-stable and, more importantly, L-stable for solving stiff differential equations. Accu- 
racy and stability of the proposed methods and their applicability to ordinary differential equations 
is presented with supporting numerical evidence. 
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