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Abstract 

In the present study we consider a viscous fluid, stratified by a diffusive saline agent and compute numerically the 
flow produced by a solid sphere moving vertically and uniformly. The governing equations describing this situation are 
solved on a variational grid. The results show the dependence of the boundary-layer separation point and the vanishing 
of vortices behind the sphere as the stratification increases at moderate Reynolds number flows. Details of the flow, 
density and pressure fields near the sphere are also shown. Important quantities for engineering use (drags, pressure 
and skin coefficients) are also computed and displayed in the Richardson vs. Reynolds number space. Comparison with 
experimental evidence shows an excellent agreement. (~) 1999 Elsevier Science B.V. All rights reserved. 
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density 
mass diffusivity coefficient 
kinematic diffusivity coefficient 
Froude number 
Reynolds number 
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W, w, u 

J 

Brunt-Vaisala frequency 
pressure 
pressure and density perturbations 
acceleration due to gravity 
time 
radius of the sphere 
spatial coordinates 
velocity components 
transformed coordinates 
Jacobian of the transformation 
metrics of the transformation 

1. Introduction 

The behaviour of stratified fluids around objects has been studied both theoretically and experimen- 
tally during many years. Such flows display many remarkable phenomena not present in the homoge- 
neous case. In the homogeneous case, the separation of the Boundary Layer (BL) is associated with a 
recirculating zone behind the object and occurs for Reynolds numbers as low as 40 for spheres (see 
for example, plate 3 in [1]). In the case of a vertically moving sphere in a stratified fluid Ochoa and 
Van Woert [2] have observed that even for high Reynolds numbers, depending on the strength of the 
stratification, the BL remains attached to the sphere up to the pole where a thin wake is left behind. 
In order to produce recirculating cells with a BL separation before the pole, higher Res, as compared 
with the homogeneous case, must be reached (see Fig. 106 in [6]). In order to reproduce the above 
observations, in this study the Navier-Stokes equations are solved numerically to describe the steady 
flow caused by a sphere moving vertically at a constant speed in a linearly stratified Boussinesq 
fluid. The fluid is viscous and the density is diffusive. Fig. 1 shows the schematics of the flow 
problem. 
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Fig. I. Schematics of  the flow problem. 
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2. Equations of motion 

The governing Navier-Stokes equations describing a viscous stratified diffusive flow are 

69 

R e -  

where 

N 2 - -  

D__p_p = t C 1 7 2 p  ' (2) 
D t  

V.u=O, (3) 

where the Boussinesq and incompressibility approximations have been included and (2) is the heat 
or salinity equation in terms of density. If we consider a basic hydrostatic state from a moving 
frame of reference, then the density and pressure fields are given, respectively, by 

P¢ = Po + ~ - ~ ( z  - Wt) ,  (4) 

~7pe =Peg .  ( 5 )  

If/5 and /3 denote the deviations of density and pressure from the basic state, then 

P = Re "~- /5, ( 6 )  

P = Pe q- /3. ( 7 )  

Inserting (6) and (7) in (1)-(3) and subtracting the basic state, the equations in dimensionless 
form are written as follows: 

Du _ --/5/ 2 
Dt V'/3 + + V'2u, (8) F 2 Re 

D__p_p 
=(1 - w) + R--~Sc V'2/5, (9) Dt 

where velocities have been scaled by the exterior velocity (W), distances by the radius of the 
sphere (a), pressure perturbation by p o W  2 and density perturbation by a~3pe/g3z. The dimensionless 
Reynolds, internal Froude and Schmidt numbers, are given by 

2 W a  W v 
- - - ,  F = -ffaa , Sc = - ,  K 

Po \ & J 

is the bouyancy frequency. In this study, we used Sc = 700 corresponding to stratification made by 
salt. Hereafter the (^) are dropped and thus perturbed variables are used in the next equations• 

Du 1 
--  V ' p +  P g + v V ' 2 u ,  (1) 

Dt P0 P0 
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In the primitive variable formulation (8)-(9)  is solved in conjunction with a Poisson equation 
for the pressure which is obtained by taking the divergence of (8). Hence, the goveming equations 
to be solved are (8), (9) and 

~ 7 2 p = - - ~ 7 . ( p ] )  - ~ 7 . ( u .  ~ 7 ) u +  ~72D OD 
O t '  

(10) 

where D = V'. u must reach a steady null condition. 
Because of the symmetry of the problem (see Fig. 1), there is no azimuthal dependence therefore 

cylindrical coordinates ( z , r )  in a vertical plane are used. The boundary conditions are non-slip and 
no flux of heat or mass through the sphere surface. Far from the sphere the velocity, pressure and 
stratification are due to basic state. Therefore: 
• On the sphere surface: 

Op 8p 
(u,w)=(0,0);  r ~ r + Z ~ z = - Z ,  (11) 

the boundary condition for pressure is obtained by substituting u = 0 and w = 0 into (8). 
• On the remote boundary, 

(u.w) = (0. 1); p=O, (12) 

and pressure is determined by extrapolation. 
The numerical method of solution is essentially the MAC method [5] allowing for stratification 

[4] with density diffusion included [11]. 
In order to solve the flow efficiently, it is convenient to introduce the generalized curvilinear 

coordinates z =z(~,q) and r = r(~,q). The spatial derivatives are then transformed according to 

0 1 ( ~ - ~ - r ~ )  c~ 1 ( c~ ~ )  (13) 
Oz --  J rq ¢ ' 8r  - J z¢ ~q  - zn " 

Therefore, the transformed equations become 

1 (r, Tp ¢ - rCp,7) p 2 
wt + j { (ur .~  - wz,1)w ¢ + (wz¢ - ur¢)w,~} = J - F--- 5 + ziw, 

1 1 2 ~  u) 
ut + j { ( u r ,  7 - wz,1)u ¢ + (wz¢ - ur¢)u,7} = - f f ( zCp,~  - z . p ¢ )  + -~e u - -~ . 

2 - 
pt + j ( u r ,  - w z , ) p ¢  + l (wz¢ - u r ¢ ) P , - - R e S c A  p + ( 1 -  w). 

(14) 

(15) 

(16) 

1 
zip = -jT{(r.u¢ - rCu,1) z + (zCw, 7 - z.w¢) 2 } + 2(zcu, 7 

nt (r, lu¢ - rcu,7 + zcw, 1 - z,lw¢) (zcP,1 - z,lp¢ ) 

J A t  J F  2 ' 

- z,Tu ¢)(r,Tw ~ - rcw,~) 

(17) 
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Fig. 2. Transformation process. 

Fig. 3. Computational grid near the sphere in physical space. 

where the subscripts denote differentiation with respect to that variable and the operator A" is de- 
fined by 

z~A = (TA~ - 2flA¢. + y A n . )  1 
j2 + )5 { ( ~ :  - 2/3z~. 

+(~r~¢ - 2~r~. + 7r. .)(z.A¢ - z~A.). 

+ 7z. .)(r~A. - r.A~)} 
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The Jacobian of  the transformation, J ,  and the metrics ~, fl and 7 are given by 

J = z~rq - znr~, o~ = z~ q- r 2, 

= z z, - r , r , ,  = z g  + 

Fig. 2 shows a sketch of  the transformation process. The finite-difference equations are obtained 
by discretizing the set of  equations (13)- (16) ,  these equations are solved using the successive 
over-relaxation (SOR) method at each time step until a steady state condition, typically 25 sphere 
diameters, is attained. The time increment was At  = 0.0025. 

3. Grid generation 

In order to generate the grid a discrete variational formulation (DV) is used. In this formula- 
tion, three properties of  the grid are controlled: the spacing between the grid lines (Fs), the area 
of  the grid cells (Fa), and the orthogonality of  the grid lines (Fo). The grid is generated directly 
by solving a minimization problem resulting from a weighted combination of  the three functionals 
(Fs,Fa,Fo): 

minimize F = AFs + BFa + CFo, (18) 

where A, B and C are the scaling factors. This problem is solved using a conjugate gradient itera- 
tive method, Castillo [2]. Fig. 3 shows a view of the grid obtained by this method and used as the 
domain of  computations. 
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Fig. 4. Density field (left side) and stream function (right side) as function of the Re and Ri numbers. 
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4. Results and discussion 

Fig. 4 shows the density field for R e =  1000 at various F numbers (200,20,2). As expected at 
F = 200 (weak stratification, Fig. 4a) the fluid resembles the homogeneous case; the recirculating 
zone, length of the bubble and angle of separation of the boundary-layer agree very well with 
that observed in homogeneous fluids [9, 10]. When the stratification is increased ( F = 2 0 ) ,  the 
above pattern is gradually inhibited and the separation point shifts to the rear pole (Fig. 4b). When 
stratification is further increased, normal velocities are strongly inhibited and thus a narrower wake 
is observed (Fig. 4c). It appears that the baroclinic term forces the isopycnals to remain nearly 
parallel to the sphere all the way to the pole and working against the viscous term in producing 
vorticity. 

Fig. 5 shows the surface pressure corresponding to the above cases; a decreasing pressure is 
observed near the rear pole as stratification becomes stronger. These low levels of pressure are 
associated with accelerating fluid particles in the boundary-layer region. The additional input of 
energy to overcome the weak adverse pressure gradient is supplied by buoyancy forces. 
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Fig. 5. Surface pressure. F = 200,  cont inuous line; F = 20, dash-dotted line; F = 2, dashed line. 
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Fig. 6. Separation angles and drag coefficients in the parameter space Ri vs. Re. 
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Fig. 7. Jet behind the sphere (a) isopycnals and stream function; (b) observations. 
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Fig. 6 presents separation angles and drag coefficients in the parameter space Ri vs. Re for the 
numerical experiments in this study. The dependence of the separation angle on the strength of 
stratification is clear (Fig. 6a). A slightly increase in the values for the drags, in comparison with 
the homogeneous case, is also observed (Fig. 6c and d). 

The vanishing of the recirculating zone and vortices behind the sphere are characteristic of the 
observations [8] and are reproduced in this calculation (Fig. 7). 

5. Conclusions 

Stratification inhibits the BL separation, this in turn reduces the effect on the overall flow of the 
vorticity generated on the sphere surface. Also, the baroclinic term works against the viscous term 
in generating vorticity. All these combined effects make the approach to the potential flow case as 
Re increases and F decreases (see Fig. 4c). 

Additional work should be done in order to determine the position of the BL separation in first 
order perturbation approximations, that is to say, to find the position where the along surface pressure 
gradient reverses sign, which is a necessary condition for separation [1, 3, 12]. Once the stratification 
produces the collapse of the vortex, this necessary condition for BL separation persists, but is not 
sufficient and the separation does not occur. This is the only physical example that we know, where 
such a situation happens. 
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