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Abstract

Over the past decade, the radial basis function method has been shown to produce high quality solutions to
the multivariate scattered data interpolation problem. However, this method has been associated with very high
computational cost, as compared to alternative methods such as finite element or multivariate spline interpolation.
For example, thedirect evaluationatM locationsof a radial basis function interpolantwithNcentres requiresO(MN)

floating-point operations. In this paper we introduce a fast evaluation method based on the Fast Gauss Transform
and suitable quadrature rules. This method has been applied to the Hardymultiquadric, the inversemultiquadric and
the thin-plate spline to reduce the computational complexity of the interpolant evaluation to O(M + N) floating-
point operations. By using certain localisation properties of conditionally negative definite functions this method
has several performance advantages against traditional hierarchical rapid summation methods which we discuss in
detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A problem frequently occurring in science and engineering is the approximation of a functionf, the
value of which is known only on a relatively small set of points. One way to obtain such an approximation
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is by interpolation: Given the valuesfi of f at the pointsxi ∈ Rd, i = 1,2, . . . , N , determine a function
s that satisfies the conditions

s(xi) = f (xi) = fi, i = 1,2, . . . , N.

Usually, the choice of solutionmethod specifies a class of functionsS, with the interpolants ∈ S uniquely
identified by computing a number of free parameters, so thatssatisfies the interpolation conditions, and
possibly meets further restraints or has particular properties required by the application.
In the one-dimensional case, the graph off belongs to the two-dimensional Euclidean space and the

problemmay be restated in geometric terms. Given a set of pointspi, i=1,2, . . . , N , from an unknown
target curve, construct a curve which approximates the original, in the sense that it passes through all
the data points. A common solution for this problem is cubic spline interpolation, that is, choosing an
interpolant from the spaceSof piecewise polynomials of degree three that have a smooth first derivative
and a continuous second derivative both within and at the boundary of the interpolation interval.
For the two-dimensional case, a comparative study[13] of interpolation methods indicated that the

most accurate and visually attractive results are produced by the so-called Hardy multiquadric and the
thin-plate splinemethods.At that time, only numerical evidence supported the suitability of thesemethods
for interpolation. Since then a significant amount of analytical work has been carried out and today radial
basis functions are a well established method of multivariate scattered data interpolation.

1.1. Interpolation with radial basis functions

Radial basis function interpolants[21] have the form

s(y) =
N∑
i=1

�i�(‖y − xi‖), (1)

with �i real coefficients,xi points inRd calledcentres, ‖ · ‖ the Euclidean norm and� thebasis function.
The function� : R+ → R is univariate and radially symmetric with respect to the norm, in the sense
that it has the symmetries of the unit ball inRd . The coefficients�i are chosen so that the interpolation
conditions are satisfied. Recently, differentp-norms have been considered in the literature, but here we
will discuss only the Euclidean norm, since it is the one used in the majority of applications.
Useful choices of� include theGauss kernel

�(r) = e−cr2,

theEuclidean distance

�(r) = r,

theHardy multiquadric

�(r) =
√
r2 + c2, (2)

the inverse multiquadric

�(r) = 1√
r2 + c2

, (3)
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and thethin-plate spline

�(r) = r2 logr. (4)

The radial basis function method can be thought of as an extension of univariate splines to several
variables. Assuming that the pointsxi are organised in ascending order, the linear spline is composed by
the line segments

s(y) = (xi+1 − y)fi + (y − xi)fi+1

xi+1 − xi
, xi �y�xi+1,

or else

s(y) =
N∑
i=1

�i |y − xi |,

the�i ’s being defined by the interpolation equations.
In matrix notation, solving the radial basis function interpolation problem is equivalent to solving the

system of linear equations

A� = f, (5)

whereA is theinterpolation matrix

Aij = �(‖xi − xj‖), (6)

� is the vector of coefficients(�1 �2 . . . �N)
T andf is the vector of function values(f1 f2 . . . fN)

T.
One of the features that makes radial basis function interpolation a useful technique is the fact that a

unique interpolant is guaranteed under weak conditions on the location of the centres. These properties
have been discussed in detail in[23] and are also summarised in this paper in Section 2.2. One exception
to this is the thin-plate spline whose corresponding interpolation matrixA in (5) may be singular. For
example, if the centresxi for i = 2, . . . , N , are points on the circle of unit radius inR2 andx1 is the
centre of the circle, then the first row and column ofA consist entirely of zeros. This difficulty may be
resolved by adding a polynomial of degree one to the thin-plate spline interpolant and then demand that
the centres are unisolvent, that is the only polynomial of degree one which vanishes at every centre is the
zero polynomial. Of course, extra conditions must be introduced because of the extra degrees of freedom
added. The interpolation conditions become

N∑
j=1

�j�(‖xi − xj‖) + p(xi) = fi, i = 1,2, . . . , N,

N∑
j=1

�jp(xj ) = 0 for everyp ∈ �1(R
2) (7)

with �1(R
2) the set of polynomials in two real variables of total degree less than or equal to one. In this

case, there is a unique vector� and a unique polynomialp satisfying (7).
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For thed-dimensional case, the resulting linear system is(
A Q

QT 0

)(
�
h

)
=
(
f

0

)
(8)

with A defined in (6), andQ defined by

Q =
p1(x1) . . . pdm(x1)

...
...

...

p1(xn) . . . pdm(xn)

 ,

where{pk : k = 1,2, . . . , dm} is a basis of�m(R
d) and

dm = dim�m(R
d) =

(
d + m

d

)
.

Two-dimensional thin-plate spline interpolation has extra advantages: the resulting interpolant is opti-
mal in the sense that it is the differentiable function minimising the integral∫

R2
|fxx |2 + 2|fxy |2 + |fyy |2 dx dy.

In addition to providing an effective way to define the degrees of freedom in the general interpolation
problem, this property implies smoothness for the resulting surface. Further, the interpolant is rotation-
and scale-invariant and thus one obtains the same surface independent of the physical units used.

1.2. Computation with radial basis functions

Although the radial basis function method has been applied successfully in a wide variety of scientific
and engineering problems, its widespread adoption has been hindered by the associated high computa-
tional cost. Indeed, the solution of the interpolation equations (5) directly requires O(N3) floating point
operations, while the form of interpolant (1) implies that evaluatingsatM pointsy1, y2, . . . , yM , directly
requires O(MN) operations.
Indeed, the high computational cost associatedwith the radial basis functionmethod (compared against

alternativemethods such as finite elements ormultivariate splines) has been identified as early as Franke’s
survey[13]. An initial attempt to reduce the computational complexity of the evaluation task was made
by Powell[25]. The minimisation property of the thin-plate spline was used to devise a fast method to
evaluate interpolants onagrid.A simpler solution to the sameproblembut for any radial basis functionwas
suggested by Arad[2]: when the centres of interpolation are on a grid then there are far less than O(N2)

distinct inter-point distances, which may be precomputed. Then, the evaluation task may be performed
by table lookups rather than floating point computation.
Of course, a new approach is required if the interpolant is not to be evaluated on a grid but at scattered

points. Beatson and Newsam[6] first noted the similarities between the computational structure of the
N-body problem and the evaluation of a thin-plate spline (and in consequence, of any other radial basis
function) interpolant, thus initiating research in the construction of fast evaluation methods, based on
the extensive research literature on rapidN-body simulations. In[6], the Laurent and Taylor expansions
required by the fast multipole method (FMM) of Greengard and Rokhlin[17,18]were constructed. These
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results1 were used by Powell[26] to construct a fast algorithm for the evaluation of thin-plate spline
interpolants. This method uses a decomposition of the set of interpolation centres similar to Appel[1]
and the method has observed computational complexity of O(N logN) for fairly uniform distributions
of centres. More recently, Beatson has implemented a fullFMM based on the results of[6] with reported
performance characteristics similar to that discussed in[17]. A variant of this method whereby the
coefficients of the multipole expansion are not calculated directly but approximated is discussed by Suter
[33]. Finally, in [5,8] the multipole expansions required for computation with generalised multiquadrics
have been calculated.
The relation between the Hardy multiquadric andN-body computations has received a physical justi-

fication. Indeed, Hardy[22] relates the solution of an interpolation problem to simulation of the Earth’s
geomagnetic field by a biharmonic potential. This has the advantage that the Earth is considered as a solid
rather than a hollow body, as happens when using the harmonic potential.
A rapid algorithm for evaluation of radial basis function interpolants may reduce the computational

cost of certain methods used for the fast solution of the interpolation equations. Indeed, Baxter[3] points
out that when the centres form a regular grid, matrix–vector productsAx with A is the interpolation
matrix, may be computed in O(N logN) operations via the fast Fourier transform. Products of this kind
are required in iterative methods, like the conjugate gradient algorithm.
In fact, thepreconditionedCGmethodwasused in[10,11]tosolve the interpolationequations.However,

since the CG algorithm requires a positive (or negative) definite matrix, the method is unstable for most
radial basis functions of interest. A remedy for this situation for the Hardy multiquadric was proposed
in [3, Chapter 6], where at the end of each iteration of the CG method the residual is projected onto
the space〈e〉T with e = (1 1 . . . 1), where the interpolation matrix is indeed negative definite. The
modified method ensures the stability of the conjugate gradient method. More recently, in a series of
papers Beatson, Powell, Goodsell and Faul[4,7,16,12,27]have developed an iterative algorithm which
employs estimates of the characteristic function.
In this paper, we introduce a method for the rapid evaluation of radial basis function interpolants that

can be used for all usual radial basis functions discussed in this and previous sections. In addition to its
general applicability and contrary toFMM and treecodes this method is nonhierarchical. This fact allows
for very scalable implementations on high performance computers, in particular multiprocessors and
clusters of workstations. The remainder of this paper is organised as follows: in Section 2, first we discuss
the fast Gauss transform of Greengard and Strain[19] and then we summarise some properties of radial
basis functions, which form the core of our algorithm. Then, in Section 3 we proceed to present the rapid
evaluation algorithm itself as well as its implementation. The paper concludes with a report on some
numerical experiments and with observations on the performance of our method.

2. Preliminaries

Our rapid evaluationmethod for radial basis functions is based on certain integral representations (such
representations are established in Theorems 1, 2 and 3 for themost common radial basis functions) which

1Note that the Laurent expansions calculated in[26] are erroneous. Ref.[26, Formula 3.7]must be corrected using the
multipole expansions calculated in[6, Theorem 4.2]: Following the notation of[26], replace|J| (the total number of centres)
with

∑N
i=1 �i (the sum of the coefficients of the interpolant). However, the numerical results reported in the final section of[26]

are correct.
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are usedwith the fastGauss transformand suitable quadrature rules, to estimate the value of the interpolant
at a point. In the following paragraphs we discuss the individual building blocks of the algorithm.

2.1. The fast Gauss transform

Here,webrieflydiscuss the fastGauss transform(FGT)ofGreengardandStrain[19,20,32]asappropriate
for the fast radial basis function evaluation method. In thed-dimensionalFGTwe require the use of multi-
index notation. Thed-tuple�= (�1, �2, . . . , �d) ∈ Nd is called amulti-indexand is useful for indexing in
the context of ad-dimensional Euclidean space.We use the notation��p, p ∈ N, if �h�p for 1�h�d.
Thus, for anyx ∈ Rd , we define

|�| = �1 + �2 + · · · + �d,

�! = �1!�2! . . . �d !,
x� = x

�1
1 x

�2
2 . . . x

�d
d .

The multi-dimensional Hermite functionsh�(x) are

h�(x) = h�1(x1)h�2(x2) . . . h�d (xd), (9)

wherehk with k ∈ N is a classical Hermite function andx = (x1, x2, . . . , xd).
The aim of theFGT is to evaluate efficiently sums of the form

N∑
i=1

�i exp(−s‖y − xi‖2)

atM distinct pointsy1, y2, . . . , yM . By shifting the origin and re-scaling, we may assume that all the
interpolation centres and all the evaluation points lie within the unit hypercubeB0 = [0,1]d . This is a
convenient normalisation and does not restrict the generality of the method.
We may express a Gaussian inRd as the Hermite expansion

e−s‖y−x‖2 =
∑
��0

1

�!
(√

s(x − C)
)�
h�
(√

s(y − C)
)
. (10)

For centresx1, x2, . . . , xN ∈ Rd inside boxBB =
{
y ∈ [0,1]d : ‖y − C‖∞ <r/

√
2s
}
of side length

r
√
2/s for somer <1 (cf. [19, Lemma 2.1]) centred atC, we can precompute the moments

A� = 1

�!
N∑
i=1

�i
(√

s(xi − C)
)�
, (11)

which we can then use to evaluate the Gaussian sum at a pointy by

N∑
i=1

�i exp(−s‖y − xi‖2) =
∑
��0

A�h�
(√

s(y − C)
)
. (12)
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By truncating the infinite series on the right of (12) after the firstpd terms, we introduce the error

|Ep|� Q

(1− r)d

d−1∑
k=0

(
d

k

)
(1− rp)k

(
rp√
p!
)d−k

, (13)

with Q = ∑N
i=1 |�i |. Note that this error estimate (calculated in detail in[29]) and the error estimate

of [19, Lemma 2.1]coincide whend = 1 but they are distinct in higher dimensions. Of course, sim-
ilar reasoning can be directly applied to[19, Lemmata 2.2 and 2.3]to obtain the corresponding error
estimates.
Thus, the first ingredient of theFGT is approximation (12) to the Gaussian in terms of moments (11)

of the centres which when truncated afterpd terms introduces the associated error estimate (13). The
second ingredient of theFGT is the decomposition of the computational spaceB0 into subboxesB of side
lengthr

√
2/s parallel to the axes, for some fixed parameterr. Each centre is assigned to the subboxB that

contains it and contributes only to thepd moments of subboxB. At the end of the precomputation step,
thepd moments for each of the subboxesB have been computed. The precomputation requires O(pdN)

operations.
For the estimation of theFGT at a particular evaluation pointy contained in subboxD, we need to

consider the influence of only some of the nearest neighbour boxes ofD. Indeed, due to the exponential
decay

1: chooser andp to guarantee the required precision
2: subdivideB0 into boxesB of side length at mostr

√
2/s

3: for each centrexj do
4: find the boxC that containsxj
5: compute the contribution ofxi to the momentsAk of C defined by (11)
6: end for
7: for eachevaluation pointyi do
8: find the boxD that containsyi
9: for all (2n + 1)d nearest neighbours ofD do
10: accumulate sums (12)
11: end for
12: end for

Algorithm 1: The fast Gauss transform. Accepts as input the parameters, N centres
xi with the associated weights�i andM evaluation pointsyj , and returns the value of
(10) at the pointsyj .

of the Gauss kernel, its effect on subboxes away from its centre may be insignificant within certain
accuracy. For example, taking into account only the(2n + 1)d nearest neighbours toD, introduces error
bounded byQe−2r2n2. Hence, forr=1/2 andn=6 relative accuracy of 10−7 is obtained.Wewill call the
set of(2n+ 1)d nearest neighbours theinteraction listof boxD. Thus, in order to estimate the Gaussian
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sum on the left side of (12) at pointy, we have to accumulate thepd moments for each of the boxesB in
the interaction list ofD. Evaluation at a single point requires O((2n + 1)dpd) operations.
Overall, the calculation of (10) may be performed usingAlgorithm 1. Step 5 requires O(pd) operations

per centre and thus Step 3 requires O(pdN) operations overall. Step 10 requires O(pd) per evaluation
point per box and thus Step 7 requires O(pd(2n + 1)dM) in total. Hence, the computational complexity
of the algorithm is O(pdN + pd(2n + 1)dM).

2.2. Conditionally negative definite functions

As noted earlier, radial basis function interpolation is possible under relatively weak conditions on the
positions of the centres. To construct a radial basis function interpolant it is necessary to solve the linear
system of Eq. (5), but so far we have not commented on the nonsingularity of the matrixA. Moreover, in
the case of the thin-plate spline solvability of the interpolation problem requires that thematrixA in (8) be
nonsingular for all vectors� satisfying (7), and the polynomialsp ∈ �m(R

d) be uniquely determined by
their value onX={x1, . . . , xN }, that is ifp(xi)=0 for all xi ∈ X thenp=0. Micchelli [24] answers this
question by proving almost positive (or negative) definiteness of the interpolation matrix for several of
the radial basis functions, including the Hardy multiquadric, the inverse multiquadric and the thin-plate
spline. In doing so, Micchelli constructs integral forms for these radial basis functions, which we will use
to develop our rapid evaluation method.
To stateMicchelli’s results about conditionally positive (or negative) functions we recall that a function

f is said to becompletely monotonicon (0,∞) provided that it is inC∞(0,∞) and(−1)m · f (m)(x)�0
for x ∈ (0,∞) andm = 0,1,2, . . . .Also, a real valued functionf of a real variable is said to bepositive
definiteif the inequality

∑N
i,j=1 �i�jf (xi − xj )�0 holds for every choice of the real numbersxi and�i .

Schoenberg generalised this definition so that for example, a radially symmetric function�(‖x‖2)=�(x),
� : Rd → R is said to bepositive definite onRd if the inequality

∑N
i,j=1 �i�j�(xi − xj )�0 holds for

anyxi ∈ Rd and real numbers�i [31].
Let �m(R

d) denote the linear space of all polynomials of total degree less than or equal tom. A
function� : Rd → R is conditionally positive(or negative) definite of order m onRd , if for all sets
X = {x1, x2, . . . , xN } ∈ Rd with N distinct points and all vectors� = (�1 �2 . . . �N)

T ∈ RN subject to
the conditions

N∑
i=1

�ip(xi) = 0, p ∈ �m−1(R
d),

the quadratic form

N∑
i=1

N∑
j=1

�i�j�(xi − xj ),

is nonnegative (or nonpositive) and vanishes only when� = 0. Micchelli [24] related the conditional
positive definiteness of the radially symmetric functions�(x) = �(‖x‖2) to complete monotonicity of
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derivatives of�. In particular,� is conditionally positive (negative) definite of orderm for anyd if the
derivative of ordermof �(r1/2), r�0, is completely monotonic.
In addition to proving the feasibility of interpolation, the relation to conditionally positive (or negative)

functions implies a means to represent a radial basis function as an integral of a Gaussian by a suitable
measure. For example, Schoenberg[30] proved that Bochner’s Theorem[31] implies that a function�
that is radially symmetric and positive definite on allRd must satisfy

�(r) =
∫ ∞

0
e−sr2 d�(s), (14)

with � : [0,∞) → R a finite positive Borel measure. Furthermore, due to a theorem by Schoenberg[30],
� is a conditionally negative definite function of order one on everyRd if and only if there exists a Borel
measure� : [0,∞) → R such that

�(r) = �(0) +
∫ ∞

0

1− e−sr2

s
d�(s), (15)

and� has the properties∫ 1

0
d�(t)<∞ and

∫ ∞

1
t−1 d�(t)<∞.

The above conditions being required for the integral to be finite. Finally, at least for some higher order
conditionally negative definite functions it is possible to construct expressions similar to (14) and (15).
For example, in[23] we have shown that the thin-plate spline may be written as

�(r) = r − 1

2
+ 1

2

∫ ∞

0
e−s e

−s(r−1) + s(r − 1) − 1

s2
ds. (16)

We can use Micchelli’s results to make useful observations about the interpolation matrix of several
radial basis functions. For example, theGauss kernel and the inversemultiquadric are (radially symmetric)
positive definite function onRd then the corresponding interpolation matrices are positive definite. The
Euclidean distance and the Hardy multiquadric are conditionally negative definite functions of order
one onRd and thus the corresponding interpolation matrices have one positive andN − 1 negative
eigenvalues, provided that the centres are distinct and there are at least two of them. Finally, the thin-plate
spline is a conditionally positive definite function of order two onRd . The particulars of the associated
representations have been detailed elsewhere[23] and here we will only refer to the relations we need to
develop our rapid summation schemes:

Theorem 1. For centres{xi}Ni=1 and y inRd we have

N∑
i=1

�i√‖y − xi‖2 + c2
= 1√

�

∫ ∞

0

e−sc2

√
s

N∑
i=1

�ie
−s‖y−xi‖2 ds.
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Theorem 2. For centres{xi}Ni=1 and y inRd we have

N∑
i=1

�i

√
‖y − xi‖2 + c2 = c

N∑
i=1

�i + 1

2
√

�

∫ ∞

0

e−sc2

√
s

(∑N
i=1 �i −∑N

i=1 �ie−s‖y−xi‖2

s

)
ds.

Theorem3. Forcentres{xi}Ni=1and thecorrespondingcoefficients{�i}Ni=1such that
∑N

i=1�i=∑N
i=1 �ixi=

0 and y inRd we have

N∑
i=1

�i‖y − xi‖2 log‖y − xi‖ = 1

2

N∑
i=1

�i‖xi‖2

+ 1

2

∫ ∞

0

e−s

s2

(
N∑
i=1

�ie
−s(‖y−xi‖2−1) + s

N∑
i=1

�i‖xi‖2
)

ds.

3. Rapid evaluation algorithm description

In this section we discuss the basic steps of the rapid evaluation algorithm. Without loss of generality,
wewill discuss the algorithm for the inversemultiquadricmethod andwewill return to the details required
for other radial basis functions in the following paragraphs. We assume that we have already calculated
the solution to the interpolation problem, that is we have computed the coefficients�i so that

s(y) =
N∑
i=1

�i√‖y − xi‖2 + c2
, (17)

satisfies theN interpolation conditions for a set of centresx1, x2, . . . , xN in Rd for data valuesf1, f2, . . . ,
fN and we consider the task of evaluating (17) at a set ofM pointsy1, y2, . . . , yM . Performing this
calculation directly requires O(MN) operations. Our aim is to reduce the complexity of the evaluation
task by developing a rapid summation scheme.Without loss of generality we will assume thatc2=1 and
that all the centres and the evaluation points are contained in the unit hypercubeB0 = [0,1]d .
Applying Theorem 1 to 17 we have

s(y) = 1√
�

∫ ∞

0

e−t

√
t

N∑
i=1

�ie
−t‖y−xi‖2 dt. (18)

Using (18) we can approximatesusing aq-term generalised Gauss–Laguerre quadrature rule

s(y) = 1√
�

q∑
k=1

wkf (tk), (19)



G. Roussos, B.J.C. Baxter / Journal of Computational and Applied Mathematics 180 (2005) 51–70 61

where

f (t) =
N∑
i=1

�ie
−t‖y−xj‖2. (20)

Thus, rather than evaluating the sumof inversemultiquadrics (17) at an overall cost ofO(MN) operations,
we may evaluateq sums of Gaussians (20) (one for each quadrature nodetk) via the fast Gauss transform
in O(q(N + M)) operations. Recall that the decrease in the computational complexity of the latter task
is due to the decoupling of the precomputation of the moments of the pointsxi and the estimation of the
interpolant at pointsyj through the already computed moments.
Of course, the quadrature introduces the error

|εq | = q!
(2q)! �

(
q + 1

2

)
f (2q)(	), 0< 	<∞.

The quadrature nodestk are the zeros of the generalised Laguerre polynomialL
(−1/2)
q (t) and the weights

may be computed by the formula

wk = q!�(q + 1/2)tk

(L
−1/2
q+1 (tk))

2
.

Overall, the fast evaluation of inverse multiquadric interpolants may be performed by Algorithm 2. In
order to identify exactly the structure of the iterations, we summarise the Hermite expansion required by
a two-dimensionalFGT here. Indeed, for a pointC ≡ (c1, c2) the Gauss kernel can be approximated by

e−t‖x−y‖2 =
p∑

n1,n2=0

An1,n2hn1

(√
t(x1 − c1)

)
hn2

(√
t(x2 − c2)

)
, (21)

with the momentsAn1,n2

An1,n2 = 1

n1!n2!
N∑
j=1

�j
(√

t(xj1 − z1)
)n1(√

t(xj2 − z2)
)n2

. (22)

Hence, in two dimensions the precomputation of the moments (Steps 9–11 of Algorithm 2) requires
O(qp2) operations per centre. The evaluation of the moments at a single point (Steps 17–19 ofAlgorithm
2) requires O(qp2(2n+ 1)2) operations. Overall, the two-dimensional fast evaluation algorithm requires
O(qp2N + qp2(2n + 1)2M) operations.
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1: chooseq andp to guarantee the required precision
2: compute the weightswk and nodestk of the Gauss–Laguerre

quadrature rule (19)
3: for each quadrature nodetk do
4: subdivideB0 into boxes of side at most

√
2/tk

5: end for
{ start first stage: precompute moments}
6: for each centrexj do
7: for each quadrature nodetk do
8: find the boxCwhich containsxj
9: for �<p do
10: compute the contribution ofxj to the momentsA�

of boxC using (11)
11: end for
12: end for
13: end for
{start second stage: evaluate moments}
14: for each evaluation pointyi do
15: for each quadrature nodetk do
16: find the boxB that containsyj
17: for each of the(2n + 1)d nearest neighbours ofB do
18: accumulate series (12) truncated afterpd

terms to obtain an approximation to the Gaussian with parameter
tk

19: end for
20: accumulate the contribution of thekth point of the quadrature rule

(19)
21: end for
22: end for

Algorithm 2: Fast Summation of inverse multiquadrics. Accepts as input the
Npointsxi , the associated weights�i andM evaluation pointsyj , and returns
the value ofs(y) =∑N

i=1 �i(‖y − xi‖2 + 1)−1/2 at the pointsyj .

In thed-dimensional setting, precomputation of the moments requires O(qpd) operations per centre
and the evaluation at one point O(qpd(2n + 1)d) operations. Overall, thed-dimensional fast evaluation
algorithm requires O(qpdN + qpd(2n + 1)dM) operations.
In Section 2 we established that integral representations similar to (18) may be constructed for condi-

tionally negative (or positive) definite functions. In particular, Theorems 2 and 3 show such constructs for
the Hardy multiquadric and the thin-plate spline, correspondingly. In the following section, we discuss
suitable quadrature rules for these cases.



G. Roussos, B.J.C. Baxter / Journal of Computational and Applied Mathematics 180 (2005) 51–70 63

3.1. Numerical integration

Perhaps the most popular interpolatory quadrature formula is the formula of Gauss type[9]∫ ∞

0
w(t)f (t)dt ≈

q∑
k=1

wkf (tk), (23)

where thetk and thewk have been determined so that the formula is exact for allf ∈ �2q−1. For the
weight functionw(t) equal to

w(t) = tae−t , a > − 1, (24)

we obtain the generalised Laguerre formula[9]∫ ∞

0
tae−t f (t)dt =

q∑
k=1

wkf (tk) + q!�(q + a + 1)

(2q)! f (2q)(	), (25)

for some	 ∈ (0,∞). The nodestk are the zeros of the Laguerre polynomialsL
(a)
q (t). The weights are

given by the formula

wk = q!�(q + a + 1)tk
(La

q+1(tk))
2 .

Let us now consider the use of Gauss–Laguerre formulae for the evaluation of the integral of Theorem
2. For simplicity letc2=1, then the general case can be treated similarly by the change of variableu=sc2.
We have

N∑
i=1

�i

√
‖y − xi‖2 + 1= c

N∑
i=1

�i + 1

2
√

�

∫ ∞

0

e−s

√
s
f (s)ds (26)

with

f (s) =
∑N

i=1 �i −∑N
i=1 �ie−s‖y−xi‖2

s
.

Hence, settinga = −1
2 we can use (25) to estimate (26) in O(q) function evaluations. The quadrature

introduces the error

|εq |� q!�(q + 1/2)

(2q)! f (2q)(	), 0< 	<∞.

The Gaussian quadrature nodes and the corresponding weights may be computed using one of a number
of standard methods, for example using Gautschi’sORTHOPOLpackage[15].
Alternatively, we may consider the weight functions

w(t) = e−tc2

√
t
, c ∈ R, (27)

and construct a Gaussian quadrature rule with respect to (27) rather than the classical Gauss–Laguerre
weight function (24). However, in this case we no longer have an explicit formula for the quadrature
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weights and we need to employ an alternative method for their estimation, for example the so-called
method oforthogonal reduction[14]. In this case, we can use routineD1MACH from Gautschi’sORTHOPOL

package[15] and also note that the formula below provides appropriate approximations to the inner
product:∫ ∞

0

e−tc2

√
t

u(t)v(t)dt = 1

c

∫ ∞

0

e−s

√
s
u
( s

c2

)
v
( s

c2

)
ds ≈ 1

c

m∑
k=1

w̃ku
( sk
c2

)
v
( sk
c2

)
,

as needed by theORTHOPOLpackage.
Finally, let us consider the evaluation of thin-plate spline interpolants. Theorem 3 implies that

N∑
i=1

�i‖y − xi‖2 log‖y − xi‖

= 1

2

N∑
i=1

�i‖xi‖2 + 1

2

∫ ∞

0

e−t

t2

(
N∑
i=1

�ie
−t (‖y−xi‖2−1) + t

N∑
i=1

�i‖xi‖2
)
. (28)

Numerical evidence implies that using Gauss–Laguerre quadrature (a = 0) for the function

f (t) =
∑N

i=1 �ie−t (‖y−xi‖2−1) + t
∑N

i=1 �i‖xi‖2
t2

,

does not guarantee the required precision. Thus, an alternative approach is required. Indeed, first wemake
the change of variablet → 1−r

r
so that the semi-infinite integration interval is mapped on[0,1], that is∫ ∞

0
f (t)dt =

∫ 1

0
f

(
1− r

r

)
r−2 dr, (29)

wheref is the function

f (t) =
∑N

i=1 �ie−t (‖y−xi‖2−1) + t
∑N

i=1 �i‖xi‖2
t2

.

In this case we estimate the value of interpolantsusing Kronrod quadrature[9, p. 77]which overcomes
one of the main shortcomings of Gaussian quadrature. Indeed, when proceeding from then-point to the
m-point Gaussian rule withn<m, all functional values are discarded (with the possible exception of the
midpoint forn odd), since the nodes of then-point rule do not include any of the nodes of them-point
rule. The Kronrod scheme overcomes this problem to some extent, by augmenting then-point rule with
n + 1 nodes selected so that the resulting quadrature is exact for polynomials in�3n+1.
We use the Kronrod scheme to estimate the thin-plate spline integral (28) using (29) to map the

infinite interval[0,∞) to the finite[0,1]. Then, we use the Kronrod scheme on a partition of[0,1] that
guarantees the required accuracy. To estimate the accuracy provided by a particular quadrature rule on
a certain subinterval we use the difference between the Gauss and the corresponding Kronrod scheme
estimates on that interval. The Kronrod quadrature interval[−1,1] may be mapped to any interval[a, b]
by applying the following transformation∫ b

a

f (t)dt =
∫ 1

−1

b − a

2
f

(
b + a + (b − a)x

2

)
dx.
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4. Numerical results

In this section we discuss the performance of the fast evaluation method on a representative selection
of test problems. In all test problems we report the maximum observed relative error
 defined as


 = max
1�j �M

‖fj − sj‖2
‖fj‖2 ,

wherefj is the exact andsj the computed interpolant value at evaluation pointyj . In all test problems,
the interpolant coefficients�j have been randomly selected in the interval[−1,1].
Test problem 1. For the first test case we consider one-dimensional Hardy multiquadric interpolation.
TheN centres and theM evaluation points are chosen from the uniform distribution on the unit interval.
Themethod scales linearly with respect toNandM (Table1).Although of little practical significance, this
test problem is included here to show the scaling of the method with respect to the number of dimensions.

Test problem 2. The second test case is two-dimensional inverse multiquadric interpolation (Table2).
The evaluation points coincide with the centres and are uniformly distributed on the unit square. The
observed accuracy of the computation is O(10−14). The results for this case are also shown in graphical
format inFig. 1.

Test problem 3. This is a case of two-dimensional Hardy multiquadric interpolation with track data.
The centres are positioned within one tenth of the diagonal of the unit square and within it. The observed
relative error of the calculation is O(10−7) (Table3).

Table 1
Performance of the fast evaluation method (d = 1)

N = M Approximate (s) Direct (s)

300 0.013 0.016
500 0.015 0.028
1000 0.027 0.108

TheN centres and theM evaluation points are uniformly distributed in the unit interval. The table shows times in seconds for
the approximate and direct evaluation of the Hardy multiquadric interpolants at observed relative accuracy of O(10−14).

Table 2
Performance of the fast evaluation method (d = 2)

N = M Fast (s) Direct (s)

1000 1.15 1.5
2000 1.37 6.12
4000 1.81 24.41

16,000 4.26 364.42
20,000 5.44 576.74

TheN centres coincide with theM evaluation points and are uniformly distributed in the unit square. The table shows times
in seconds for the approximate and direct evaluation of the inverse multiquadric interpolants.
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Fig. 1. Graphic representation ofTable 2, comparing the performance of the direct and the fast method. Dotted line is the fast
method. They axis is logarithmic.

Table 3
Performance of the fast evaluation method (d = 2)

N = M Approximate (s) Direct (s)

100 0.04 0.01
200 0.05 0.05
500 0.10 0.25
1000 0.16 1.03
5000 0.60 25.69

10,000 1.22 103.53
100,000 11.78 2080.00
500,000 59.54 10,300.00

TheN centres are positioned within 1/10 unit along the diagonal of the unit square and theM = N evaluation points are
uniformly distributed in the unit square. This test case highlights the fact that the method does not appear to be sensitive to the
particular distribution of centres and no observable differences are noted to the uniformly distributed case. The table shows times
in seconds for the approximate and direct evaluation of the Hardy multiquadric interpolants.

Test problem 4. This is case of two-dimensional Hardy multiquadric interpolation we investigate the
caseN>M which often occurs in practical applications. TheN centres are positioned within 1/10 unit
along the diagonal of the unit square and theM evaluation points are uniformly distributed in the unit
square. The observed relative error of the calculation is O(10−7) (Table4). The reported timings show
the approximate and direct evaluation of the Hardy multiquadric interpolants. This test case highlights
the fact that the method does not appear to be sensitive to the relative values ofM andN. Indeed, the
observed computational complexity of the method is linear with eitherM orN.
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Table 4
Performance of the fast evaluation method forN>M (d = 2)

M Approximate (s) Direct (s)

100 0.03 0.01
200 0.05 0.05
500 0.07 0.25
1000 0.11 1.03
5000 0.33 25.69

10,000 0.64 103.53
100,000 6.02 2080.00
500,000 28.54 10,300.00

TheN centres are positioned within 1/10 unit along the diagonal of the unit square and theM = N evaluation points are
uniformly distributed in the unit square. In this caseN is set to 200. The table shows times in seconds for the approximate and
direct evaluation of the Hardy multiquadric interpolants.

Table 5
Performance of the fast evaluation method(d = 3)

N = M Approximate (s) Direct (s)

700 0.92 0.83
800 1.00 1.04
900 1.01 1.33
1000 1.07 1.62
5000 2.73 41.24

10,000 4.87 166.96
100,000 43.31 3340.00
300,000 130.52 10,020.00

TheN centres and the evaluation points are uniformly distributed in the unit cube. The table shows times in seconds for the
approximate (O(10−5) relative accuracy) and direct evaluation of the Hardy multiquadric.

Test problem 5. This is a case of three-dimensional Hardy multiquadric interpolation. The centres and
the evaluation points are distributed uniformly in the unit cube. The observed relative accuracy of the
method is O(10−5) (Table5). This test case indicates that the method scales well withd in accordance
with the predicted complexity of the algorithm.

Test problem 6. This is a case of three-dimensional inverse multiquadric interpolation. The centres and
evaluation points are uniformly distributed in the unit cube. The observed relative accuracy of the method
is O(10−7). This computation may also be seen as the force calculation step of aN-body problem with
the Plummer potential (Table6). We expect thus that the algorithm developed in this paper may be used
effectively in other contexts in addition to the evaluation of Radial Basis Functions.

Test problem 7. This is a parallelised version of the rapid summation algorithm. The test environment is
a high performance cluster of workstations assembled from commodity components using sixteen high
end Digital Unix workstations connected over fast Ethernet and organised in a star topology and using
anMPI-2 environment. Synchronisation was implemented with all reduce operations in aSPMD model.
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Table 6
Performance of the fast evaluation method(d = 3)

N = M Approximate (s) Direct (s)

1000 6.42 1.62
5000 16.38 41.24

10,000 29.22 166.96
100,000 259.86 3340.00
300,000 783.12 10,020.00

TheN centres and the evaluation points are uniformly distributed in the unit cube. The table shows times in seconds for the
approximate and direct evaluation of the inverse multiquadric.
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Fig. 2. Performance on the DECAlpha cluster.

Even on relatively small problems (N =M =32,000) the method scales very well. In this case, theI/O is
local at the filesystem of each workstation and data are distributed and collected using standard operating
system services rather than a distributed filesystem. The actual performance of the method is shown in
Fig. 2. Note that for a problem of similar size the best scalable implementation of a treecode achieves
approximately 65% efficiency. On the other hand, the fast evaluation method examined here achieves in
excess of 94% efficiency (for implementation details cf.[28]).

5. Conclusions

In this paper we have constructed a rapid evaluation method for radial basis function interpolants. The
algorithm is based on a fundamental property of conditionally negative (or positive) definite functions.
It employs theFGT to compute Gauss kernel sums and a suitable quadrature rule. The method has been
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shown to be especially well suited for high performance computing, in particular computation on clusters
of workstations.
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