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Abstract

Over the past decade, the radial basis function method has been shown to produce high quality solutions to
the multivariate scattered data interpolation problem. However, this method has been associated with very high
computational cost, as compared to alternative methods such as finite element or multivariate spline interpolation.
For example, the direct evaluatio\dtocations of a radial basis function interpolant whitkhentres requires@/ N)
floating-point operations. In this paper we introduce a fast evaluation method based on the Fast Gauss Transform
and suitable quadrature rules. This method has been applied to the Hardy multiquadric, the inverse multiquadric and
the thin-plate spline to reduce the computational complexity of the interpolant evaluatiqaerQV) floating-
point operations. By using certain localisation properties of conditionally negative definite functions this method
has several performance advantages against traditional hierarchical rapid summation methods which we discuss in
detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A problem frequently occurring in science and engineering is the approximation of a fufdtien
value of which is known only on a relatively small set of points. One way to obtain such an approximation
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is by interpolation: Given the valugs of f at the points;; € RY, i =1, 2, ..., N, determine a function
sthat satisfies the conditions
s(xp)y=f(xpH)=fi, i=12,...,N.

Usually, the choice of solution method specifies a class of func8onih the interpolant € S uniquely
identified by computing a number of free parameters, sogthatisfies the interpolation conditions, and
possibly meets further restraints or has particular properties required by the application.

In the one-dimensional case, the graph b&longs to the two-dimensional Euclidean space and the
problem may be restated in geometric terms. Given a set of pgints=1, 2, ..., N, from an unknown
target curve, construct a curve which approximates the original, in the sense that it passes through all
the data points. A common solution for this problem is cubic spline interpolation, that is, choosing an
interpolant from the spac®of piecewise polynomials of degree three that have a smooth first derivative
and a continuous second derivative both within and at the boundary of the interpolation interval.

For the two-dimensional case, a comparative stidd} of interpolation methods indicated that the
most accurate and visually attractive results are produced by the so-called Hardy multiquadric and the
thin-plate spline methods. At that time, only numerical evidence supported the suitability of these methods
for interpolation. Since then a significant amount of analytical work has been carried out and today radial
basis functions are a well established method of multivariate scattered data interpolation.

1.1. Interpolation with radial basis functions

Radial basis function interpolania1] have the form

N
s =Y Jig(ly — xilD, (1)

i=1

with /; real coefficientsy; points inR¢ calledcentres || - || the Euclidean norm ang thebasis function
The functiong : Rt — R is univariate and radially symmetric with respect to the norm, in the sense
that it has the symmetries of the unit balllid. The coefficients,; are chosen so that the interpolation
conditions are satisfied. Recently, differganorms have been considered in the literature, but here we
will discuss only the Euclidean norm, since it is the one used in the majority of applications.

Useful choices ob include theGauss kernel

cr2

p(ry=¢e"",
the Euclidean distance
o(r)y=r,
theHardy multiquadric
p(r) =vVr2+4c?, (2)

theinverse multiquadric

1
p(r) = ﬁ» (3)
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and thethin-plate spline
o(r) =r?logr. (4)

The radial basis function method can be thought of as an extension of univariate splines to several
variables. Assuming that the pointsare organised in ascending order, the linear spline is composed by
the line segments

i =i+ —x) fin

s(y) = , o X SYSXigl,
Xi+1 — Xi

s = Jily = xil.
i=1
the J;'s being defined by the interpolation equations.
In matrix notation, solving the radial basis function interpolation problem is equivalent to solving the
system of linear equations

Al=f, (5)
whereA is theinterpolation matrix
Aij = o(lxi — x;1D, (6)

J is the vector of coefficientsi 4> ... iy)" andfis the vector of function values f2 ... fN)T.

One of the features that makes radial basis function interpolation a useful technique is the fact that a
unique interpolant is guaranteed under weak conditions on the location of the centres. These properties
have been discussed in detai[#8] and are also summarised in this paper in Section 2.2. One exception
to this is the thin-plate spline whose corresponding interpolation matix(5) may be singular. For
example, if the centreg; fori =2, ..., N, are points on the circle of unit radius ikf andx; is the
centre of the circle, then the first row and columnfofonsist entirely of zeros. This difficulty may be
resolved by adding a polynomial of degree one to the thin-plate spline interpolant and then demand that
the centres are unisolvent, that is the only polynomial of degree one which vanishes at every centre is the
zero polynomial. Of course, extra conditions must be introduced because of the extra degrees of freedom
added. The interpolation conditions become

N

Y djellxi —xjD+ p) = fi, i=12...,N,

j=1

N

> Jjp(xj) =0 for everyp e My(R%) @)
j=1

with IT1(R?) the set of polynomials in two real variables of total degree less than or equal to one. In this
case, there is a unique vectoand a unigue polynomial satisfying (7).
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For thed-dimensional case, the resulting linear system is

(o ¢)()-(o) ®
with A defined in (6), and) defined by

pi(x1) ... pg,(x1)
Q= : : : ;
pi(xn) ... pd,(xn)
where{py : k=1,2,...,d,)} is a basis of1,, (R?) and

d,, = dim IT,, (R%) = <dzm) .

Two-dimensional thin-plate spline interpolation has extra advantages: the resulting interpolant is opti-
mal in the sense that it is the differentiable function minimising the integral

[Vl 211 4 1 P .

In addition to providing an effective way to define the degrees of freedom in the general interpolation
problem, this property implies smoothness for the resulting surface. Further, the interpolant is rotation-
and scale-invariant and thus one obtains the same surface independent of the physical units used.

1.2. Computation with radial basis functions

Although the radial basis function method has been applied successfully in a wide variety of scientific
and engineering problems, its widespread adoption has been hindered by the associated high computa
tional cost. Indeed, the solution of the interpolation equations (5) directly requiréd)@oating point
operations, while the form of interpolant (1) implies that evaluasiagM pointsys, y2, ..., yu, directly
requires QM N) operations.

Indeed, the high computational cost associated with the radial basis function method (compared against
alternative methods such as finite elements or multivariate splines) has been identified as early as Franke’s
survey[13]. An initial attempt to reduce the computational complexity of the evaluation task was made
by Powell[25]. The minimisation property of the thin-plate spline was used to devise a fast method to
evaluate interpolants on a grid. A simpler solution to the same problem but for any radial basis function was
suggested by Araff]: when the centres of interpolation are on a grid then there are far less tt&h O
distinct inter-point distances, which may be precomputed. Then, the evaluation task may be performed
by table lookups rather than floating point computation.

Of course, a new approach is required if the interpolant is not to be evaluated on a grid but at scattered
points. Beatson and Newsd first noted the similarities between the computational structure of the
N-body problem and the evaluation of a thin-plate spline (and in consequence, of any other radial basis
function) interpolant, thus initiating research in the construction of fast evaluation methods, based on
the extensive research literature on ragitbody simulations. 1rj6], the Laurent and Taylor expansions
required by the fast multipole methoeMjv) of Greengard and Rokhlifi7,18]were constructed. These
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resultd were used by Powe[R6] to construct a fast algorithm for the evaluation of thin-plate spline
interpolants. This method uses a decomposition of the set of interpolation centres similar t¢14ppel
and the method has observed computational complexity(dfl@g N) for fairly uniform distributions

of centres. More recently, Beatson has implemented &l based on the results ] with reported
performance characteristics similar to that discussefl 1. A variant of this method whereby the
coefficients of the multipole expansion are not calculated directly but approximated is discussed by Suter
[33]. Finally, in[5,8] the multipole expansions required for computation with generalised multiquadrics
have been calculated.

The relation between the Hardy multiquadric asdbody computations has received a physical justi-
fication. Indeed, Hardj22] relates the solution of an interpolation problem to simulation of the Earth’s
geomagnetic field by a biharmonic potential. This has the advantage that the Earth is considered as a solid
rather than a hollow body, as happens when using the harmonic potential.

A rapid algorithm for evaluation of radial basis function interpolants may reduce the computational
cost of certain methods used for the fast solution of the interpolation equations. Indeed [Bgxbants
out that when the centres form a regular grid, matrix—vector prodacisith A is the interpolation
matrix, may be computed in(@ log N) operations via the fast Fourier transform. Products of this kind
are required in iterative methods, like the conjugate gradient algorithm.

Infact, the preconditioned CG method was usdd®11]to solve the interpolation equations. However,
since the CG algorithm requires a positive (or negative) definite matrix, the method is unstable for most
radial basis functions of interest. A remedy for this situation for the Hardy multiquadric was proposed
in [3, Chapter 6] where at the end of each iteration of the CG method the residual is projected onto
the spacge)’ with e = (1 1 ... 1), where the interpolation matrix is indeed negative definite. The
modified method ensures the stability of the conjugate gradient method. More recently, in a series of
papers Beatson, Powell, Goodsell and Hdiif,16,12,27have developed an iterative algorithm which
employs estimates of the characteristic function.

In this paper, we introduce a method for the rapid evaluation of radial basis function interpolants that
can be used for all usual radial basis functions discussed in this and previous sections. In addition to its
general applicability and contrary tmm and treecodes this method is nonhierarchical. This fact allows
for very scalable implementations on high performance computers, in particular multiprocessors and
clusters of workstations. The remainder of this paper is organised as follows: in Section 2, first we discuss
the fast Gauss transform of Greengard and Sft#hand then we summarise some properties of radial
basis functions, which form the core of our algorithm. Then, in Section 3 we proceed to present the rapid
evaluation algorithm itself as well as its implementation. The paper concludes with a report on some
numerical experiments and with observations on the performance of our method.

2. Preliminaries

Our rapid evaluation method for radial basis functions is based on certain integral representations (such
representations are established in Theorems 1, 2 and 3 for the most common radial basis functions) which

1 Note that the Laurent expansions calculatedig] are erroneous. Ref26, Formula 3.7Jmust be corrected using the
multipole expansions calculated [, Theorem 4.2]Following the notation of26], replace| #| (the total number of centres)
with ZlN:l /i (the sum of the coefficients of the interpolant). However, the numerical results reported in the final sd@@jn of
are correct.
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are used with the fast Gauss transform and suitable quadrature rules, to estimate the value of the interpolan
at a point. In the following paragraphs we discuss the individual building blocks of the algorithm.

2.1. The fast Gauss transform

Here, we briefly discuss the fast Gauss transfem)(of Greengard and Strajh9,20,32Jas appropriate
for the fast radial basis function evaluation method. IndttémensionaFcT we require the use of multi-
index notation. The-tuple = (81, fs, . .., B,;) € N is called anulti-indexand is useful for indexing in
the context of a-dimensional Euclidean space. We use the notatiep, p € N, if f, > pfor 1<h <d.
Thus, for anyx € R, we define

Bl =P1+ B2+ -+ Ba,

B = B1!Bo!. .. B4l
xF = xflxgz .. .xgd.

The multi-dimensional Hermite functiors;(x) are

hp(x) =hp, (x)hp,(x2) ... hg, (xa), 9

whereh; with k € N is a classical Hermite function and= (x1, xo2, ..., x4).
The aim of theraTis to evaluate efficiently sums of the form

N
> diexp(=slly — xilI?)

i=1

at M distinct pointsys, yo, ..., yy. By shifting the origin and re-scaling, we may assume that all the
interpolation centres and all the evaluation points lie within the unit hyper&gbe [0, 1]¢. This is a
convenient normalisation and does not restrict the generality of the method.

We may express a Gaussianifi as the Hermite expansion

= = 3 (U — 0)hy (V3G - ©)). (10)

'
p>0 B!

For centresiy, xo, ..., xy € R? inside boxB B = {y € [0,11% ||y = Clloo < r/JZ_s} of side length
r«/2/s for somer < 1 (cf.[19, Lemma 2.1} centred atC, we can precompute the moments

| =

N
2 (s =0 (11)

i=1

Ap=

=

which we can then use to evaluate the Gaussian sum at aydmynt

N
Y diexp=slly —xilI>) =) Aphg (Vs(y — ©)). (12)

i=1 B=0
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By truncating the infinite series on the right of (12) after the firsterms, we introduce the error

|E,,|<(1_ i 2 Z ( )(1—rp)k(&;)dk’ .

with Q = Zf\’zl |2;]. Note that this error estimate (calculated in detai[28]) and the error estimate
of [19, Lemma 2.1]coincide wherd = 1 but they are distinct in higher dimensions. Of course, sim-
ilar reasoning can be directly applied [tt9, Lemmata 2.2 and 2.3p obtain the corresponding error
estimates.

Thus, the first ingredient of thesT is approximation (12) to the Gaussian in terms of moments (11)
of the centres which when truncated afi¢r terms introduces the associated error estimate (13). The
second ingredient of thesT is the decomposition of the computational sp&génto subboxe® of side
lengthr/2/s parallel to the axes, for some fixed paramet&ach centre is assigned to the subBdkat
contains it and contributes only to tid moments of subboB. At the end of the precomputation step,
the p? moments for each of the subboX@save been computed. The precomputation requilgs’ )
operations.

For the estimation of thecT at a particular evaluation pointcontained in subbol, we need to
consider the influence of only some of the nearest neighbour box2slofleed, due to the exponential
decay

1: choose andp to guarantee the required precision

2: subdivideBy into boxesB of side length at most,/2/s

3: for each centre; do

4: find the boxC that contains:;

5: compute the contribution af to the momentsi; of C defined by (11)
6: end for

7. for eachevaluation pointy; do

8 find the boxD that containg;

9: for all (2n + 1)¢ nearest neighbours &f do

10: accumulate sums (12)
11: end for
12: end for

Algorithm 1: The fast Gauss transform. Accepts as input the pararagtecentres
x; with the associated weights andM evaluation pointg;, and returns the value of
(10) at the pointy;.

of the Gauss kernel, its effect on subboxes away from its centre may be insignificant within certain
accuracy. For example, taking into account only @e+ 1)¢ nearest neighbours @, introduces error
bounded b)Qe‘ZFZ”Z. Hence, for =1/2 andn =6 relative accuracy of 10 is obtained. We will call the

set of(2n + 1)¢ nearest neighbours tleteraction listof box D. Thus, in order to estimate the Gaussian



58 G. Roussos, B.J.C. Baxter / Journal of Computational and Applied Mathematics 180 (2005) 51—-70

sum on the left side of (12) at poigit we have to accumulate th¢ moments for each of the boxBsn
the interaction list oD. Evaluation at a single point requireg@n + 1) p¢) operations.

Overall, the calculation of (10) may be performed using Algorithm 1. Step 5 requige Operations
per centre and thus Step 3 requireg®V) operations overall. Step 10 requires®) per evaluation
point per box and thus Step 7 require§y®(2n + 1)¢ M) in total. Hence, the computational complexity
of the algorithm is @p?N + p¢(2n + 1)¢M).

2.2. Conditionally negative definite functions

As noted earlier, radial basis function interpolation is possible under relatively weak conditions on the
positions of the centres. To construct a radial basis function interpolant it is necessary to solve the linear
system of Eq. (5), but so far we have not commented on the nonsingularity of the fatoceover, in
the case of the thin-plate spline solvability of the interpolation problem requires that the Aat(&) be
nonsingular for all vectors satisfying (7), and the polynomia}s< I1,, (R¢) be uniquely determined by
their value onX ={x1, ..., xy}, thatisif p(x;) =0 for allx; € X thenp =0. Micchelli[24] answers this
question by proving almost positive (or negative) definiteness of the interpolation matrix for several of
the radial basis functions, including the Hardy multiquadric, the inverse multiquadric and the thin-plate
spline. In doing so, Micchelli constructs integral forms for these radial basis functions, which we will use
to develop our rapid evaluation method.

To state Micchelli’s results about conditionally positive (or negative) functions we recall that a function
fis said to becompletely monotonion (0, co) provided that it is inC* (0, oo) and(—1)™ - ™ (x)>0
forx € (0,00) andm =0, 1, 2, .... Also, a real valued functiohof a real variable is said to h@ositive
definiteif the inequalitny.f’.:1 Zij f (x; — x;) >0 holds for every choice of the real numbersand;.
Schoenberg generalised t[lnis definition so that for example, a radially symmetric fup@tidn) = @ (x),
®: RY — Ris said to bepositive definite orit? if the inequalitnyf’j:1 i 2j®(x; — xj)>0 holds for
anyx; € R? and real numbers; [31].

Let 17,,(RY) denote the linear space of all polynomials of total degree less than or eqomlAo
function ® : RY — R is conditionally positive(or negativg definite of order m oriR?¢, if for all sets
X = {x1, x2, ..., xy} € R? with N distinct points and all vectors= (i1 42 ... iy)" € RY subject to
the conditions

N
> dipi)=0, p e, 1(RY),
i=1

the quadratic form

N

Z )»,'},jd)(xi — Xj),

N
i=1 j=1

is nonnegative (or nonpositive) and vanishes only when0. Micchelli [24] related the conditional
positive definiteness of the radially symmetric functi@s) = ¢(||x||2) to complete monotonicity of
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derivatives ofp. In particular,® is conditionally positive (negative) definite of ordarfor anyd if the
derivative of ordem of ¢(r1/2), r >0, is completely monotonic.

In addition to proving the feasibility of interpolation, the relation to conditionally positive (or negative)
functions implies a means to represent a radial basis function as an integral of a Gaussian by a suitable
measure. For example, Schoenbf8@] proved that Bochner’s Theoref@l] implies that a functiorp
that is radially symmetric and positive definite on@fl must satisfy

o(r) = /0 e du(s), (14)

with i : [0, 0c0) — R a finite positive Borel measure. Furthermore, due to a theorem by Scho¢8®grg
¢ is a conditionally negative definite function of order one on ew&tyf and only if there exists a Borel
measure: : [0, oo) — R such that

2

00 1 _ @ s"
o(r) = 9(0) + fo %du(s), (15)

andu has the properties

1 00
/ du(r) <oco and / L du(r) < oo.
0 1

The above conditions being required for the integral to be finite. Finally, at least for some higher order
conditionally negative definite functions it is possible to construct expressions similar to (14) and (15).
For example, if23] we have shown that the thin-plate spline may be written as

o) = + = 5 ds. (16)
s

r—1 1 [° e Diser-1-1
2 T2 /o ©

We can use Micchelli’'s results to make useful observations about the interpolation matrix of several
radial basis functions. For example, the Gauss kernel and the inverse multiquadric are (radially symmetric)
positive definite function o’ then the corresponding interpolation matrices are positive definite. The
Euclidean distance and the Hardy multiquadric are conditionally negative definite functions of order
one onR? and thus the corresponding interpolation matrices have one positivéVandl negative
eigenvalues, provided that the centres are distinct and there are at least two of them. Finally, the thin-plate
spline is a conditionally positive definite function of order two@h The particulars of the associated
representations have been detailed elsewf2&jeand here we will only refer to the relations we need to
develop our rapid summation schemes:

Theorem 1. For centres{xl}N andy inR? we have

e S‘L
JesIy=xil? g
||y—xl||2+c f/ Z

Hags
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Theorem 2. For centres{x;} ; and y inR? we have

N N —sc? N N Clly—i (12
/ 1 0 @=s¢ N =SV eyl
Jin Ny —xi||2+62:C § :;»i + / Zz_l ! Zz—l ! ds.

1=

1

Theorem 3. For centregx;}¥_; and the corresponding coeﬁiciem}f"zlsuchthaﬁf\'zlii:Zf\'zl AiXi=
Oandy inR? we have

N 1 N
> dilly = xilPloglly —xill = 5 3 7 2illxi|?
i=1 i=1

1 (e (& 2 al
+ 5/ s_2 Z /lie—s(lly—xill - +s Z )ui||xi||2 ds.
0 . .
i=1 i=1

3. Rapid evaluation algorithm description

In this section we discuss the basic steps of the rapid evaluation algorithm. Without loss of generality,
we will discuss the algorithm for the inverse multiquadric method and we will return to the details required
for other radial basis functions in the following paragraphs. We assume that we have already calculated
the solution to the interpolation problem, that is we have computed the coeffi¢jesdghat

N .
s(y) = ’ : (17)
Z ly — xi |12+ ¢?
satisfies thé\ interpolation conditions for a set of centras xo, . . ., xy in R? for data valuegi, fo, ...,
fn and we consider the task of evaluating (17) at a saé¥igfoints y1, yo, ..., yy. Performing this

calculation directly requires @4 N) operations. Our aim is to reduce the complexity of the evaluation
task by developing a rapid summation scheme. Without loss of generality we will assunrethaaind
that all the centres and the evaluation points are contained in the unit hypeégebf, 1]¢.

Applying Theorem 1 to 17 we have

) 1 /OO e! i Letly=xl? g (18)
S = — —— L ! .
SRV RN

Using (18) we can approximagaising ag-term generalised Gauss—Laguerre quadrature rule

1 q
s(y) = 7 k; w f (1), (19)
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where

N
foy=Y" nehul?, (20)

i=1

Thus, rather than evaluating the sum of inverse multiquadrics (17) at an overall c@3f of wperations,
we may evaluatg sums of Gaussians (20) (one for each quadrature nosiea the fast Gauss transform
in O(q(N + M)) operations. Recall that the decrease in the computational complexity of the latter task
is due to the decoupling of the precomputation of the moments of the pgiatwl the estimation of the
interpolant at points; through the already computed moments.

Of course, the quadrature introduces the error

_ 4 1\ cep

|8q|—(2—q)'1“(q+§)f (é), O<5<OO

The quadrature nodegare the zeros of the generalised Laguerre polynol‘r{)é]r/z)(t) and the weights
may be computed by the formula

q'I'(qg + 1/t
W= —75——

(L w)?

Overall, the fast evaluation of inverse multiquadric interpolants may be performed by Algorithm 2. In
order to identify exactly the structure of the iterations, we summarise the Hermite expansion required by
a two-dimensionatcT here. Indeed, for a poir = (c1, c2) the Gauss kernel can be approximated by

p
e—zllx—yH2 — Z Anynohng (ﬂ(xl — cl)> hn, («/;(xz — Cz)) , (21)
n1,n2=0

with the moments\,,; ,,

n1!]l-12! ) 4 <\/;(le B Zl))nl(‘/;(sz - ZZ))nz- (22)

j=1

Anl,nz =

Hence, in two dimensions the precomputation of the moments (Steps 9—-11 of Algorithm 2) requires
O(gp?) operations per centre. The evaluation of the moments at a single point (Steps 17—19 of Algorithm
2) requires Qgp2(2n + 1)) operations. Overall, the two-dimensional fast evaluation algorithm requires
O(gp®N + qp?(2n + 1)°M) operations.
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N -~

3
4

6

13

14

22

5:
{ start first stage: precompute moments
. for each centre; do

7:

8:

9:
10:

11:
12:

15:
16:
17:
18:

19:
20:

21:

. choosay andp to guarantee the required precision
: compute the weights; and nodes; of the Gauss—Laguerre

guadrature rule (19)

for each quadrature nodedo
subdivideBg into boxes of side at mosf2/
end for

for each quadrature nodedo
find the boxC which containsy;
for p< pdo
compute the contribution af; to the momentsi g
of box C using (11)
end for
end for
: end for

{start second stage: evaluate momgnts

: for each evaluation point; do
for each quadrature nodgdo
find the boxB that containg;
for each of thg2n + 1)¢ nearest neighbours &do
accumulate series (12) truncated aftér
terms to obtain an approximation to the Gaussian with param
Tk
end for
accumulate the contribution of thh point of the quadrature rule
(19)
end for
: end for

eter

Algorithm 2: Fast Summation of inverse multiquadrics. Accepts as input the
N pointsx;, the associated weightsandM evaluation points ;, and returns

the value ofs(y) = >N | Z:(Ily — x:112 + 1)~¥2 at the pointsy;.

In the d-dimensional setting, precomputation of the moments requitgp®Q operations per centre
and the evaluation at one poin{4p“(2n + 1)) operations. Overall, the-dimensional fast evaluation
algorithm requires Qp?N + gp?(2n + 1)? M) operations.

In Section 2 we established that integral representations similar to (18) may be constructed for condi-
tionally negative (or positive) definite functions. In particular, Theorems 2 and 3 show such constructs for
the Hardy multiquadric and the thin-plate spline, correspondingly. In the following section, we discuss

suitabl

e quadrature rules for these cases.
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3.1. Numerical integration

Perhaps the most popular interpolatory quadrature formula is the formula of Gau§3]type
q

| wwrwd sy . (23)

k=1
where ther, and thew, have been determined so that the formula is exact fof adl 1, 1. For the
weight functionw(r) equal to
w(t) =r'e’’, a>—1, (24)
we obtain the generalised Laguerre formi@h
q

f ‘e f(r)de = Z wy f(t) +
0

k=1

q'l'(g+a+1)

@) e, (25)

for some¢ € (0, 00). The nodeg; are the zeros of the Laguerre polynomia&ﬁ)(t). The weights are
given by the formula

q'I'(qg +a+ Dty
Wi = - 5
(LY, (1))

Let us now consider the use of Gauss—Laguerre formulae for the evaluation of the integral of Theorem
2. For simplicity let®=1, then the general case can be treated similarly by the change of variakié.
We have

N N 1 0 a—§
br —xl24+1= Ji 4+ —— d 26
> nfly =l +1=c 3 l+2ﬁf0 s (26)
with
N N —slly—x; 2
N o =N esly=xil
f(S) _ Zl—l Zl—l ]
N
Hence, settingr = —% we can use (25) to estimate (26) i) function evaluations. The quadrature
introduces the error
'IT'(g +1/2) }
el < LU pen sy ot cco

(29)!
The Gaussian quadrature nodes and the corresponding weights may be computed using one of a numbe
of standard methods, for example using GautsadwsioroLpackagd15].

Alternatively, we may consider the weight functions

—1c2

ﬁ k)
and construct a Gaussian quadrature rule with respect to (27) rather than the classical Gauss—Laguerre
weight function (24). However, in this case we no longer have an explicit formula for the quadrature

w(t) =

ceR, (27)
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weights and we need to employ an alternative method for their estimation, for example the so-called
method oforthogonal reductiorf14]. In this case, we can use routinévacH from Gautschi'orRTHoPoL
package[15] and also note that the formula below provides appropriate approximations to the inner
product:

/OOO e:/,;z u(tyv(r) dr :i Ooo ‘j;u (5)v(5)ds~ i i i (%) 0 (%)),

k=1

as needed by thertHOPOL package.
Finally, let us consider the evaluation of thin-plate spline interpolants. Theorem 3 implies that

N
> Jilly = xillloglly — xi
i=1

1Y , 1 [eer (& T 2
=5 D silul®+3 / o | 2o e T e Yy ? ). (28)
; 0 ;
i=1 1

i= i=1

Numerical evidence implies that using Gauss—Laguerre quadrate®) for the function

—t(|ly—x; 2=
B Z,N:Mie t(ly=xil°=1) +IZ,N:1)4||X1'||2
f) = > ,
does not guarantee the required precision. Thus, an alternative approach is required. Indeed, first we make
the change of variable— % so that the semi-infinite integration interval is mapped@ri], that is

o0 1
/ f(t)dt:/ f<l_r>r2dr, (29)
0 0 r

wheref is the function

SN ety P-1 4 4 SN il
f@) = 2 ,

In this case we estimate the value of interpokuning Kronrod quadratuif®, p. 77]which overcomes
one of the main shortcomings of Gaussian quadrature. Indeed, when proceeding frepotheto the
m-point Gaussian rule with < m, all functional values are discarded (with the possible exception of the
midpoint forn odd), since the nodes of tmepoint rule do not include any of the nodes of thepoint
rule. The Kronrod scheme overcomes this problem to some extent, by augmentmgdime rule with
n + 1 nodes selected so that the resulting quadrature is exact for polynomiaigin.

We use the Kronrod scheme to estimate the thin-plate spline integral (28) using (29) to map the
infinite interval[0, co) to the finite[0, 1]. Then, we use the Kronrod scheme on a partitiofOpf] that
guarantees the required accuracy. To estimate the accuracy provided by a particular quadrature rule or
a certain subinterval we use the difference between the Gauss and the corresponding Kronrod scheme
estimates on that interval. The Kronrod quadrature intgrval 1] may be mapped to any intervial, »]
by applying the following transformation

b 1 _
/ f(t)dt:/ bzaf(b—i—a—l-z(b a)x) .
a -1
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4. Numerical results

In this section we discuss the performance of the fast evaluation method on a representative selection
of test problems. In all test problems we report the maximum observed relative dafined as

_ 1 fi—sjill2
i<j<m I fillz

where f; is the exact and; the computed interpolant value at evaluation pgintin all test problems,
the interpolant coefficients; have been randomly selected in the intefval, 1].

Test problem 1. For the first test case we consider one-dimensional Hardy multiquadric interpolation.
TheN centres and th# evaluation points are chosen from the uniform distribution on the unit interval.
The method scales linearly with respecNandM (Tablel). Although of little practical significance, this

test problem is included here to show the scaling of the method with respect to the number of dimensions.

Test problem 2. The second test case is two-dimensional inverse multiquadric interpolation @able
The evaluation points coincide with the centres and are uniformly distributed on the unit square. The
observed accuracy of the computation i@ 14). The results for this case are also shown in graphical
format inFig. 1

Test problem 3. This is a case of two-dimensional Hardy multiquadric interpolation with track data.
The centres are positioned within one tenth of the diagonal of the unit square and within it. The observed
relative error of the calculation is@0~") (Table3).

Table 1

Performance of the fast evaluation methdd<1)

N=M Approximate (s) Direct (s)
300 0.013 0.016
500 0.015 0.028

1000 0.027 0.108

TheN centres and thil evaluation points are uniformly distributed in the unit interval. The table shows times in seconds for
the approximate and direct evaluation of the Hardy multiquadric interpolants at observed relative accurdey &f0

Table 2

Performance of the fast evaluation methdd=(2)

N=M Fast (s) Direct (s)
1000 1.15 15
2000 1.37 6.12
4000 1.81 24.41

16,000 4.26 364.42

20,000 5.44 576.74

TheN centres coincide with thisl evaluation points and are uniformly distributed in the unit square. The table shows times
in seconds for the approximate and direct evaluation of the inverse multiquadric interpolants.
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Fig. 1. Graphic representation déble 2 comparing the performance of the direct and the fast method. Dotted line is the fast
method. They axis is logarithmic.

Table 3

Performance of the fast evaluation methdd(2)

N=M Approximate (s) Direct (s)
100 0.04 0.01
200 0.05 0.05
500 0.10 0.25
1000 0.16 1.03
5000 0.60 25.69
10,000 1.22 103.53

100,000 11.78 2080.00

500,000 59.54 10,300.00

The N centres are positioned withiry10 unit along the diagonal of the unit square and Mhe= N evaluation points are
uniformly distributed in the unit square. This test case highlights the fact that the method does not appear to be sensitive to the
particular distribution of centres and no observable differences are noted to the uniformly distributed case. The table shows times
in seconds for the approximate and direct evaluation of the Hardy multiquadric interpolants.

Test problem 4. This is case of two-dimensional Hardy multiquadric interpolation we investigate the
caseN < M which often occurs in practical applications. TReentres are positioned withiry 10 unit

along the diagonal of the unit square and Mevaluation points are uniformly distributed in the unit
square. The observed relative error of the calculation(800) (Table4). The reported timings show

the approximate and direct evaluation of the Hardy multiquadric interpolants. This test case highlights
the fact that the method does not appear to be sensitive to the relative vaMeanofN. Indeed, the
observed computational complexity of the method is linear with elther N.
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Table 4
Performance of the fast evaluation methodfb& M (d = 2)

M Approximate (s) Direct (s)
100 0.03 0.01

200 0.05 0.05

500 0.07 0.25
1000 0.11 1.03
5000 0.33 25.69
10,000 0.64 103.53
100,000 6.02 2080.00
500,000 28.54 10,300.00

The N centres are positioned withiry10 unit along the diagonal of the unit square and Mie= N evaluation points are
uniformly distributed in the unit square. In this cddés set to 200. The table shows times in seconds for the approximate and
direct evaluation of the Hardy multiquadric interpolants.

Table 5

Performance of the fast evaluation methdd= 3)

N=M Approximate (s) Direct (s)
700 0.92 0.83
800 1.00 1.04
900 1.01 1.33
1000 1.07 1.62
5000 2.73 41.24
10,000 4.87 166.96

100,000 43.31 3340.00

300,000 130.52 10,020.00

TheN centres and the evaluation points are uniformly distributed in the unit cube. The table shows times in seconds for the
approximate ((DELO*5) relative accuracy) and direct evaluation of the Hardy multiquadric.

Test problem 5. This is a case of three-dimensional Hardy multiquadric interpolation. The centres and
the evaluation points are distributed uniformly in the unit cube. The observed relative accuracy of the

method is @10~°) (Table5). This test case indicates that the method scales wellavithaccordance
with the predicted complexity of the algorithm.

Test problem 6. This is a case of three-dimensional inverse multiquadric interpolation. The centres and
evaluation points are uniformly distributed in the unit cube. The observed relative accuracy of the method
is O(10~7). This computation may also be seen as the force calculation step-tioay problem with

the Plummer potential (Tab®. We expect thus that the algorithm developed in this paper may be used
effectively in other contexts in addition to the evaluation of Radial Basis Functions.

Test problem 7. This is a parallelised version of the rapid summation algorithm. The test environment is
a high performance cluster of workstations assembled from commodity components using sixteen high
end Digital Unix workstations connected over fast Ethernet and organised in a star topology and using
anwmpI-2 environment. Synchronisation was implemented with all reduce operationseimbanodel.
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Table 6
Performance of the fast evaluation methidd= 3)

N=M Approximate (s) Direct (s)
1000 6.42 1.62
5000 16.38 41.24

10,000 29.22 166.96

100,000 259.86 3340.00

300,000 783.12 10,020.00

TheN centres and the evaluation points are uniformly distributed in the unit cube. The table shows times in seconds for the
approximate and direct evaluation of the inverse multiquadric.

Dec Alpha Workstation farm

10!
-0- Ideal
-X- Actual
0
(8]
[
o
@ 100}
E
>
o
10t

0 2 4 6 8 10 12 14 16
# workstations

Fig. 2. Performance on the DEC Alpha cluster.

Even on relatively small problem®/(= M = 32, 000) the method scales very well. In this casejthés

local at the filesystem of each workstation and data are distributed and collected using standard operating
system services rather than a distributed filesystem. The actual performance of the method is shown in
Fig. 2 Note that for a problem of similar size the best scalable implementation of a treecode achieves
approximately 65% efficiency. On the other hand, the fast evaluation method examined here achieves in
excess of 94% efficiency (for implementation detailq28]).

5. Conclusions

In this paper we have constructed a rapid evaluation method for radial basis function interpolants. The
algorithm is based on a fundamental property of conditionally negative (or positive) definite functions.
It employs thercT to compute Gauss kernel sums and a suitable quadrature rule. The method has been
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shown to be especially well suited for high performance computing, in particular computation on clusters
of workstations.
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