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Abstract

In this paper, we first study convergence of nonstationary multisplitting methods associated with a multisplitting
which is obtained from the ILU factorizations for solving a linear system whose coefficient matrix is a large sparse
H-matrix. We next study a parallel implementation of therelaxed nonstationary two-stage multisplitting method
(called Algorithm 2 in this paper) using ILU factorizations as inner splittings and an application of Algorithm 2
to parallel preconditioner of Krylov subspace methods. Lastly, we provide parallel performance results of both
Algorithm 2 using ILU factorizations as inner splittings and the BiCGSTAB with a parallel preconditioner which
is derived fromAlgorithm 2 on the IBM p690 supercomputer.
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1. Introduction

In this paper, we consider parallel nonstationary multisplitting methods for solving a linear system of
the form

Ax = b, x, b ∈ Rn, (1)
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whereA ∈ Rn×n is a large sparseH-matrix. Multisplitting method was introduced by O’Leary andWhite
[14] and was further studied by many authors[6,13,19,23]. The multisplitting method can be thought of
as an extension and parallel generalization of the classical block Jacobi method[3].
A representationA=M −N is called asplittingof AwhenM is nonsingular. A splittingA=M −N

is calledregular if M−1�0 andN�0, and it is calledweak regularif M−1�0 andM−1N�0 [1]. A
collection of triples(Mk,Nk,Ek), k = 1,2, . . . , 
, is called amultisplittingof A if A = Mk − Nk is a
splitting ofA for k= 1,2, . . . , 
, andEk ’s, called weighting matrices, are nonnegative diagonal matrices
such that

∑

k=1Ek=I . Therelaxed nonstationarymultisplittingmethodassociatedwith thismultisplitting

and a positive relaxation parameter� for solving a linear systemAx = b is as follows.

Algorithm 1. Relaxed nonstationary multisplitting method

Given an initial vectorx0
For i = 1,2, . . . , until convergence
Fork = 1 to


yk,0 = xi−1
For j = 1 to s(k, i)

Mkyk,j = Nkyk,j−1 + b

xi = �

∑

k=1
Ekyk,s(k,i) + (1− �)xi−1.

Notice that Algorithm 1 with� = 1 is called thenonstationary multisplitting method. Mas et al.
[10] showed the convergence of Algorithm 1 under certain conditions whenA is anH-matrix. When
(Mk,Nk,Ek), k = 1,2, . . . , 
, is a multisplitting ofA andMk = Bk − Ck is a splitting ofMk for each
k, therelaxed nonstationary two-stage multisplitting methodwith a positive relaxation parameter� for
solving a linear systemAx = b is as follows.

Algorithm 2. Relaxed nonstationary two-stage multisplitting method

Given an initial vectorx0
For i = 1,2, . . . , until convergence

Fork = 1 to

yk,0 = xi−1
For j = 1 to s(k, i)

yk,j = �B−1
k (Ckyk,j−1 + Nkxi−1 + b) + (1− �)yk,j−1

xi =

∑

k=1
Ekyk,s(k,i).

InAlgorithm2, the splittingsA=Mk−Nk are called outer splittings and the splittingsMk=Bk−Ck are
called inner splittings. Bru et al.[3] showed the convergence ofAlgorithm 2 whenA is a monotonematrix
(i.e.,A−1�0) orA is anH-matrix. If�=1 inAlgorithm 2, thenAlgorithm 2 reduces to thenonstationary
two-stage multisplitting method. Notice that the loopkofAlgorithms 1 and 2 can be executed completely
in parallel by different processors. Also notice that the number of inner iterationss(k, i) in Algorithms 1
and 2 depends on the iterationi and the splittingA=Mk −Nk. Throughout the paper, it is assumed that
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s(k, i)�1 for everyk and i. If s(k, i) = 1 for all k and i in Algorithm 1, then Algorithm 1 is called the
relaxed multisplitting method.
For a large sparse matrixA, a convenient way of obtaining a multisplitting ofA is to use the ILU

factorizations ofA which were first introduced by Varga[21] and studied by many authors[4,9,11,12].
One advantage of multisplitting methods associated with a multisplitting which is obtained from the ILU
factorizations is that linear systems required for each iteration of multisplitting methods can be cheaply
solved by using the forward and backward substitutions since many fill-in elements are dropped during
the ILU factorization process. So, it is worth studying the convergence ofmultisplittingmethods using the
ILU factorizations. This paper is organized as follows. In Section 2, we present some notation, definitions
and preliminary results which we refer to later. In Section 3, we present convergence results of the relaxed
nonstationary multisplitting method (Algorithm 1) and the relaxed nonstationary two-stagemultisplitting
method (Algorithm 2) using ILU factorizations for solving the linear system (1). In Section 4, we study a
parallel implementation of Algorithm 2 using ILU factorizations as inner splittings and an application of
Algorithm 2 to parallel preconditioner of Krylov subspace methods such as the CGS[18], GMRES[17]
and Bi-CGSTAB[20]. In Section 5, we provide parallel performance results of both Algorithm 2 using
ILU factorizations as inner splittings and the BiCGSTAB with a parallel preconditioner which is derived
fromAlgorithm 2 on the IBM p690 supercomputer. Lastly, some concluding remarks are drawn.

2. Preliminaries

For a vectorx ∈ Rn, x�0 (x >0) denotes that all components ofx are nonnegative (positive). For two
vectorsx, y ∈ Rn, x�y (x >y) means thatx − y�0 (x − y >0). For a vectorx ∈ Rn, |x| denotes the
vector whose components are the absolute values of the corresponding components ofx. These definitions
carry immediately over to matrices. It follows that|A|�0 for any matrixAand|AB|� |A||B| for any two
matricesA andB of compatible size. For a square matrixB, diag(B) denotes a diagonal matrix whose
diagonal part coincides with the diagonal part ofB.
A matrix A = (aij ) ∈ Rn×n is called anM-matrix if aij �0 for i �= j andA−1�0. Thecomparison

matrix 〈A〉 = (�ij ) of a matrixA = (aij ) is defined by

�ij =
{ |aij | if i = j,

−|aij | if i �= j.

A matrixA is called anH-matrix if 〈A〉 is anM-matrix. Note thatM-matrices and strictly or irreducibly
diagonally dominant matrices are contained in the class of allH-matrices.A splittingA=M−N is called
anH-compatible splittingif 〈A〉=〈M〉−|N |. It was shown in[7] that ifA is anH-matrix andA=M−N

is anH-compatible splitting, thenM is also anH-matrix. Let�(A) denote thespectral radiusof a square
matrixA. Varga[22] showed that for any square matricesA andB, |A|�B implies�(A)��(B).

Lemma 2.1(Frommer and Mayer[6] ). LetA = D − B be an H-matrix withD = diag(A). Then

(a) A and|D| are nonsingular and�(|D|−1|B|)<1.
(b) |A−1|�〈A〉−1.
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Lemma 2.2(Bru and Fuster[2] ). LetTi , i = 1,2, . . ., be a sequence of square matrices. If there exists
a matrix norm‖ · ‖ and a�<1 such that‖Ti‖�� for all i = 1,2, . . ., then

lim
i→∞ TiTi−1 · · · T1 = 0.

For a vectorv >0, theweighted max norm‖x‖v is defined by
‖x‖v = inf {�>0:−�v�x��v}.

For a matrixB, ‖B‖v denotes the matrix norm ofB corresponding to the weighted max norm defined
above. It is well-known that‖B‖v = ‖|B|v‖v and|x|� |y| implies‖x‖v�‖y‖v.
A general algorithm for building ILU factorization can be derived by performing Gaussian elimination

and dropping some of the elements in predetermined off-diagonal positions. LetSn denote the set of all
pairs of indices of off-diagonal matrix entries, i.e.

Sn = {(i, j) | i �= j,1�i�n,1�j�n}.
The following theorem shows the existence of the ILU factorization for anH-matrixA.

Theorem 2.3(Messaoudi[12] ). Let A be ann × n H-matrix. Then, for every zero pattern setQ ⊂ Sn,
there exist a unit lower triangular matrixL = (lij ), an upper triangular matrixU = (uij ), and a matrix
N = (nij ), with lij = uij = 0 if (i, j) ∈ Q andnij = 0 if (i, j) /∈Q, such thatA = LU − N .Moreover,
the factors L and U are also H-matrices.

In Theorem 2.3,A = LU − N is called anILU factorizationof A corresponding to a zero pattern set
Q ⊂ Sn. In particular, ifQ is an empty set, thenN=0 and thus a complete LU factorization ofAsuch that
A = LU is obtained.WhenA is anM-matrix, it was shown in[11] that the ILU factorizationA=LU −N

in Theorem 2.3 is a regular splitting ofA andL andU are alsoM-matrices. The following theorem shows
the relations between the ILU factorizations of anH-matrixA and〈A〉.
Theorem 2.4(Kim and Yun[8] , Messaoudi[12] ). Let A be ann × n H-matrix. LetA = LU − N and
〈A〉 = L̃Ũ − Ñ be the ILU factorizations of A and〈A〉 corresponding to a zero pattern setQ ⊂ Sn,
respectively. Then each of the following holds:

(a) |L−1|�L̃−1, (b) |U−1|�Ũ−1, (c) |N |�Ñ, (d) |(LU)−1N |�(L̃Ũ )−1Ñ .

In Theorem 2.4, it is easy to show that LU is not anH-matrix andL̃Ũ is not anM-matrix even ifL and
U areH-matrices and̃L andŨ areM-matrices.

3. Convergence of nonstationary multisplitting methods

In this section, we present convergence results of nonstationary multisplitting methods associated
with a multisplitting which is obtained from the ILU factorizations for solving linear system (1). First,
we consider convergence of the relaxed nonstationary multisplitting method (Algorithm 1) using ILU
factorizations. Algorithm 1 can be written as

xi = H�,ixi−1 + P�,ib, i = 1,2, . . . , (2)
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where

H�,i = �

∑

k=1
Ek(M

−1
k Nk)

s(k,i) + (1− �)I, i = 1,2, . . .

and

P�,i = �

∑

k=1
Ek


s(k,i)−1∑

j=0
(M−1

k Nk)
j


M−1

k , i = 1,2, . . . .

TheH�,i ’s are called iteration matrices for Algorithm 1. Then, it is easy to show thatP�,iA = I − H�,i

for eachi. Hence, the exact solution� of Ax = b satisfies

� = H�,i� + P�,ib, i = 1,2, . . . . (3)

From (2) and (3), the error vectorei = xi − � satisfies

ei = H�,iei−1 = H�,iH�,i−1 · · ·H�,1e0, i = 1,2, . . . . (4)

From (4), the sequence of vectors generated by the iteration (2) converges to the exact solution ofAx= b

for any initial vectorx0 if and only if

lim
i→∞H�,iH�,i−1 · · ·H�,1 = 0. (5)

Theorem 3.1. Let A = D − B be ann × n H-matrix withD = diag(A). Let J = |D|−1|B| and let
Q1,Q2, . . . ,Q
 be zero pattern sets which are subsets ofSn. For each1�k�
, letA = LkUk − Nk be
the ILU factorization of A corresponding toQk. Then, the relaxed nonstationary multisplitting method
associated with the multisplitting(LkUk,Nk,Ek), k = 1,2, . . . , 
, converges to the exact solution of
Ax = b for any initial vectorx0 if 0<�< 2

1+� , where� = �(J ).

Proof. From Lemma 2.2, it suffices to show that there exists a matrix norm‖ · ‖ and a�<1 such that
‖H�,i‖�� for all i = 1,2, . . . . SinceA = D − B andD = diag(A),

〈A〉 = |D| − |B| = |D|(I − J ). (6)

For each 1�k�
, let 〈A〉 = L̃kŨk − Ñk be the ILU factorization of〈A〉 corresponding toQk. By
some manipulation, it can be shown that|D−1|�(L̃kŨk)

−1 for all k = 1,2, . . . , 
. It follows that for all
k = 1,2, . . . , 


I�(L̃kŨk)
−1|D|. (7)

Using Theorem 2.4, one obtains

|H�,i | =
∣∣∣∣∣�


∑
k=1

Ek((LkUk)
−1Nk)

s(k,i) + (1− �)I

∣∣∣∣∣
��


∑
k=1

Ek((L̃kŨk)
−1Ñk)

s(k,i) + |1− �|I. (8)
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We now use the argument presented in[10]. Let e = (1,1, . . . ,1)T. SinceJ �0, J + �eeT>0 for any
�>0 and thus there exists a Perron vectorx� >0 such that

(J + �eeT)x� = ��x�, (9)

where�� = �(J + �eeT). Since�<1 from Lemma 2.1 and 0<�< 2
1+� from the assumption, it can be

easily shown that|1− �| + ��<1. By continuity of the spectral radius, there exists an�0 such that for
all 0< ���0

�� <1 and |1− �| + ��� <1.

Now, choose an� such that 0< ���0. Then, from (6), (7) and (9), one obtains

(L̃kŨk)
−1Ñkx� = (I − (L̃kŨk)

−1|D|(I − J ))x�

�(I − (L̃kŨk)
−1|D|(I − (J + �eeT)))x�

= x� − (1− ��)(L̃kŨk)
−1|D|x�

�x� − (1− ��)x� = ��x�. (10)

Hence, from (8) and (10), one obtains

|H�,i |x���

∑

k=1
Ek((L̃kŨk)

−1Ñk)
s(k,i)x� + |1− �|x�

��

∑

k=1
Ek�

s(k,i)
� x� + |1− �|x�

��

∑

k=1
Ek��x� + |1− �|x�

= (��� + |1− �|)x�. (11)

Taking the weighted max norm‖ · ‖x� to both sides of Eq. (11),

‖H�,i‖x� = ‖|H�,i |x�‖x� ���� + |1− �| ≡ ��.

Sincei is arbitrary,‖H�,i‖x� ��� <1 for all i = 1,2, . . . . Therefore, the proof is complete.�

Mas et al.[10] showed that the relaxed nonstationary multisplitting method converges to the exact
solution ofAx = b for any initial vectorx0 under the assumption thatA=Mk −Nk is anH-compatible
splitting with diag(|Mk|)� |diag(A)| for k = 1,2, . . . , 
. It was shown in[24] that the ILU factorization
A = LkUk − Nk used in Theorem 3.1 is not anH-compatible splitting. This means that Theorem 3.1
provides a new convergence result for the relaxed nonstationary multisplitting method which is different
from the convergence result in[10]. Since� = �(J )<1 in Theorem 3.1, Theorem 3.1 holds for� = 1
and hence a convergence result for the nonstationary multisplitting method is obtained below.
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Corollary 3.2. Let A be ann × n H-matrix. LetQ1,Q2, . . . ,Q
 be zero pattern sets which are subsets
ofSn.For each1�k�
, letA=LkUk −Nk be the ILU factorization of A corresponding toQk.Then, the
nonstationary multisplitting method associated with the multisplitting(LkUk,Nk,Ek), k = 1,2, . . . , 
,
converges to the exact solution ofAx = b for any initial vectorx0.

The following theorem shows that the convergence result presented in Theorem 3.1 can be improved
whenJ is irreducible.

Theorem 3.3. Let A = D − B be ann × n H-matrix withD = diag(A). Let J = |D|−1|B| and let
Q1,Q2, . . . ,Q
 be zero pattern sets which are subsets ofSn. For each1�k�
, let A = LkUk − Nk

be the ILU factorization of A corresponding toQk. Suppose that J is irreducible andv >0 is a Perron
vector of J. Then, the relaxed nonstationary multisplitting method associated with the multisplitting
(LkUk,Nk,Ek), k = 1,2, . . . , 
, converges to the exact solution ofAx = b for any initial vectorx0
if 0<�< 2

1+� , where� = sup{‖Hi‖v|i = 1,2, . . .} andHi = ∑

k=1Ek((LkUk)

−1Nk)
s(k,i). Moreover,

���(J )<1.

Proof. Sincev >0 is a Perron vector ofJ, Jv = �(J )v. For each 1�k�
, let〈A〉 = L̃kŨk − Ñk be the
ILU factorization of〈A〉 corresponding toQk. Using Theorem 2.4, (6) and (7), one obtains that for every
1�k�


|(LkUk)
−1Nk|v�(L̃kŨk)

−1Ñkv = (I − (L̃kŨk)
−1〈A〉)v

= (I − (L̃kŨk)
−1|D|(I − J ))v

= v − (1− �(J ))(L̃kŨk)
−1|D|v

�v − (1− �(J ))v = �(J )v. (12)

Using (12) and the fact that�(J )<1, one obtains that for eachi

|Hi |v�

∑

k=1
Ek|(LkUk)

−1Nk|s(k,i)v

�

∑

k=1
Ek(�(J ))

s(k,i)v

�

∑

k=1
Ek�(J )v = �(J )v. (13)

From (13),‖Hi‖v��(J ) for eachi and hence���(J ). Notice thatH�,i = �Hi + (1− �)I . It follows
that|H�,i |v��|Hi |v + |1− �|v. Using this relation, one obtains that for eachi

‖H�,i‖v = ‖|H�,i |v‖v�‖�|Hi |v + |1− �|v‖v
��‖Hi‖v + |1− �|��� + |1− �| ≡ �. (14)
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If 0<�< 2
1+� , then�<1.Hence, from (14) there exists an�<1 such that‖H�,i‖v�� for all i=1,2, . . . .

Therefore, the proof is complete from Lemma 2.2.�

It can be easily shown that ifA is an irreducibleH-matrix, thenJ in Theorem 3.3 is an irreducible
matrix. If s(k, i)= s(k) in Algorithm 1, i.e. the number of inner iterationss(k, i) does not depend on the
outer iterationi, then we can have the following convergence result for Algorithm 1 which also improves
Theorem 3.1.

Theorem 3.4. Let A = D − B be ann × n H-matrix withD = diag(A). Let J = |D|−1|B| and let
Q1,Q2, . . . ,Q
 be zero pattern sets which are subsets ofSn. For each1�k�
, let A = LkUk − Nk

be the ILU factorization of A corresponding toQk. Assume thats(k, i) = s(k) for all i = 1,2, . . . .
Then, the relaxed nonstationary multisplitting method associated with the multisplitting(LkUk,Nk,Ek),
k = 1,2, . . . , 
, converges to the exact solution ofAx = b for any initial vectorx0 if 0<�< 2

1+�(H)
,

whereH =∑

k=1Ek((LkUk)

−1Nk)
s(k).Moreover, �(H)��(J )<1.

Proof. For each 1�k�
, let〈A〉 = L̃kŨk − Ñk be the ILU factorization of〈A〉 corresponding toQk.
Let H̃ =∑


k=1Ek((L̃kŨk)
−1Ñk)

s(k). Then,H̃ can be viewed as the iteration matrix of the nonstationary
multisplitting method withs(k, i) = s(k) for solving a linear system whose coefficient matrix is〈A〉.
Thus, Corollary 3.2 implies�(H̃ )<1. Let

P̃ =

∑

k=1
Ek


s(k)−1∑

j=0
((L̃kŨk)

−1Ñk)
j


 (L̃kŨk)

−1.

Then,P̃ 〈A〉 = I − H̃ . Since�(H̃ )<1, P̃ is nonsingular and thus〈A〉 = P̃−1 − P̃−1H̃ . It is clear that

〈A〉 = P̃−1 − P̃−1H̃ = |D| − |B|
are weak regular splittings of〈A〉. Since|D−1|�(L̃kŨk)

−1 for all k = 1,2, . . . , 
,

(P̃−1)−1 = P̃ �

∑

k=1
Ek(L̃kŨk)

−1�

∑

k=1
Ek|D|−1 = |D|−1. (15)

Using Eq. (15) and the fact that|B|�0, Elsner’s comparison lemma[5] implies that
�(H̃ )��(J ). (16)

Notice that�(J )<1 from Lemma 2.1. Since|H |�H̃ from Theorem 2.4,�(H)��(H̃ ). Hence, Eq. (16)
implies that

�(H)��(H̃ )��(J )<1.

LetH� = �H + (1− �)I . Then,H� is the iteration matrix of the relaxed nonstationary multisplitting
method withs(k, i) = s(k). It can be easily shown that

�(H�)���(H) + |1− �|. (17)

Since 0<�< 2
1+�(H)

from the assumption and�(H)<1, it is easy to show that��(H) + |1− �|<1.
From Eq. (17),�(H�)<1. Therefore, the proof is complete.�
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Next, we give a convergence result for the relaxed nonstationary two-stage multisplitting method
(Algorithm 2) using ILU factorizations as inner splittings. LetRk,� = �B−1

k Ck + (1 − �)I . Then,
Algorithm 2 can be written as

xi = H ∗
�,ixi−1 + P ∗

�,ib, i = 1,2, . . . , (18)

where

H ∗
�,i =


∑
k=1

EkR
s(k,i)
k,� + �


∑
k=1

Ek


s(k,i)−1∑

j=0
R
j
k,�


B−1

k Nk, i = 1,2, . . .

and

P ∗
�,i = �


∑
k=1

Ek


s(k,i)−1∑

j=0
R
j
k,�


B−1

k , i = 1,2, . . . .

TheH ∗
�,i ’s are called iteration matrices forAlgorithm 2. It is easy to show thatP ∗

�,iA= I −H ∗
�,i for each

i. Hence, the exact solution� of Ax = b satisfies

� = H ∗
�,i� + P ∗

�,ib, i = 1,2, . . . . (19)

From (18) and (19), the error vectorei = xi − � satisfies

ei = H ∗
�,iei−1 = H ∗

�,iH
∗
�,i−1 · · ·H ∗

�,1e0, i = 1,2, . . . . (20)

From (20), the sequence of vectors generated by the iteration (18) converges to the exact solution of
Ax = b for any initial vectorx0 if and only if

lim
i→∞H ∗

�,iH
∗
�,i−1 · · ·H ∗

�,1 = 0. (21)

Theorem 3.5(Bru et al. [3] ). Let A−1�0 be ann × n matrix. For each1�k�
, let A = Mk − Nk

be a regular splitting of A andMk = Bk − Ck be a weak regular splitting ofMk. Then, the relaxed
nonstationary two-stage multisplitting method withA=Mk −Nk as outer splittings andMk =Bk −Ck

as inner splittings converges to the exact solution ofAx = b for any initial vectorx0 if 0<��1.

Theorem 3.6. Let A be ann × n H-matrix. LetQ1,Q2, . . . ,Q
 be zero pattern sets which are subsets
of Sn. For each1�k�
, let A = Mk − Nk be an H-compatible splitting andMk = LkUk − Ck be the
ILU factorization ofMk corresponding toQk. Then, the relaxed nonstationary two-stage multisplitting
method withA=Mk −Nk as outer splittings andMk = LkUk − Ck as inner splittings converges to the
exact solution ofAx = b for any initial vectorx0 if 0<��1.

Proof. SinceA=Mk−Nk is anH-compatible splitting of anH-matrixA,Mk is anH-matrix and thus〈Mk〉
is anM-matrix. For each 1�k�
, let〈Mk〉= L̃kŨk − C̃k be the ILU factorization of〈Mk〉 corresponding
to Qk and letR̃k,� = �(L̃kŨk)

−1C̃k + (1− �)I . Since 0<��1 from the assumption, Theorem 2.4
implies that

|Rk,�| = |�(LkUk)
−1Ck + (1− �)I |�R̃k,�. (22)
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From Eq. (22) and Theorem 2.4, one obtains

|H ∗
�,i | =

∣∣∣∣∣∣

∑

k=1
EkR

s(k,i)
k,� + �


∑
k=1

Ek


s(k,i)−1∑

j=0
R
j
k,�


 (LkUk)

−1Nk

∣∣∣∣∣∣
�


∑
k=1

EkR̃
s(k,i)
k,� + �


∑
k=1

Ek


s(k,i)−1∑

j=0
R̃
j
k,�


 (L̃kŨk)

−1|Nk|. (23)

Let H̃ ∗
�,i denote the matrix in the right-hand side of Eq. (23). Then, theH̃ ∗

�,i ’s are iteration matrices of
the relaxed nonstationary two-stage multisplitting method with〈A〉= 〈Mk〉− |Nk| as outer splittings and
〈Mk〉 = L̃kŨk − C̃k as inner splittings for solving a linear system whose coefficient matrix is〈A〉. Note
that〈A〉= 〈Mk〉− |Nk| and〈Mk〉= L̃kŨk − C̃k are regular splittings of〈A〉 and〈Mk〉, respectively. Since
〈A〉−1�0,Theorem 3.5 implies that

lim
i→∞ H̃ ∗

�,iH̃
∗
�,i−1 · · · H̃ ∗

�,1 = 0. (24)

Since|H ∗
�,i |�H̃ ∗

�,i from Eq. (23), one obtains

|H ∗
�,iH

∗
�,i−1 · · ·H ∗

�,1|�H̃ ∗
�,iH̃

∗
�,i−1 · · · H̃ ∗

�,1. (25)

From (24) and (25), limi→∞H ∗
�,iH

∗
�,i−1 · · ·H ∗

�,1 = 0. Therefore, the proof is complete.�

It was shown in[3] that the relaxed nonstationary two-stage multisplitting method converges to the
exact solution ofAx=b for any initial vectorx0 under the assumption that both outer splittings and inner
splittings areH-compatible splittings. However, Theorem 3.6 uses the ILU factorizations instead of using
H-compatible splittings as inner splittings.

4. Parallel implementation and application of Algorithm 2

In this section, we consider a parallel implementation of the relaxed nonstationary two-stagemultisplit-
ting method (Algorithm 2) using ILU factorizations as inner splittings and an application of Algorithm
2 with s(k, i) = s(k) to parallel preconditioner of Krylov subspace iterative methods such as the CGS,
GMRES and Bi-CGSTAB. First, we introduce a parallel implementation of Algorithm 2 using ILU fac-
torizations as inner splittings for solving the linear system (1). Let
 denote the number of processors to
be used. For simplicity of exposition, suppose that
= 3. Then, theH-matrixA is partitioned into a 3× 3
block matrix of the form

A =
(
A11 A12 A13
A21 A22 A23
A31 A32 A33

)
,
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where the diagonal blocksAii of A are square matrices. LetA = M − N , where

M =
(
A11 0 0
0 A22 0
0 0 A33

)
, N =

( 0 −A12 −A13
−A21 0 −A23
−A31 −A32 0

)
≡
(
N(1)

N(2)

N(3)

)
. (26)

Then, we construct a multisplitting(Mk,Nk,Ek), k = 1,2,3, where

E1 =
(
I 0 0
0 0 0
0 0 0

)
, E2 =

(0 0 0
0 I 0
0 0 0

)
, E3 =

(0 0 0
0 0 0
0 0 I

)
, (27)

Mk =M andNk =N for k = 1,2,3. Clearly,A=Mk −Nk is anH-compatible splitting for eachk. Let
M =LU −C be an ILU factorization ofM corresponding to a zero pattern setQ ⊂ Sn. Observe that the
L andU are of the form

L =
(
L1 0 0
0 L2 0
0 0 L3

)
, U =

(
U1 0 0
0 U2 0
0 0 U3

)
, (28)

whereLi ’s are lower triangular matrices andUi ’s are upper triangular matrices. LetBk =LU andCk =C

for k=1,2,3. Then, at theith iteration ofAlgorithm 2 each processorkexecutes the following algorithm
COM(k,�):

Algorithm. COM(k,�)

yk,0 = xi−1
b̄ = b + Nxi−1
For j = 1 to s(k, i)

yk,j = �(LU)−1(Cyk,j−1 + b̄) + (1− �)yk,j−1
ComputeEkyk,s(k,i).

In general, the ILU factorization ofM does not computeC, but it computes only theL andU. So, the
computational stepyk,j =�(LU)−1(Cyk,j−1+ b̄)+ (1−�)yk,j−1 in the COM(k,�) is transformed into

yk,j = yk,j−1 + �(LU)−1(b̄ − Myk,j−1). (29)

Assume thatb, b̄, yk,j andxi are partitioned into

b =
(
b(1)

b(2)

b(3)

)
, b̄ =

(
b̄(1)

b̄(2)

b̄(3)

)
, yk,j =



y
(1)
k,j

y
(2)
k,j

y
(3)
k,j


 , xi =


x

(1)
i

x
(2)
i

x
(3)
i


 . (30)
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Making use of (26)–(30), at theith iteration of Algorithm 2 each processork needs to execute only the
following algorithm MCOM(k,�) which requires much less computation than COM(k,�):

Algorithm. MCOM(k,�)

y
(k)
k,0 = x

(k)
i−1

b̄(k) = b(k) + N(k)xi−1
For j = 1 to s(k, i)

y
(k)
k,j = y

(k)
k,j−1 + �(LkUk)

−1(b̄(k) − Akky
(k)
k,j−1)

x
(k)
i = y

(k)
k,s(k,i).

Notice that(LkUk)
−1(b̄(k)−Akky

(k)
k,j−1) in the MCOM(k,�) is computed by solving the linear system

(LkUk)tk = b̄(k) − Akky
(k)
k,j−1 for tk without computing(LkUk)

−1 explicitly.
Since Algorithm 2 described above requires too many iterations for convergence and thus it does not

perform well (seeTables 1and2), we next consider an application of Algorithm 2 withs(k, i) = s(k)

to parallel preconditioner of Krylov subspace methods. Sinces(k, i) = s(k), from (18)H ∗
�,i = H ∗

� and
P ∗

�,i = P ∗
� for all i = 1,2, . . ., where

H ∗
� =


∑
k=1

EkR
s(k)
k,� + �


∑
k=1

Ek


s(k)−1∑

j=0
R
j
k,�


B−1

k Nk,

P ∗
� = �


∑
k=1

Ek


s(k)−1∑

j=0
R
j
k,�


B−1

k .

If Algorithm 2 with s(k, i) = s(k) converges to the exact solution ofAx = b for any initial vectorx0,
then�(H ∗

�)<1. It follows that the matrixP
∗
� such thatP

∗
�A = I − H ∗

� is nonsingular. Hence,(P
∗
�)

−1
can be used as a preconditioner of Krylov subspace methods. Then, the preconditioner solver step which
is one of the basic time-consuming computational kernels of Krylov subspace methods is equivalent to
computingP ∗

�r for a vectorr ∈ Rn. Notice thatP ∗
�r can be computed in parallel by computing each

�Ek(
∑s(k)−1

j=0 R
j
k,�)B

−1
k r on a different processor and then adding them in parallel. Also assume thatM

andEk ’s are defined as in (26) and (27), andM =LU −C is an ILU factorization ofM corresponding to
a zero pattern setQ ⊂ Sn. LetMk =M =LU −C,Bk =LU , andCk =C for all k=1,2, . . . , 
. SinceL
andU are of the form (28), each processork needs to execute only the following algorithm PREC(k,�)
for parallel computation ofz = P ∗

�r:

Algorithm. PREC(k,�)

t0 = 0
For j = 1 to s(k)

tj = tj−1 + �(LkUk)
−1(r(k) − Akktj−1)

z(k) = ts(k).
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Table 1
Parallel performance of Algorithm 2 using ILU factorizations whenn = 2562, � = 1, s(k) = � for 1�k� 


2, ands(k) = 3� for

( 
2 + 1)�k�


� 
 Example 5.1 Example 5.2

Iter I-time Iter I-time

1 2 7849 47.9 6846 42.0
4 8008 24.2 6919 21.1
8 8235 12.3 7248 11.0
16 8672 7.07 7516 6.13

2 2 3961 45.2 3436 39.7
4 4139 23.7 3536 20.3
8 4394 12.2 3893 11.0
16 4886 7.01 4208 6.18

Table 2
The number of iterations of Algorithm 2 using ILU factorizations whenn = 2562, s(k) = � for 1�k� 


2, ands(k) = 3� for

( 
2 + 1)�k�


� � Example 5.1 Example 5.2


 = 2 
 = 4 
 = 8 
 = 16 
 = 2 
 = 4 
 = 8 
 = 16

1 0.9 8719 8895 9144 9621 7607 7687 8052 8345
1.0 7849 8009 8235 8672 6846 6919 7248 7516
1.1 7137 7283 7491 7895 6224 6291 6591 6838
1.2 6544 6681 6872 7249 5706 5768 6043 6273
1.3 6042 6167 6347 6701 5268 5325 5579 5795
1.4 5611 NC NC NC 4891 NC NC NC
1.5 NC NC NC NC NC NC NC NC

2 0.9 4393 4573 4830 5325 3815 3913 4276 4591
1.0 3961 4139 4394 4886 3436 3536 3893 4208
1.1 3609 3787 4044 4539 3126 3232 3587 3908
1.2 3317 3499 3760 4264 2869 2982 3342 3673
1.3 3072 3261 3532 4052 2652 2777 3148 3495
1.4 2865 3068 3353 3899 2467 2611 3002 3373
1.5 2694 2917 3229 3816 2310 2488 2911 3319
1.6 2562 2827 3183 3855 NC NC NC NC
1.7 NC NC NC NC NC NC NC NC

The output vectorz and the input vectorr in the PREC(k,�) are partitioned as in (30). Since other
time-consuming computational kernels of Krylov subspace methods can be easily parallelized, Krylov
subspace methods with the preconditioner(P ∗

�)
−1 can be fully parallelized using the PREC(k,�).
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5. Numerical results

Numerical experiments forAlgorithm 2 described in Section 4 aremadewiths(k, i)=s(k), and Krylov
subspacemethod used for numerical experiments is the BiCGSTABwith the right preconditioner(P ∗

�)
−1

which is described in Section 4. All numerical experiments are carried out using 64-bit arithmetic on the
IBM p690 supercomputer at KISTI (Korean Institute of Science and Technology Information), an SMP
system with 32 processors. Parallel codes are written in OpenMP Fortran[15], and all nonzero elements
of A are stored using the compressed row storage format[16]. For all timing runs, elapsed wall-clock
time is measured in seconds using the IBM wall-clock timerrtc . For both Algorithm 2 and BiCGSTAB
with the preconditioner(P ∗

�)
−1, the initial vectorx0 is set to zero, the ILU factorization without fill-in

elements is used, and the stopping criterion is‖b−Axi‖2/‖b‖2<10−8, where‖ · ‖2 refers toL2-norm.
For numerical experiments of both Algorithm 2 and BiCGSTAB with the preconditioner(P ∗

�)
−1, the

number of inner iterationss(k) is set to� for 1�k� 

2 and 3� for (



2 + 1)�k�
, where� is a positive

integer and
 is assumed to be a multiple of 2. For this choice ofs(k), the last half processors execute
3 times more inner iterations than the first half processors. Thus, in order to obtain a good load balance
among the processors, the computational amount of the first half processors should be 3 times more than
that of the last half processors. For test problems used in this paper, this can be achieved by partitioning
A ∈ Rn×n into an
× 
 block matrix such that the first
2 diagonal blocks are square matrices of order

3n
2


and the remaining
2 diagonal blocks are square matrices of order
n
2
 , wheren is assumed to be a multiple

of 2
. There is no special reason for using the factor 3. If a factorpwhich is different from the factor 3
is used, then the factor 3 in the above arguments should be changed top. Since it was seen that there is
no change in numerical conclusion for different factorsp, the factor 3 is used in this paper for numerical
experiments.
The test matrixA used in this paper is obtained from five-point discretization of the following elliptic

second-order PDE:

−(aux)x − (buy)y + (cu)x + (du)y + f u = g (31)

with a(x, y)>0,b(x, y)>0,c(x, y), d(x, y), andf (x, y) defined on the unit square region�= (0,1)×
(0,1), and with the Dirichlet boundary conditionu(x, y)= 0 on the boundary of�. Only the discretized
matrixA is of importance, so the right-handside vectorb is created fromAe, wheree=(1,1, . . . ,1)T ∈ Rn.
Therefore, the right-hand side functiong(x, y) in (31) is not relevant.

Example 5.1. This example considers Eq. (31) witha(x, y) = b(x, y) = 1, c(x, y) = 10exy , d(x, y) =
10e−xy , andf (x, y)=0.We have used a uniformmesh of�x=�y=1/(m+1), which leads to a matrix
of ordern = m × m, where�x and�y refer to the mesh sizes in thex- andy-direction, respectively.

Example 5.2. This example considers Eq. (31) withc(x, y)=10(x+y),d(x, y)=10(x−y),f (x, y)=0,
anda(x, y) = b(x, y) defined as

a(x, y) =
{
103 if 1

4 <x, y < 3
4,

1 otherwise.

We have used the same uniform mesh as Example 5.1.
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Table 1contains parallel performance results of Algorithm 2 forn = 2562. In Table 1, Iter stands for
the number of iterations of Algorithm 2 andI-time stands for the parallel execution time of Algorithm
2. Table 2contains the number of iterations of Algorithm 2 for various values of�. In Table 2, NC
denotes that Algorithm 2 does not converge to the exact solution ofAx = b. Table 3contains parallel
performance results of BiCGSTAB with the preconditioner(P ∗

1 )
−1 for n = 2562, andTable 4contains

parallel performance results of BiCGSTAB with the preconditioner(P ∗
�)

−1 for n = 3842 and various
values of�. In Tables 3and4, Iter stands for the number of iterations of BiCGSTAB,I-time stands for
the parallel execution time of BiCGSTAB andI -tavg= I-time

Iter which means an average parallel execution
time of BiCGSTAB per iteration.
As canbe seen inTable 1, Iter forAlgorithm2 increases significantly as
 (i.e., the number of processors)

increases since theM used in theH-compatible splittingA = M − N approximatesA better for smaller

. Thus,I-time for Algorithm 2 scales worse as
 increases. FromTable 1, it can be also seen that Iter
for � = 2 is much smaller than that for� = 1, but I-time for � = 2 is about the same as that for� = 1
except for
= 2. It means that parallel performance of Algorithm 2 does not depend a lot on the number
of inner iterationss(k). Theorem 3.6 showed thatAlgorithm 2 using ILU factorizations as inner splittings
converges to the exact solution ofAx= b for 0<��1 when outer splittings areH-compatible splittings.
Numerical results inTable 2also show this theoretical result.Actually,Algorithm 2 converges to the exact
solution ofAx=b upto about�=1.3 for test problems used in this paper.As can be seen inTable 2, larger
value of� for whichAlgorithm 2 converges to the exact solution ofAx = b provides better performance.
Algorithm 2 requires too many iterations for convergence which lead to poor performance (see

Tables 1and2), while BiCGSTAB with the preconditioner(P ∗
�)

−1 which is derived from Algorithm
2 performs very well (seeTables 3and4). FromTable 3, it can be seen that Iter for� = 1 is greater than
that for� = 2, but I-time for � = 1 is smaller than that for� = 2. It means that parallel performance of
BiCGSTABwith the preconditioner(P ∗

1 )
−1 for �=1 is better than that for�=2. So, parallel performance

results of BiCGSTAB with the preconditioner(P ∗
�)

−1 only for � = 1 are given inTable 4for various
values of�. Since Iter for BiCGSTAB varies depending upon
 (i.e., the number of processors),I-tavg is

Table 3
Parallel performance of BiCGSTAB with the preconditioner(P ∗

1 )
−1 whenn = 2562, s(k) = � for 1�k� 


2, ands(k) = 3� for

( 
2 + 1)�k�


� 
 Example 5.1 Example 5.2

Iter I-time I-tavg Iter I-time I-tavg

1 2 169 2.43 0.0144 123 1.80 0.0146
4 172 1.23 0.0072 128 0.92 0.0072
8 178 0.65 0.0037 131 0.48 0.0037
16 196 0.40 0.0020 135 0.28 0.0021

2 2 113 2.82 0.0249 85 2.11 0.0248
4 129 1.57 0.0122 94 1.14 0.0121
8 144 0.88 0.0061 103 0.64 0.0062
16 130 0.43 0.0033 112 0.39 0.0035
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Table 4
Parallel performance of BiCGSTAB with the preconditioner(P ∗

� )
−1 whenn = 3842, s(k) = 1 for 1�k� 


2, ands(k) = 3 for

( 
2 + 1)�k�


� 
 Example 5.1 Example 5.2

Iter I-time I-tavg Iter I-time I-tavg

0.9 2 260 8.34 0.0321 196 6.41 0.0327
4 262 4.16 0.0159 211 3.41 0.0162
8 266 2.16 0.0081 207 1.71 0.0083
16 270 1.16 0.0043 223 1.01 0.0045

1.0 2 254 8.13 0.0320 185 6.05 0.0327
4 246 3.89 0.0158 182 2.92 0.0160
8 252 2.02 0.0080 188 1.55 0.0082
16 268 1.13 0.0042 220 0.97 0.0044

1.1 2 250 8.00 0.0320 179 5.83 0.0326
4 248 3.92 0.0158 180 2.89 0.0161
8 269 2.15 0.0080 190 1.56 0.0082
16 251 1.07 0.0043 183 0.83 0.0045

1.2 2 248 7.94 0.0320 168 5.47 0.0326
4 241 3.81 0.0158 183 2.94 0.0161
8 251 2.01 0.0080 187 1.53 0.0082
16 258 1.11 0.0043 186 0.84 0.0045

1.3 2 251 8.04 0.0320 185 6.03 0.0326
4 210 3.32 0.0158 190 3.05 0.0161
8 236 1.88 0.0080 186 1.52 0.0082
16 249 1.05 0.0042 179 0.80 0.0045

provided inTables 3and4 to evaluate parallel efficiency of BiCGSTAB with the preconditioner(P ∗
�)

−1
for only one iteration.
In Tables 2and4, note thatI-time is proportional to Iter when� and
 are fixed. Iter for Algorithm 2

decreases as� increases, while Iter for BiCGSTAB with the preconditioner(P ∗
�)

−1 varies irregularly as
� increases. For example,� for which Algorithm 2 performs best is 1.4 for 
= 2 and 1.3 for 
�4 when
� = 1, while� for which BiCGSTAB performs best varies between 1.1 and 1.3.
The scaling behaviors of BiCGSTAB with the preconditioner(P ∗

�)
−1 for Example 5.2 whenn= 3842

and� = 1 are depicted inFigs. 1and2 by log–log scale. The scaling behaviors for Example 5.1 are not
depicted since they are similar to those for Example 5.2.I-tavg scales perfectly up to
=8 (seeTable 4and
Fig. 2). The reason whyI-tavg for
= 4 is less than one half ofI-tavg for
= 2 is that the computational
amount of each processor for
 = 2 is more than twice of that for
 = 4 when the preconditioner solver
step is computed in parallel (see Section 4). For
>8, I-tavg does not scale perfectly because of memory
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Fig. 1. Scaling behaviors of BiCGSTAB with the preconditioner(P ∗
� )

−1 for Example 5.2 whenn = 3842 and� = 1. I -time
scalings: dotted, Perfect scalings: dashed.
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Fig. 2. Scaling behaviors of BiCGSTAB with the preconditioner(P ∗
� )

−1 for Example 5.2 whenn = 3842 and� = 1. I -tavg
scalings: dotted, Perfect scalings: dashed.

access contention among the processors. Also notice thatI-time scales worse thanI-tavg since Iter is
larger for larger
 in many cases (seeTable 4andFigs. 1and2).

6. Concluding remarks

In this paper, we considered the convergence of two relaxed types of nonstationarymultisplittingmeth-
ods using ILU factorizations, and we provided parallel performance results of the relaxed nonstationary
two-stage multisplitting method (Algorithm 2) and BiCGSTAB with the parallel preconditioner(P ∗

�)
−1

which is derived fromAlgorithm 2. Numerical experiments showed that Algorithm 2 itself does not per-
form well since it requires too many iterations for convergence. However, the methodology of combining
Algorithm 2 with Krylov subspace methods such as BiCGSTAB works very well (i.e., BiCGSTAB with
the preconditioner(P ∗

�)
−1 performs very well as compared with Algorithm 2). It was also seen that

the relaxation parameter� for which Algorithm 2 performs best is not the same as the� for which
BiCGSTAB with the preconditioner(P ∗

�)
−1 performs best. For test problems used in this paper,� for



262 J.H. Yun / Journal of Computational and Applied Mathematics 180 (2005) 245–263

which Algorithm 2 performs best is 1.3, while� for which BiCGSTAB with the preconditioner(P ∗
�)

−1
performs best varies between 1.1 and 1.3.
Theorem 3.6 showed that Algorithm 2 converges to the exact solution ofAx = b for 0<��1. For test

problems used in this paper, Algorithm 2 converges to the exact solution ofAx = b upto about� = 1.3.
The practical upper bound of� guaranteeing the convergence of Algorithm 2 is usually greater than the
theoretical upper bound 1 of�, and it varies depending upon the problem to be considered. It means that
when(P ∗

�)
−1 is used as a parallel preconditioner of Krylov subspace methods, a range of� providing

good performance can be chosen from numerical experiments of Algorithm 2.
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