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Abstract

In this paper, we first study convergence of nonstationary multisplitting methods associated with a multisplitting
which is obtained from the ILU factorizations for solving a linear system whose coefficient matrix is a large sparse
H-matrix. We next study a parallel implementation of théaxed nonstationary two-stage multisplitting method
(called Algorithm 2 in this paper) using ILU factorizations as inner splittings and an application of Algorithm 2
to parallel preconditioner of Krylov subspace methods. Lastly, we provide parallel performance results of both
Algorithm 2 using ILU factorizations as inner splittings and the BICGSTAB with a parallel preconditioner which
is derived from Algorithm 2 on the IBM p690 supercomputer.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider parallel nonstationary multisplitting methods for solving a linear system of
the form

Ax=b, x,beR", (1)
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whereA € R**" is a large sparsd-matrix. Multisplitting method was introduced by O’Leary and White
[14] and was further studied by many authf8< 3,19,23] The multisplitting method can be thought of
as an extension and parallel generalization of the classical block Jacobi nigjthod

A representatioml = M — N is called asplitting of AwhenM is nonsingular. A splittingA =M — N
is calledregularif M~1>0 andN >0, and it is calledveak regularif M~1>0 andM 1N >0[1]. A
collection of triples(My, Ny, Ex), k =1,2, ..., ¢, is called amultisplittingof A if A = M; — Ny is a
splitting ofAfork=1, 2, ..., £, andE}’s, called weighting matrices, are nonnegative diagonal matrices
such thagizlEk =1. Therelaxed nonstationary multisplitting methadsociated with this multisplitting
and a positive relaxation parametefor solving a linear systemx = b is as follows.

Algorithm 1. Relaxed nonstationary multisplitting method

Given an initial vectorg

Fori =1,2,..., until convergence
Fork=1to/
Yk, 0 =Xi—1

Forj=1tos(k,i)
My yk,j = Nkyk,j—1+b
¢

xi=o Y Exyiski+ (1 —o)xi_1.
k=1

Notice that Algorithm 1 withw = 1 is called thenonstationary multisplitting methodvas et al.
[10] showed the convergence of Algorithm 1 under certain conditions whisnan H-matrix. When
(My, N, Ep), k=1,2,...,¢,is a multisplitting ofA andM;, = B, — C; is a splitting of M}, for each
k, therelaxed nonstationary two-stage multisplitting mettaith a positive relaxation parameterfor
solving a linear system x = b is as follows.

Algorithm 2. Relaxed nonstationary two-stage multisplitting method

Given an initial vectorng

Fori =1,2,..., until convergence
Fork=1to¢
Yk,0=Xi—1

Forj=1tos(k,i)
Vi,j = WBlzl(Ckyk,j—l + Nixi—1+b) + (L — o)y, j-1
¢

xXi =Y Exyisek.iy-
k=1

InAlgorithm 2, the splittingsA = M — N are called outer splittings and the splittings = B, — C, are
called inner splittings. Bru et gI3] showed the convergence of Algorithm 2 whis a monotone matrix
(i.e.,A~1>0) orAis anH-matrix. If » = 1 in Algorithm 2, then Algorithm 2 reduces to thenstationary
two-stage multisplitting methodllotice that the loojx of Algorithms 1 and 2 can be executed completely
in parallel by different processors. Also notice that the number of inner iteratiéns) in Algorithms 1
and 2 depends on the iteratipand the splittingd = M; — Ni. Throughout the paper, it is assumed that
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s(k,i)>1 for everyk andi. If s(k,i) = 1 for all k andi in Algorithm 1, then Algorithm 1 is called the
relaxed multisplitting method

For a large sparse matri% a convenient way of obtaining a multisplitting &fis to use the ILU
factorizations ofA which were first introduced by Vard21] and studied by many authof4,9,11,12]
One advantage of multisplitting methods associated with a multisplitting which is obtained from the ILU
factorizations is that linear systems required for each iteration of multisplitting methods can be cheaply
solved by using the forward and backward substitutions since many fill-in elements are dropped during
the ILU factorization process. So, it is worth studying the convergence of multisplitting methods using the
ILU factorizations. This paper is organized as follows. In Section 2, we present some notation, definitions
and preliminary results which we refer to later. In Section 3, we present convergence results of the relaxed
nonstationary multisplitting method (Algorithm 1) and the relaxed nonstationary two-stage multisplitting
method (Algorithm 2) using ILU factorizations for solving the linear system (1). In Section 4, we study a
parallel implementation of Algorithm 2 using ILU factorizations as inner splittings and an application of
Algorithm 2 to parallel preconditioner of Krylov subspace methods such as thd I8 &MRES[17]
and Bi-CGSTABJ[20]. In Section 5, we provide parallel performance results of both Algorithm 2 using
ILU factorizations as inner splittings and the BICGSTAB with a parallel preconditioner which is derived
from Algorithm 2 on the IBM p690 supercomputer. Lastly, some concluding remarks are drawn.

2. Preliminaries

For a vectorr € R", x >0 (x > 0) denotes that all componentsxadire nonnegative (positive). For two
vectorsx, y € R*, x>y (x > y) means that — y>0 (x — y > 0). For a vector € R", |x| denotes the
vector whose components are the absolute values of the corresponding compoxdrtesd definitions
carry immediately over to matrices. It follows that| > 0 for any matrixA and|A B| <|A|| B| for any two
matricesA andB of compatible size. For a square matBxdiag(B) denotes a diagonal matrix whose
diagonal part coincides with the diagonal parBof

A matrix A = (a;;) € R"*" is called anM-matrixif a;; <O fori # j andA~1>0. Thecomparison
matrix (A) = («;;) of a matrixA = (a;;) is defined by

oo = Jaijlif =,
Y =laigl if i #£

A matrix A is called arH-matrixif (A) is anM-matrix. Note thatvi-matrices and strictly or irreducibly
diagonally dominant matrices are contained in the class bf-aflatrices. A splittingA = M — N is called
anH-compatible splittindgf (A) = (M) — |N|. It was shown iff7] that if Ais anH-matrix andA =M — N

is anH-compatible splitting, theM is also arH-matrix. Letp(A) denote thespectral radiusf a square
matrix A. Varga[22] showed that for any square matrideandB, |A| < B impliesp(A) <p(B).

Lemma 2.1(Frommer and Maye[6]). LetA = D — B be an H-matrix withD = diag(A). Then

(@) A and|D| are nonsingular ang(|D|~1B|) < 1.
(b) A7 <(A)" L
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Lemma 2.2(Bru and Fuste2]). Let7;,i =1, 2, ..., be a sequence of square matrices. If there exists
a matrix norm| - || and af < 1 such that|T;|| <@ foralli =1, 2, ..., then

lim T,T;_1---T1 =0.

1—> 00

For a vecton > 0, theweighted max normix ||, is defined by
llxlly = inf{ > 0: —pv<x < pu}.

For a matrixB, || B||, denotes the matrix norm @& corresponding to the weighted max norm defined
above. Itis well-known thattB||, = ||| B|v|l, and|x|<|y| implies x|, <||yllv.

A general algorithm for building ILU factorization can be derived by performing Gaussian elimination
and dropping some of the elements in predetermined off-diagonal positions, Hehote the set of all
pairs of indices of off-diagonal matrix entries, i.e.

Sp=A{, DIi#Jj,1<i<n, 1<j<n}.

The following theorem shows the existence of the ILU factorization fadanatrix A.

Theorem 2.3(Messaoud[12]). Let A be am x n H-matrix. Thenfor every zero pattern s&d C S,
there exist a unit lower triangular matrik = (/;;), an upper triangular matrixy = (u;;), and a matrix
N = (n;;),withl;; =u;; =0if (i, j) € Q andn;; =0if (i, j) ¢ Q, such thatA = LU — N. Moreovey
the factors L and U are also H-matrices

In Theorem 2.3A = LU — N is called anLU factorizationof A corresponding to a zero pattern set
Q C S,. Inparticular, ifQ is an empty set, theN =0 and thus a complete LU factorizationdsuch that
A = LU is obtained. Wher\ is anM-matrix, it was shown ifi11] that the ILU factorizatio!d = LU — N
in Theorem 2.3 is a regular splitting AfandL andU are alsavl-matrices. The following theorem shows
the relations between the ILU factorizations oftdimatrix Aand(A).

Theorem 2.4(Kim and Yur{8], Messaoud[12]). Let A be am x n H-matrix. LetA = LU — N and
(A) = LU — N be the ILU factorizations of A an@A) corresponding to a zero pattern s¢&x C S,,,
respectively. Then each of the following holds

@ [L7Y<L™Y,  uTh<0Y, (0 INIKN, @) [(LU)"IN|<(LO)7IN.

In Theorem 2.4, it i§ easy to show that LU is nottaamatrix andZ U is not anM-matrix even ifL and
U areH-matrices and. andU areM-matrices.

3. Convergence of nonstationary multisplitting methods

In this section, we present convergence results of nonstationary multisplitting methods associated
with a multisplitting which is obtained from the ILU factorizations for solving linear system (1). First,
we consider convergence of the relaxed nonstationary multisplitting method (Algorithm 1) using ILU
factorizations. Algorithm 1 can be written as

xi=Hyixi-1+ P,ib, i=12 ..., (2)
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where

12
Hyi=0Y  Ex(MN D +(1-o)l, i=12...

k=1
and
¢ s(k,i)—1
Poi=oY E| Y MINoT| Mt i=12....
k=1 j=0

TheH,, ;’s are called iteration matrices for Algorithm 1. Then, it is easy to showRhatA =1 — H,, ;
for eachi. Hence, the exact solutiohof Ax = b satisfies

é:Hw,ié'i‘Pw,ib, i:1,2,... . (3)
From (2) and (3), the error vecter = x; — ¢ satisfies
ei=Hy;ei 1=H,;Hy,; 1---Hyieo, 1= 12,.... (4)

From (4), the sequence of vectors generated by the iteration (2) converges to the exact solutierbof
for any initial vectorxg if and only if
||m Hw,in,i—l t Hw,l =0. (5)
1—> 00
Theorem 3.1.Let A = D — B be ann x n H-matrix with D = diag(4). Let J = |D|~1|B| and let

01, Q», ..., Q¢ be zero pattern sets which are subsets,ofFor eachl<k</{,let A = L Uy — Ny be
the ILU factorization of A corresponding 9. Then the relaxed nonstationary multisplitting method

associated with the multisplittingl, Uy, Nk, Ex), k = 1,2, ..., £, converges to the exact solution of
Ax = b for any initial vectorxg if 0 < w < sz wherep = p(J).

Proof. From Lemma 2.2, it suffices to show that there exists a matrix rjprihand ad < 1 such that
|Hy,il|<O0foralli=1,2,....SinceA =D — BandD =diag(A),

(A)=ID| = |B|=[D|(I = J). (6)

For each Kk<¢, let (A) = LyU; — Ni be the ILU factorization ofA) corresponding toQ;. By
some manipulation, it can be shown that 1| < (LyUp)Lforallk=1,2,...,¢. It follows that for all
k=12,...,¢

1<(LyU)~ Y D. (7)

Using Theorem 2.4, one obtains

L
|Hoil = |0 Ex((LiU) N &0 + (1= o)1
k=1
Z .
<o) Ef(Li0) T N @) + |1 - ol (8
k=1
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We now use the argument presentedlifl]. Lete = (1,1,...,1)". SinceJ >0, J + see' >0 for any
¢> 0 and thus there exists a Perron veatos 0 such that

(J + geeT)x'5 = PpXe, (9)

wherep, = p(J + gee"). Sincep < 1 from Lemma 2.1 and @ o < % from the assumption, it can be

easily shown thafl — w| + wp < 1. By continuity of the spectral radgius, there existg@auch that for
all 0 <e<eg

p,<1 and |1—ow|+ wp, <1l
Now, choose am such that O< ¢<eg. Then, from (6), (7) and (9), one obtains

(LU ™ Nixe = (I = (LeU) " HDIA = D)),
<U = (LU DI = (J + eee)))x,
=x, — (1= p)(LeU) M Dlx,
<xe—(1— pz:)XS = PeXe- (10)

Hence, from (8) and (10), one obtains

L
|Hoilx.<o ) Ex(Lel) T N ©Px, 4+ 11— olx,
k=1

14
<o) Ep* Vx4 11— olx,
k=1

4
<o) Expxe+ 1= olx,
k=1
= (0p, + 11— 0], (12)

Taking the weighted max norih- ||, to both sides of Eq. (11),
”Hw,i ||)cE = |||H(u,i|x£||x8 <wp, + 11— o] = a.
Sincei is arbitrary,|| H,, ;|| <o <1foralli =1, 2,... . Therefore, the proof is completed

Mas et al.[10] showed that the relaxed nonstationary multisplitting method converges to the exact
solution of Ax = b for any initial vectorxg under the assumption that= M; — Ny is anH-compatible
splitting with diag |My|) <|diag(A)| fork =1, 2, ..., £. It was shown irf24] that the ILU factorization
A = L Uy — N; used in Theorem 3.1 is not afrcompatible splitting. This means that Theorem 3.1
provides a new convergence result for the relaxed nonstationary multisplitting method which is different
from the convergence result j0]. Sincep = p(J) <1 in Theorem 3.1, Theorem 3.1 holds for= 1
and hence a convergence result for the nonstationary multisplitting method is obtained below.
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Corollary 3.2. Let A be am x n H-matrix. LetQ1, Q», ..., Q¢ be zero pattern sets which are subsets
of S,,. Foreachl<k </, let A= LU, — Ny be the ILU factorization of A corresponding @.. Then the
nonstationary multisplitting method associated with the multisplitiibgUx, Nk, Ex), k=1,2,..., ¢,
converges to the exact solution4f = » for any initial vectorxg.

The following theorem shows that the convergence result presented in Theorem 3.1 can be improved
whenJis irreducible.

Theorem 3.3.Let A = D — B be ann x n H-matrix with D = diag(4). Let J = |D|~1|B| and let

01, 02, ..., Q¢ be zero pattern sets which are subsets,ofFor eachl<k<¢, let A = L U, — Ny

be the ILU factorization of A corresponding @y. Suppose that J is irreducible and> 0 is a Perron
vector of J. Thenthe relaxed nonstationary multisplitting method associated with the multisplitting
(LyUx, Ni, Ep), k=1,2,..., ¢, converges to the exact solution af = » for any initial vectorxg

if 0<w < 125, where0 = su{| Hillyli = 1, 2,...} and H; = >_;_y Ex(LxUp) " Np)* €7 Moreover
0<p(J) < 1.

Proof. Sincev > 0 is a Perron vector af, Jv = p(J)v. For each Xk <¢, let{A) = L;Ur — Ny be the
ILU factorization of(A) corresponding t@;. Using Theorem 2.4, (6) and (7), one obtains that for every
1<kt

(LU N < (LeU) 7 N = (I — (LU~ HAYw
= — (LU 7HDIUT — I))v
=v— (11— p(I)(LeU) Y DJv
<v— (1= p(J)v = p(J)v. (12)

Using (12) and the fact that J) < 1, one obtains that for each

12
|Hilv< ) Exl(LaUp) " N 60
k=1

4
<D Exlp()

k=1

14
<Y Ewp(Dv=p()v. (13)
k=1

From (13),|| H; ||, < p(J) for eachi and henc& < p(J). Notice thatH,,; = wH; + (1 — w)I. It follows
that|H,, i |[v<w|H;|v + |1 — w|v. Using this relation, one obtains that for each

[ Ho,illv = I1Ho,ilvllo <llo|Hilv + 11— olv]ly
SollHilly+ 11— ol<wl+[1- o = o (14)
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fO0<w< ﬁ thenx < 1. Hence, from (14) there existsar: 1 suchthaf H,, ; ||, <aforalli=1,2, ... .
Therefore, the proof is complete from Lemma 2.2Z]

It can be easily shown that & is an irreducibleH-matrix, thenJ in Theorem 3.3 is an irreducible
matrix. If s(k, i) = s (k) in Algorithm 1, i.e. the number of inner iteration&, i) does not depend on the
outer iteratiori, then we can have the following convergence result for Algorithm 1 which also improves
Theorem 3.1.

Theorem 3.4.Let A = D — B be ann x n H-matrix with D = diag(4). Let J = |D|~1|B| and let
01, 02, ..., Q¢ be zero pattern sets which are subsets,ofFor eachl<k<¢, let A = L U, — Ny
be the ILU factorization of A corresponding ;. Assume that(k,i) = s(k) forall i =1,2,... .
Then the relaxed nonstationary multisplitting method associated with the multisplittipgy., Ny, Ex),
k=12, ...,¢, converges to the exact solution &% = b for any initial vectorxg if 0 < w <

whereH = Yt Ex(LyUp) "N ® . Moreover p(H) <p(J) < 1.

Trp(H)’

Proof. For each Xk</, let(A) = LU, — Ny be the ILU factorization of A) corresponding taQy.

Let H=Y"t_; Ex(LyUp) *Nx)*®. Then,H can be viewed as the iteration matrix of the nonstationary
multisplitting method withs (k, i) = s(k) for solving a linear system whose coefficient matrix ig.
Thus, Corollary 3.2 impliep(H) < 1. Let

£ s(k)—1
P=Y " Ex| D (L *No/ | (LOn ™t
k=1 j=0

Then,P(A) =1 — H. Sincep(H) < 1, P is nonsingular and thusA) = P~1 — P~1H  Itis clear that
(Ay=P~'— P'H=|D|—|B|
are weak regular splittings @ft). Since|D~Y < (L Uy) tforallk=1,2,...,¢,

l 0
(PH™=P=) E(LiO)*>> EIDI ™ =D (15)
k=1 k=1

Using Eqg. (15) and the fact tha®| >0, Elsner’'s comparison lemnjg] implies that

p(H)<p(J). (16)
Notice thatp(J) < 1 from Lemma 2.1. SincgH | < H from Theorem 2.4p(H) < p(H). Hence, Eq. (16)
implies that

p(H)<p(H)<p(J) <1

Let H, = wH + (1 — w)I. Then, H, is the iteration matrix of the relaxed nonstationary multisplitting
method withs (k, i) = s (k). It can be easily shown that

p(Hy) <wp(H) + |1 — ol. (17)

Since O< w < ﬁ from the assumption ang( H) < 1, it is easy to show thatp(H) + |1 — | < 1.

From Eq. (17)p(H,,) < 1. Therefore, the proof is completeld
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Next, we give a convergence result for the relaxed nonstationary two-stage multisplitting method
(Algorithm 2) using ILU factorizations as inner splittings. L& , = ka_lck + (1 — w)l. Then,
Algorithm 2 can be written as

—HYxic1+ PEb, i=12,..., (18)

w,l
where
s(k,i)—1

14
ZER‘(’”)JF(UZ Ec| > Rl,|BNe i=12...
k=1 j=0

and
s(k,i)—1

l
_1 .
Pii=w) Ej Z Rl |BY i=12....
k=1

TheH; ;s are called iteration matrices for Algorithm 2. It is easy to show #jatA =1 — H; , for each
i. Hence the exact solutiohof Ax = b satisfies

E=H, ¢+ Pyb, i=12.... (19)
From (18) and (19), the error vectgr= x; — ¢ satisfies
ei=H, e;1=H, Hy,; 1---Hjje0, i=12.... (20)

From (20), the sequence of vectors generated by the iteration (18) converges to the exact solution of
Ax = b for any initial vectorxg if and only if

i—00

Theorem 3.5(Bru et al.[3]). Let A=1>0 be ann x n matrix. For eachl<k </, let A = My — Ni
be a regular splitting of A andv;, = By — C; be a weak regular splitting oM. Then the relaxed
nonstationary two-stage multisplitting method with= M; — N; as outer splittings andf; = B, — Ci
as inner splittings converges to the exact solutiodof= b for any initial vectorxg if 0 < w<1.

Theorem 3.6. Let A be am x n H-matrix. LetQ1, Q», ..., Q¢ be zero pattern sets which are subsets
of S,,. For eachl<k </, let A = M — N; be an H-compatible splitting angif;, = L,U; — Cy be the
ILU factorization of M, corresponding taQ;. Then the relaxed nonstationary two-stage multisplitting
method withA = M} — N; as outer splittings and{;, = L, U — Cy as inner splittings converges to the
exact solution ofAx = b for any initial vectorxg if 0 < w< 1.

Proof. SinceA= M} — Ny is anH-compatible splitting of afl-matrixA, My is anH-matrix and thugM;)

is anM-matrix. For each Xk </, let(My) = LU — Cy be the ILU factorization of M) ) corresponding
to Qx and IetRk o =o(LyU)"1Cr + (1 — w)I. Since O< w< 1 from the assumption, Theorem 2.4
implies that

IRkl = |o(LiUp) "2Ch + (1 — 0) 1| < Rioo- (22)
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From Eq. (22) and Theorem 2.4, one obtains

l 14 s(k,i)—1
(k,i) -1
(ut = ZE Iiu)l +G)ZEk Z Rkw (LkUk) Nk
k=1
l s(k,l)—l _
<) ER “’”)+wZ Ev| Y R, | @O0 INel. (23)
k=1 =0

Let H* denote the matrix in the right-hand side of Eq. (23). Then Hlje; s are iteration matrices of
the relaxed | nonstationary two-stage multisplitting method With= (M) — | Ni| as outer splittings and
(My) = L Uy — Cy as inner splittings for solving a linear system whose coefficient matiix jsNote
that(A) = (My) — | Ny | and(My) = L, U, — Cy are regular splittings ofd) and({M;), respectively. Since
(A)‘1>O,Theorem 3.5 implies that

lim A* H*. .. -H*, =0. (24)

w,itw,i—1 w,
i—00

Since|H* ;|< H* . from Eq. (23), one obtains

U)l (Jl

|H*l w,i—1" )1|< w,i :),i—l'” (j;,l' (25)

From (24) and (25), lim., o H,, ;H}, ; 4 - -+ H,, 1 = 0. Therefore, the proof is complete

It was shown in3] that the relaxed nonstationary two-stage multisplitting method converges to the
exact solution oAx = b for any initial vectorxg under the assumption that both outer splittings and inner
splittings areH-compatible splittings. However, Theorem 3.6 uses the ILU factorizations instead of using
H-compatible splittings as inner splittings.

4. Parallel implementation and application of Algorithm 2

In this section, we consider a parallel implementation of the relaxed nonstationary two-stage multisplit-
ting method (Algorithm 2) using ILU factorizations as inner splittings and an application of Algorithm
2 with s(k, i) = s(k) to parallel preconditioner of Krylov subspace iterative methods such as the CGS,
GMRES and Bi-CGSTAB. First, we introduce a parallel implementation of Algorithm 2 using ILU fac-
torizations as inner splittings for solving the linear system (1)./.ggnote the number of processors to
be used. For simplicity of exposition, suppose that3. Then, theH-matrix A is partitioned into a X 3
block matrix of the form

A11 A1z Az
A=|Ax Az A2z,

Az1 Azx Aszz
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where the diagonal blocks;; of A are square matrices. Ldt= M — N, where
A1 O 0 0 —A1p —Ai13 NOD
M = ( 0 Ax»p O ) , N= (—AZ]_ 0 —Azg) = (N(2)> . (26)
0 0 Asz —A31 —Az 0
Then, we construct a multisplittingy, Ni, Ex), k =1, 2, 3, where

I 00 0 0O 0 00
Elz(O 0 o), E2=(0 I 0), E3=(O 0 0>, (27)
0 00O 0 00O 0 0 I

M, =M andN; = N fork =1, 2, 3. Clearly,A = M, — Ny is anH-compatible splitting for eack Let
M = LU — C be an ILU factorization oM corresponding to a zero pattern getC S,,. Observe that the
L andU are of the form

L, O 0 Up O 0
L=<O Ly 0), U=<0 U> 0), (28)
0 0 Lj 0O 0 Us

whereL;’s are lower triangular matrices aiigl’s are upper triangular matrices. LBt = LU andC; =C
fork=1, 2, 3. Then, at théth iteration of Algorithm 2 each procesdoexecutes the following algorithm

COM(k, w):

Algorithm. COM(k, w)

Vk,0 = Xi-1
b=b+ Nx;_1
Forj=1tos(k,i)
Yk,j =oLU) HCyrj1+b) + 1 — o)y -1
ComputeEy yk sk.i)-

In general, the ILU factorization d¥l does not comput€, but it computes only the andU. So, the
computational stepy, ; = w(LU)*l(CykJ,l +b) + (1— w)yx, j—1 inthe COMK,w) is transformed into

Yk,j = Ve j-1+ o(LU) b — My, ;7). (29)

Assume thab, b, yk,j andx; are partitioned into

_ D 1

pO\ D g xi(;
b=|b2 ), b=(0?), wi=[»2] x=|x?). (30)

p® p® 3 NE

Yk,j i
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Making use of (26)—(30), at thigh iteration of Algorithm 2 each processoneeds to execute only the
following algorithm MCOMk, ) which requires much less computation than C@Mb):

Algorithm. MCOM(k, w)

k k
=t

i—1
p&) — pk) N®x 4
Forj=1tos(k,i)
k k -1,
W =y L+ o0 oW — Auyl_))

(k) _ B
= Yk,s(k,i):

Notice that(LkUk)‘l(E(") Akky(k) 1) inthe MCOM(k, w) is computed by solving the linear system

(LiUptxy = b® — Akkyk i1 for 5 without computing(L Ux)~ L explicitly.
Since Algorithm 2 described above requires too many iterations for convergence and thus it does not
perform well (se€Tables land?2), we next consider an application of Algorithm 2 wittk, i) = s (k)
to parallel preconditioner of Krylov subspace methods. Siri¢ei) = s(k), from (18) H; ; = H,; and
Pz,i =Plforalli=1,2, ..., where

s(k)—1

12 12
k _
=Y ERY + o) E Z R, | BF N,
k=1 k=1

4 s(k)—1
_ j 1
P;_wZEk Z R, | B
k=1 j=0

If Algorithm 2 with s(k, i) = s(k) converges to the exact solution ak = » for any initial vectorxg,
thenp(H) < 1. It follows that the matrixP* such thatP*A = I — H* is nonsingular. Hence P*)~1

can be used as a preconditioner of Krylov subspace methods. Then, the preconditioner solver step which
is one of the basic time-consuming computational kernels of Krylov subspace methods is equivalent to
computingP*r for a vectorr € R". Notice thatP}r can be computed in parallel by computing each

wEy (Z‘(k) o) By 1+ on a different processor and then adding them in parallel. Also assunid that
andEy’ s are deflned asin (26) and (27), amt= LU — C is an ILU factorization oM corresponding to
azeropatternsed C S,. LetMy =M =LU —C,By=LU,andC,=Cforallk=1,2,...,¢. SinceL

andU are of the form (28), each processaneeds to execute only the following algorithm PREG»)

for parallel computation of = P'r:

Algorithm. PREGk, )
to=0
Forj =1tos(k)
tj=tj-1+ (L U)o ® — Arrtj—1)

Z(k) = ts(k)-
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Table 1
Parallel performance of Algorithm 2 using ILU factorizations whes 256, w =1, s(k) = o for L<k < % ands (k) = 3« for

(5+D<k<e

o L Example 5.1 Example 5.2
Iter I-time Iter |-time
1 2 7849 47.9 6846 42.0
4 8008 24.2 6919 21.1
8 8235 12.3 7248 11.0
16 8672 7.07 7516 6.13
2 2 3961 45.2 3436 39.7
4 4139 23.7 3536 20.3
8 4394 12.2 3893 11.0
16 4886 7.01 4208 6.18
Table 2

The number of iterations of Algorithm 2 using ILU factorizations whega- 256, s(k) = o for 1<k < g ands (k) = 3o for
(5 +D<kst

o o) Example 5.1 Example 5.2
=2 (=4 (=8 (=16 =2 (=4 (=8 (=16

1 0.9 8719 8895 9144 9621 7607 7687 8052 8345
1.0 7849 8009 8235 8672 6846 6919 7248 7516
11 7137 7283 7491 7895 6224 6291 6591 6838
1.2 6544 6681 6872 7249 5706 5768 6043 6273
1.3 6042 6167 6347 6701 5268 5325 5579 5795
14 5611 NC NC NC 4891 NC NC NC
15 NC NC NC NC NC NC NC NC

2 0.9 4393 4573 4830 5325 3815 3913 4276 4591
1.0 3961 4139 4394 4886 3436 3536 3893 4208
11 3609 3787 4044 4539 3126 3232 3587 3908
1.2 3317 3499 3760 4264 2869 2982 3342 3673
1.3 3072 3261 3532 4052 2652 2777 3148 3495
14 2865 3068 3353 3899 2467 2611 3002 3373
15 2694 2917 3229 3816 2310 2488 2911 3319
1.6 2562 2827 3183 3855 NC NC NC NC
1.7 NC NC NC NC NC NC NC NC

The output vector and the input vector in the PRECk, w) are partitioned as in (30). Since other
time-consuming computational kernels of Krylov subspace methods can be easily parallelized, Krylov
subspace methods with the preconditiohej)‘l can be fully parallelized using the PRECw).
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5. Numerical results

Numerical experiments for Algorithm 2 described in Section 4 are madewith) = s (k), and Krylov
subspace method used for numerical experiments is the BICGSTAB with the right precondiﬂgﬁe]r
which is described in Section 4. All numerical experiments are carried out using 64-bit arithmetic on the
IBM p690 supercomputer at KISTI (Korean Institute of Science and Technology Information), an SMP
system with 32 processors. Parallel codes are written in OpenMP Fft&hmand all nonzero elements
of A are stored using the compressed row storage fofh@t For all timing runs, elapsed wall-clock
time is measured in seconds using the IBM wall-clock timer For both Algorithm 2 and BiCGSTAB
with the preconditione(P(j)‘l, the initial vectorxg is set to zero, the ILU factorization without fill-in
elements is used, and the stopping criteriolbis- Ax;||2/||b]l2 < 108, where|| - ||» refers toL,-norm.

For numerical experiments of both Algorithm 2 and BICGSTAB with the preconditi()ﬁ(g}_l, the
number of inner iterations(k) is set tox for lgkgg and 3 for (% + 1)<k <, wherea is a positive
integer andl is assumed to be a multiple of 2. For this choice @), the last half processors execute
3 times more inner iterations than the first half processors. Thus, in order to obtain a good load balance
among the processors, the computational amount of the first half processors should be 3 times more than
that of the last half processors. For test problems used in this paper, this can be achieved by partitioning
A € R™ into an¢ x £ block matrix such that the fir§ diagonal blocks are square matrices of or%r

and the remaininé diagonal blocks are square matrices of orflewherenis assumed to be a multiple
of 2¢. There is no special reason for using the factor 3. If a fagtwhich is different from the factor 3
is used, then the factor 3 in the above arguments should be changeflit@e it was seen that there is
no change in numerical conclusion for different factarthe factor 3 is used in this paper for numerical
experiments.

The test matriA used in this paper is obtained from five-point discretization of the following elliptic
second-order PDE:

—(auy), — (buy)y + (cu), + (du)y + fu=g (31)

witha(x, y) >0,b(x, y) > 0,c(x, y),d(x, y),andf (x, y) defined on the unit square regionr= (0, 1) x
(0, 1), and with the Dirichlet boundary conditior(x, y) = 0 on the boundary a®. Only the discretized
matrixAis ofimportance, so the right-hand side vedtircreated frome wheree=(1, 1, ..., 1) € R".
Therefore, the right-hand side functigix, y) in (31) is not relevant.

Example 5.1. This example considers Eq. (31) witlix, y) = b(x, y) = 1,c(x, y) = 10", d(x, y) =
10, and f (x, y) = 0. We have used a uniform meshfdof =Ay =1/(m + 1), which leads to a matrix
of ordern = m x m, whereAx andAy refer to the mesh sizes in tlxeandy-direction, respectively.

Example 5.2. This example considers Eq. (31) wittx, y)=10(x+y),d(x, y)=10x —y), f (x, y)=0,
anda(x, y) = b(x, y) defined as

10 if 2<x,y<?
— 4 k] 47
a(x,y) = {1 otherwise

We have used the same uniform mesh as Example 5.1.
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Table 1contains parallel performance results of Algorithm 2/oe 256°. In Table 1, Iter stands for
the number of iterations of Algorithm 2 anetime stands for the parallel execution time of Algorithm
2. Table 2contains the number of iterations of Algorithm 2 for various valuesofn Table 2 NC
denotes that Algorithm 2 does not converge to the exact solutiotxcE b. Table 3contains parallel
performance results of BICGSTAB with the preconditiomﬁ){*)‘1 for n = 256, andTable 4contains
parallel performance results of BICGSTAB with the preconditio@l@,j)‘l for n = 384 and various
values ofw. In Tables 3and4, Iter stands for the number of iterations of BICGSTARBime stands for
the parallel execution time of BICGSTAB adetavg= . 'Iﬂe”r‘e which means an average parallel execution
time of BICGSTAB per iteration.

As can be seenifable ] Iter for Algorithm 2 increases significantly &§.e., the number of processors)
increases since thd used in theH-compatible splittingA = M — N approximate\ better for smaller
£. Thus,I-time for Algorithm 2 scales worse dsincreases. Froriiable ] it can be also seen that Iter
for « = 2 is much smaller than that fer= 1, butl-time for « = 2 is about the same as that foe= 1
except for¢ = 2. It means that parallel performance of Algorithm 2 does not depend a lot on the number
of inner iterations (k). Theorem 3.6 showed that Algorithm 2 using ILU factorizations as inner splittings
converges to the exact solution4k = b for 0 < w <1 when outer splittings atd-compatible splittings.
Numerical results ifable 2also show this theoretical result. Actually, Algorithm 2 converges to the exact
solution ofAx =b upto abouty = 1.3 for test problems used in this paper. As can be se€abte 2 larger
value ofw for which Algorithm 2 converges to the exact solutiondof = b provides better performance.

Algorithm 2 requires too many iterations for convergence which lead to poor performance (see
Tables 1and 2), while BICGSTAB with the preconditione(er;)*1 which is derived from Algorithm
2 performs very well (se€@ables 3and4). FromTable 3 it can be seen that Iter far= 1 is greater than
that foro = 2, butl-time for« = 1 is smaller than that fof = 2. It means that parallel performance of
BiCGSTAB with the preconditione(rlf’l*)‘1 for«=1is better than that far=2. So, parallel performance
results of BICGSTAB with the precondition(m‘i;")‘l only for « = 1 are given inTable 4for various
values ofw. Since Iter for BICGSTAB varies depending upbfi.e., the number of processorktavg is

Table 3
Parallel performance of BICGSTAB with the preconditiongf) 1 whenn = 2562, s (k) = « for 1<k < 5, ands (k) = 3« for

(5 +D<kst

o l Example 5.1 Example 5.2
Iter I-time I-tavg Iter I-time I-tavg

1 2 169 2.43 0.0144 123 1.80 0.0146
4 172 1.23 0.0072 128 0.92 0.0072
8 178 0.65 0.0037 131 0.48 0.0037
16 196 0.40 0.0020 135 0.28 0.0021

2 2 113 2.82 0.0249 85 211 0.0248
4 129 1.57 0.0122 94 1.14 0.0121
8 144 0.88 0.0061 103 0.64 0.0062
16 130 0.43 0.0033 112 0.39 0.0035
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Table 4
Parallel performance of BICGSTAB with the preconditione) ~* whenn = 384, s(k) = 1 for 1<k <%, ands(k) = 3 for

5+ <k<e

w l Example 5.1 Example 5.2
Iter I-time I-tavg Iter I-time I-tavg

0.9 2 260 8.34 0.0321 196 6.41 0.0327
4 262 4.16 0.0159 211 3.41 0.0162
8 266 2.16 0.0081 207 1.71 0.0083
16 270 1.16 0.0043 223 1.01 0.0045

1.0 2 254 8.13 0.0320 185 6.05 0.0327
4 246 3.89 0.0158 182 2.92 0.0160
8 252 2.02 0.0080 188 1.55 0.0082
16 268 1.13 0.0042 220 0.97 0.0044

11 2 250 8.00 0.0320 179 5.83 0.0326
4 248 3.92 0.0158 180 2.89 0.0161
8 269 2.15 0.0080 190 1.56 0.0082
16 251 1.07 0.0043 183 0.83 0.0045

1.2 2 248 7.94 0.0320 168 5.47 0.0326
4 241 3.81 0.0158 183 294 0.0161
8 251 2.01 0.0080 187 1.53 0.0082
16 258 111 0.0043 186 0.84 0.0045

13 2 251 8.04 0.0320 185 6.03 0.0326
4 210 3.32 0.0158 190 3.05 0.0161
8 236 1.88 0.0080 186 1.52 0.0082
16 249 1.05 0.0042 179 0.80 0.0045

provided inTables 3and4 to evaluate parallel efficiency of BICGSTAB with the preconditio(\E@‘l
for only one iteration.

In Tables 2and4, note that -time is proportional to Iter when and¢ are fixed. Iter for Algorithm 2
decreases as increases, while Iter for BICGSTAB with the preconditiom%)‘1 varies irregularly as
w increases. For example,for which Algorithm 2 performs best is4.for ¢ = 2 and 13 for £ >4 when
o =1, while w for which BICGSTAB performs best varies between 1.1 and 1.3.

The scaling behaviors of BICGSTAB with the preconditionejj)‘1 for Example 5.2 when = 3842
and« = 1 are depicted ifrigs. 1and2 by log—log scale. The scaling behaviors for Example 5.1 are not
depicted since they are similar to those for Examplel5tavg scales perfectly up to=8 (se€lable 4and
Fig. 2). The reason whi+tavg for¢ = 4 is less than one half dftavg for¢ = 2 is that the computational
amount of each processor fo= 2 is more than twice of that fat = 4 when the preconditioner solver
step is computed in parallel (see Section 4).Fsr8, |-tavg does not scale perfectly because of memory
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I-time scaling (w=1.0)

I-time scaling (w=1.1)

I-time scaling (w=1.2)
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Fig. 1. Scaling behaviors of BICGSTAB with the precondition(n‘a’;j)_l for Example 5.2 whem = 384 ando = 1. I-time
scalings: dotted, Perfect scalings: dashed.

|I-tavg scaling (w=1.0)

0.032

Time in seconds

0.004

0.032

Time in seconds

0.004

I-tavg scaling (w=1.1)
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I-tavg scaling (w=1.2)

0.032
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16

Fig. 2. Scaling behaviors of BICGSTAB with the preconditiongf*) ~1 for Example 5.2 whem = 384 and« = 1. I-tavg
scalings: dotted, Perfect scalings: dashed.

access contention among the processors. Also noticd-tirae scales worse thanrtavg since Iter is
larger for larger in many cases (s€kble 4andFigs. 1and2).

6. Concluding remarks

In this paper, we considered the convergence of two relaxed types of nonstationary multisplitting meth-
ods using ILU factorizations, and we provided parallel performance results of the relaxed nonstationary
two-stage multisplitting method (Algorithm 2) and BiCGSTAB with the parallel preconditi()l‘%g)r‘1
which is derived from Algorithm 2. Numerical experiments showed that Algorithm 2 itself does not per-
form well since it requires too many iterations for convergence. However, the methodology of combining
Algorithm 2 with Krylov subspace methods such as BiCGSTAB works very well (i.e., BICGSTAB with
the preconditione(Pw*)‘1 performs very well as compared with Algorithm 2). It was also seen that
the relaxation parametes for which Algorithm 2 performs best is not the same as ¢héor which
BiCGSTAB with the preconditioneer(;“)‘l performs best. For test problems used in this papdar
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which Algorithm 2 performs best is.3, while w for which BICGSTAB with the preconditione(rP(;")*1
performs best varies between 1.1 and 1.3.

Theorem 3.6 showed that Algorithm 2 converges to the exact solutiam ef b for 0 < w < 1. For test
problems used in this paper, Algorithm 2 converges to the exact solutiam ef b upto about» = 1.3.
The practical upper bound of guaranteeing the convergence of Algorithm 2 is usually greater than the
theoretical upper bound 1 of, and it varies depending upon the problem to be considered. It means that
when(P,jﬁ)‘1 is used as a parallel preconditioner of Krylov subspace methods, a raagpro¥iding
good performance can be chosen from numerical experiments of Algorithm 2.
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