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Abstract

In this article, we develop symmetric block successive overrelaxation (S-block-SOR) methods for finding the solution of the
rank-deficient least squares problems. We propose an S2-block-SOR and an S3-block-SOR method for solving such problems and
the convergence of these two methods is studied. The comparisons between the S2-block and the S3-block methods are presented
with some numerical examples.
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1. Introduction

A rank-deficient least squares problem is given by

min
x∈Rn

‖Ax − b‖2, (1)

where A is an m × n matrix with m�n and rank(A) < n. We regard this problem when we solve the actual problems
in economics, statistics, differential equations, image and signal processing and genetics. Least squares problems have
gotten more attention in application areas and also in applied mathematics. There are many works that discussed
preconditioned iterative methods to solve full rank least squares problems.

The essential problem for iterative methods to solve the rank-deficient problem is the determination of rank A.
The problem is simple in theory, but not in application. Björck and Yuan [2] proposed three algorithms to find lin-
early independent rows of the matrix A by LU factorization, Luo et al. [6] used the basic solution method (Benzi and
Meyer called it the direct-projection method [1]) to find rank of A, and Silva andYuan [9] applied the QR decomposition
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column-wise to find the set of linearly independent rows of A. Those methods motivate us to consider iterative methods
for solving the rank-deficient problems.

Since there are many solutions for the rank-deficient problems, we are generally interested in just the minimum
2-norm solution. Miller and Neumann [7] proposed the 4-block-SOR method to solve the rank-deficient problems.
They partitioned matrix A into four parts and then applied the SOR method to solve a new 4 × 4 block linear system.
Santos et al. [8] studied the 3-block-SOR and 2-block-SOR methods to solve a new 3 × 3 block linear equation by
preconditioning technique. Their block-SOR methods are different from Miller and Neumann’s SOR method. Recently,
Darvishi and Khosro-Aghdam [3] and so Zheng and Wang [14] proposed the symmetric SOR methods to find the least
squares solution of minimal norm of system (1) based on the 4 × 4 block augmented system in [7].

In this paper, a new symmetric 2-block-SOR and a symmetric 3-block-SOR method to find the solution of (1) are
presented. The convergence of these two methods is discussed and some comparisons between our method and the
results obtained in Refs. [3,11,15] are given.

Throughout the paper, we always assume that matrix A with rank(A) = k < n has the partition

A =
(

A1

A2

)
, (2)

where A1 ∈ Rk×n is full row rank, and A2 ∈ R(m−k)×n.

2. Preparatory knowledge

We first briefly sketch the SSOR method for the consistent linear system

Ax = b, (3)

where n × n matrix A is nonsingular and has nonzero diagonal elements. We consider the following splitting of A:

A = D − L − U , (4)

where D is a diagonal matrix and L and U are strictly lower and upper triangular matrices, respectively.
Let x(k) be kth approximation of solution (3) by SOR method using splitting (4). In symmetric SOR we obtain

x(k+1/2) as follows [5]:

x(k+1/2) = (D − �L)−1((1 − �)D + �U)x(k) + �(D − �L)−1b

or

x(k+1/2) = L�x(k) + C, (5)

where

L� = (D − �L)−1((1 − �)D + �U)

= I − �(D − �L)−1A

and

C = �(D − �L)−1b.

And so by backward SOR we compute x(k+1) as follows [5]:

x(k+1) = U�x(k+1/2) + �(D − �U)−1b, (6)

where

U� = (D − �U)−1((1 − �)D + �L)

= I − �(D − �U)−1A.
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We delete x(k+1/2) from (5) and (6) and then obtain the symmetric SOR as follows:

x(k+1) = S�x(k) + C, (7)

where

S� = U�L�

= (D − �U)−1((1 − �)D + �L)(D − �L)−1((1 − �)D + �U),

= (I − �(D − �U)−1A)(I − �(D − �L)−1A)

and

C = �(D − �U)−1((1 − �)D + �L)(D − �L)−1b + �(D − �U)−1b

= �(2 − �)(D − �U)−1D(D − �L)−1b.

When A is partitioned into some block form with square and nonsingular block diagonal submatrices, we can present
the block SSOR method in the similar manner.

For the rank-deficient least squares problem (1), we are naturally interested in getting the minimum 2-norm solution
by the aforementioned block SSOR method. For this purpose, we need the following lemma which was given by Santos
et al. [8].

Lemma 2.1 (Santos et al. [8]). Assume that matrix A has structure (2). Then

N(A) = N(A1) and R(AT) = R(AT
1 ), (8)

where R(A) and N(A) are range and null of A, respectively.

Since the minimum 2-norm solution x of the rank-deficient least squares problem (1) is in R(AT), that is, in R(AT
1 )

by Lemma 2.1, we can consider the transformation

x = AT
1 y, (9)

where y ∈ Rk×1, to obtain the minimum 2-norm solution of problem (1). By substituting (9) into (1), we obtain the
new system of the normal equations off problem (1) for rank-deficient case as follows:

A1A
TAAT

1 y = A1A
Tb. (10)

By the structure of A in (2), we can rewrite system (1) as the following augmented system:(
AAT

1 I

0 A1A
T

)(
y

r

)
=
(

b

0

)
(11)

or ⎛
⎝A1A

T
1 0 I

A2A
T
1 I 0

0 A1A
T
2 A1A

T
1

⎞
⎠
⎛
⎝ y

r2

r1

⎞
⎠=

⎛
⎝b1

b2

0

⎞
⎠ , (12)

where

r = b − Ax = b − AAT
1 y =

(
r1

r2

)
, b =

(
b1

b2

)
.

It is worth mentioning that the block coefficient matrix of Eq. (12) can be, respectively, viewed as block 3-cyclic and
2-cyclic matrices based on two kinds of splittings, see details in Sections 3 and 4. That is to say that the Jacobi matrices
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Fig. 1. Convergence region of the S3-block-SOR method .

J3 and J2 corresponding to these two splittings are, respectively, weakly 3-cyclic and 2-cyclic. With the condition that
the block Jacobi matrix is weakly cyclic of index p, Varga et al. [12] presented the eigenvalue functional equation
between the Jacobi matrix and the SSOR iteration matrix. Hence in the sequel we will discuss block SSOR method to
solve system (1) mainly depending on the following theorem.

Theorem 2.2 (Varga et al. [12]). Assume that the Jacobi iteration matrix B is weakly p-cyclic and so 0 < � < 2. If �
is an eigenvalue of S� for which � �= (1 − �)2, and if � satisfies

[� − (1 − �)2]p = �[� + 1 − �]p−2(2 − �)2�p�p, (13)

then � is an eigenvalue of the Jacobi matrix B. Conversely, if � is an eigenvalue of B and if � satisfies (13) with
� �= (1 − �)2, then � is an eigenvalue of S�.

3. The symmetric 3-block-SOR method

In this part, we obtain the symmetric 3-block (S3-block)-SOR method.

3.1. S3-block-SOR algorithm

We set the coefficient matrix in system (12) as Ã: that is,

Ã =
⎛
⎝A1A

T
1 0 I

A2A
T
1 I 0

0 A1A
T
2 A1A

T
1

⎞
⎠ . (14)

Consider the following splitting of A:

Ã = D − L − U , (15)
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where D = diag(A1A
T
1 , I, A1A

T
1 ) and

L =
⎛
⎝ 0 0 0

−A2A
T
1 0 0

0 −A1A
T
2 0

⎞
⎠ , U =

⎛
⎝0 0 −I

0 0 0

0 0 0

⎞
⎠ .

In this case, it is easy to know the Jacobi matrix D−1(L+U) is a weakly 3-cyclic matrix relative to the above splitting
of Ã.

We can obtain the symmetric 3-block-SOR method as follows:

⎛
⎜⎝

y(k+1)

r
(k+1)
2

r
(k+1)
1

⎞
⎟⎠= S

(3)
�

⎛
⎜⎝

y(k)

r
(k)
2

r
(k)
1

⎞
⎟⎠+ C, (16)

where

S
(3)
� =

⎛
⎝A1A

T
1 0 �I

0 I 0

0 0 A1A
T
1

⎞
⎠

−1⎛
⎝ (1 − �)A1A

T
1 0 0

−�A2A
T
1 (1 − �)I 0

0 −�A1A
T
2 (1 − �)A1A

T
1

⎞
⎠

×
⎛
⎝ A1A

T
1 0 0

�A2A
T
1 I 0

0 �A1A
T
2 A1A

T
1

⎞
⎠

−1⎛
⎝ (1 − �)A1A

T
1 0 −�I

0 (1 − �)I 0

0 0 (1 − �)A1A
T
1

⎞
⎠

and

C = �(2 − �)

⎛
⎝A1A

T
1 0 �I

0 I 0

0 0 A1A
T
1

⎞
⎠

−1⎛
⎝A1A

T
1 0 0

0 I 0

0 0 A1A
T
1

⎞
⎠

×
⎛
⎝ A1A

T
1 0 0

�A2A
T
1 I 0

0 �A1A
T
2 A1A

T
1

⎞
⎠

−1⎛
⎝b1

b2

0

⎞
⎠ .

S3-block-SOR algorithm.

1. Given initial vector y(0) ∈ Rk×1,
2. Compute r

(0)
1 and r

(0)
2 ,

3. Iterate for k = 1, 2, 3, . . . until “Convergence”,

r
(k+1)
2 = �(� − 1)(2 − �)Py(k) + �2(2 − �)PQ−1(r

(k)
1 − b1) + (� − 1)2r

(k)
2

+ �(2 − �)b2,

r
(k+1)
1 = �Q−1T ((� − 1)r

(k)
2 − r

(k+1)
2 ) + (� − 1)2r

(k)
1 ,

y(k+1) = �Q−1((� − 1)r
(k)
1 − r

(k+1)
1 ) + �(2 − �)Q−1b1 + (� − 1)2y(k),

where Q = A1A
T
1 ∈ Rk×k is a nonsingular matrix, P = A2A

T
1 and T = A1A

T
2 .
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3.2. Convergence region

Now we discuss the convergence of the S3-block-SOR method for rank deficient least squares problems. In this case,
the Jacobi matrix J3 is

J3 =
⎛
⎝ 0 0 −(A1A

T
1 )−1

−A2A
T
1 0 0

0 −(A1A
T
1 )−1A1A

T
2 0

⎞
⎠ , (17)

which is a weakly 3-cyclic matrix.

Lemma 3.2.1 (Santos et al. [8]). The eigenvalues of J3 in (17) lie in the real interval

I3 := [−�2/3, 0],
where � = ‖A2A

T
1 (A1A

T
1 )−1‖2.

Set p = 3 and for a fixed � ∈ (0, 2) in Eq. (13), let

f (�) = g(�) − �[� + 1 − �](2 − �)2�3�3,

where

g(�) = [� − (1 − �)2]3.

Set � := {� ∈ C : |�|�1}, then g(�) has all its roots in the interior of �. As � + 1 − � �= 0, if

(2 − �)2�3�3 < min
�∈��

|� − (� − 1)2|3
|� + 1 − �| , (18)

where � = �(J3) = �2/3 and � refers to the boundary of a set, then

|f (�) − g(�)| = |� + 1 − �|(2 − �)2�3�3

� |� + 1 − �|(2 − �)2�3�3

< |� − (1 − �)2|3 = |g(�)|
hold for any � ∈ ��. Therefore, it follows by Rouche’s theorem (see for example [10]) that all roots of f (�) also locate
in the interior of �, that is,

�(S�) < 1.

On substituting � = x + iy into (18), where x, y ∈ R with y2 = 1 − x2, we can rewrite the inequality in (17) as
follows:

(2 − �)2�3�3 < min
x∈[−1,1] h(x, �), (19)

where

h(x, �) := [1 + (� − 1)4 − 2(� − 1)2x]3/2

[1 + (� − 1)2 − 2(� − 1)x]1/2
. (20)

In the following theorem we obtain the convergence region of S3-block-SOR method (16).
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Theorem 3.2.2. Let Ã be a 3-cyclic block matrix as in the form of (14) with Jacobi matrix J3. Suppose that �(J3) = �.
Then �(S�) < 1 provided that (�, �) ∈ R, where R is the region in the (�, �)-plane given by

R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 < ��1, 0�� < 1,

1����∗, 0�� <
1 + (1 − �)2

3
√

(2 − �)2w4
:= �1,3(�),

�∗ �� < 2, 0�� <

√
3(� − 1) 3

√
	(�) + 1

3
√

2�
:= �2,3(�),

(21)

where

�∗ = 2
√

	∗ + 2√
	∗ + 2 + √

	∗ − 2
, 	∗ = 3 + √

33

2
, (22)

and

	(�) = � − 1 + 1

� − 1
, � �= 1. (23)

Proof. We only present a sketch of proof. The complete details of the analysis can be found in Hadjidimos and
Neumann [4]. We begin by noting that for � �= 1 the extremal points of the function h(x, �) in (20) can be determined
by observing that

sign

{
�h(x, �)

�x

}
= sign{(� − 1)(x − 
(�))}, (24)

where


 = 1
4 [−	2(�) + 3	(�) + 2]. (25)

Suppose now that � ∈ (1, 2). Then 
(�) < 1. If � further satisfies �∗ �� < 2, where �∗ is given in (22), then by (23),
2 < 	(�)�	∗. On regarding now 
(�) as a quadratic in 	(�), it follows from (25) that for �∗ �� < 2, 
(�)� − 1.
For such � we see from (24) that h(x, �) as a function of x is strictly decreasing in the interval [−1, 
(�)) and it is
increasing in the interval (
(�), 1). Thus

min
x∈[−1,1] h(x, �) = h(
(�), �).

On substituting x = 
(�) in the expression for h(x, �) given in (20) we obtain that the inequality in (19) holds for all
nonnegative � satisfying 0�� < �2,3(�). We have thus verified that the constraint in (21) is valid. We can verify the
remaining last constraints in (21) in a similar way. �

The shaded region in Fig. 1 provides a graphical illustration of the convergence region in the (�, �)-plane which is
specified by (21). Note that from region R in (21) and so from Fig. 1, we have � < 1.

4. The symmetric 2-block-SOR method

In this section we will investigate the S2-block-SOR method depending on another splitting of matrix Ã.

4.1. S2-block-SOR algorithm

Consider the following partitioning and splitting of matrix Ã in (14):

T

(26)
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and

Ã = D − L − U ,

where

D2 =
⎛
⎝A1A

T
1 0 0

A2A
T
1 I 0

0 0 A1A
T
1

⎞
⎠

and

L =
⎛
⎝0 0 0

0 0 0

0 −A1A
T
2 0

⎞
⎠ , U =

⎛
⎝0 0 −I

0 0 0

0 0 0

⎞
⎠ .

Then the corresponding Jacobi matrix J2 is

J2 =
⎛
⎝0 0 −(A1A

T
1 )−1

0 0 P

0 −P T 0

⎞
⎠ , (27)

where P =A2A
T
1 (A1A

T
1 )−1 and it is easy to check that J2 is a weakly 2-cyclic matrix. So Ã is a 2-cyclic matrix relative

to the partitioning as shown in (26).
The S2-block-SOR method is defined as follows:⎛

⎜⎝
y(k+1)

r
(k+1)
2

r
(k+1)
1

⎞
⎟⎠= S

(2)
�

⎛
⎜⎝

y(k)

r
(k)
2

r
(k)
1

⎞
⎟⎠+ C, (28)

where

S
(2)
� =

⎛
⎝A1A

T
1 0 �I

A2A
T
1 I 0

0 0 A1A
T
1

⎞
⎠

−1⎛
⎝ (1 − �)A1A

T
1 0 0

(1 − �)A2A
T
1 (1 − �)I 0

0 −�A1A
T
2 (1 − �)A1A

T
1

⎞
⎠

×
⎛
⎝A1A

T
1 0 0

A2A
T
1 I 0

0 �A1A
T
2 A1A

T
1

⎞
⎠

−1⎛
⎝ (1 − �)A1A

T
1 0 −�I

(1 − �)A2A
T
1 (1 − �)I 0

0 0 (1 − �)A1A
T
1

⎞
⎠

and

C = �(2 − �)

⎛
⎝A1A

T
1 0 �I

A2A
T
1 I 0

0 0 A1A
T
1

⎞
⎠

−1⎛
⎝A1A

T
1 0 0

A2A
T
1 I 0

0 0 A1A
T
1

⎞
⎠

×
⎛
⎝A1A

T
1 0 0

A2A
T
1 I 0

0 �A1A
T
2 A1A

T
1

⎞
⎠

−1⎛
⎝b1

b2

0

⎞
⎠ .

S2-block-SOR algorithm.

1. Given initial vector y(0) ∈ Rk×1,
2. Compute r

(0)
1 and r

(0)
2 ,
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3. Iterate for k = 1, 2, 3, . . . until “Convergence”,

r
(k+1)
1 = �(2 − �)P T((� − 1)r

(k)
2 − �b2) + (� − 1)2r

(k)
1

+ �2(2 − �)P TP(b1 − r
(k)
1 ),

r
(k+1)
2 = (� − 1)2r

(k)
2 + �(1 − �)P r

(k)
1 + �(2 − �)b2

+ �P(r
(k+1)
1 + (� − 2)b1),

y(k+1) = (� − 1)2y(k) + �P((� − 1)r
(k)
1 + (2 − �)b1 − r

(k+1)
1 ),

where P = (A2A
T
1 )(A1A

T
1 )−1 and P ∈ R(m−k)×k .

4.2. Convergence region

Lemma 4.2.1. Let � be an eigenvalue of the Jacobi matrix J2 in (27). Then the spectrum of J2 is pure imaginary,
that is,

−�2 ��2 �0.

Proof. Since

J 2
2 =

⎛
⎝0 (A1A

T
1 )−1P 0

0 −PP T 0

0 0 −P TP

⎞
⎠ (29)

as � is an eigenvalue of J2, then �2 is an eigenvalue of J 2
2 ; suppose that the corresponding eigenvector of �2 is

(xT, yT, zT)T. Then we have

J 2
2

⎛
⎝x

y

z

⎞
⎠= �2

⎛
⎝x

y

z

⎞
⎠ ,

hence, from (29) we have −P TPz = �2z, then −�(P TP)��2 �0 or −�2 ��2 �0. �

Lemma 4.2.2 (Young [13]). Let x be any root of the real quadratic equation x2 − bx + c = 0. Then |x| < 1 if and
only if

|c| < 1,

|b| < 1 + c,

where b and c are real.

We obtain the convergence region of the S2-block-SOR method for rank-deficient problem in the following theorem.

Theorem 4.2.3. The S2-block-SOR method (28) for the rank-deficient least squares problem (1) converges if and
only if:

case 1: when ��1,

� ∈
(

0, 1 −
√

� − 1

� + 1

)
∪
(

1 +
√

� − 1

� + 1
, 2

)
;

case 2: when � < 1, 0 < � < 2, where � = ‖A2A
T
1 (A1A

T
1 )−1‖2.
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Proof. It follows immediately from (13) for p = 2 that

[� − (1 − �)2]2 = −�(2 − �)2�2�̃2, (30)

for �̃2 = −�2 and �̃2 ∈ [0, �2]. We now rewrite (30) as

�2 − �[2(1 − �)2 − (2 − �)2�2�̃2] + (1 − �)4 = 0.

By Lemma 4.2.2, |�| < 1 if and only if

(1 − �)4 < 1 (31)

and

|2(1 − �)2 − (2 − �)2�2�̃2| < (1 − �)4 + 1. (32)

From (31), it follows that 0 < � < 2, and it follows from (32) that

�2�̃2 ��2�2 <

(
1 + (1 − �)2

2 − �

)2

,

that is,

�2 − 2� + 2

1 + �2 > 0. (33)

From (33) and 0 < � < 2, we easily know |�| < 1, that is, �(S
(2)
� ) < 1 if and only if case 1 or case 2 holds. �

5. Numerical examples

In this section we present some numerical examples. All runs are performed in MATLAB on an Intel Celeron 600
(256M RAM) Windows 2000 system and terminated if

‖Xk+1 − Xk‖2 < 1E − 4.

To compare our results with other methods we select the test problems (Examples 1, 2) from other papers. Though the
sizes of equation Ax = b in Examples 1 and 2 are too small, they can show that our methods are efficient and better
than the other known ones. The comparison between the S2-block-SOR and S3-block-SOR is also illustrated by these
examples.

Example 1. Consider the following system:⎡
⎢⎢⎢⎣

1 0 0

0 1 1

1 0 0

0 1 1

⎤
⎥⎥⎥⎦
⎡
⎣x1

x2

x3

⎤
⎦=

⎡
⎢⎢⎢⎣

1

1

0

1

⎤
⎥⎥⎥⎦ .

Its least squares solution of minimal norm is [0.5 0.5 0.5]T, and the coefficient matrix is of rank 2.

Let A =
[

A1
A2

]
be the block form (2), where A1 =

[
1 0 0

0 1 1

]
and A2 =

[
1 0 0

0 1 1

]
. By taking the initial vec-

tor y(0) = [0 0]T and using the different values of � in the convergence interval, we obtain the numerical results
by the S2-block-SOR and S3-block-SOR methods shown in Tables 1 and 2, respectively. The convergence region
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Table 1
S2-block-SOR

Relaxation parameter Iterations x
(k)
1 x

(k)
2 x

(k)
3

� = 1
4 16 0.5001 0.5001 0.5001

17 0.5000 0.5000 0.5000
18 0.5000 0.5000 0.5000

� = 1
2 6 0.5002 0.5002 0.5002

7 0.5000 0.5000 0.5000
8 0.5000 0.5000 0.5000

� = 1 Divergent — — —

� = 3
4 29 0.5001 0.5001 0.5001

30 0.5000 0.5000 0.5000
31 0.5000 0.5000 0.5000

� = 5
4 33 0.5001 0.5001 0.5001

34 0.5000 0.5000 0.5000
35 0.5000 0.5000 0.5000

� = 3
2 7 0.4999 0.4999 0.4999

8 0.5000 0.5000 0.5000
9 0.5000 0.5000 0.5000

� = 7
4 15 0.5002 0.5002 0.5002

16 0.5000 0.5000 0.5000
17 0.5000 0.5000 0.5000

Table 2
S3-block-SOR

Relaxation parameter Iterations x
(k)
1 x

(k)
2 x

(k)
3

� = 1
4 32 0.5001 0.5001 0.5001

33 0.5000 0.5000 0.5000
34 0.5000 0.5000 0.5000

� = 1
2 16 0.4999 0.4999 0.4999

17 0.5000 0.5000 0.5000
18 0.5000 0.5000 0.5000

� = 3
4 10 0.5001 0.5001 0.5001

11 0.5000 0.5000 0.5000
12 0.5000 0.5000 0.5000

� = 5
4 Divergent — — —

� = 3
2 14 0.4999 0.4999 0.4999

15 0.5000 0.5000 0.5000
16 0.5000 0.5000 0.5000

� = 7
4 20 0.5001 0.5001 0.5001

21 0.5000 0.5000 0.5000
22 0.5000 0.5000 0.5000

for S2-block-SOR is (0, 1) ∪ (1, 2) and for S3-block-SOR we show the convergence region in Fig. 1. In Tables 1
and 2 we show the iterations with a different parameter � under the termination condition ‖Xk+1 − Xk‖2 < 1E − 4.
Obviously, S2-block-SOR has less iterations than S3-block-SOR method under the same termination condition.
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Table 3
Spectral radius of four methods for different values of relaxation parameter

� S2-block-SOR 2-block-SOR S3-block-SOR 3-block-SOR

0.45 0.3025 0.5500 0.7015 0.8100
0.5859 1.0005 0.4141 0.6518 0.6722
0.8 1.7623 0.8319 1.0759 0.3965
0.83 1.8287 1.0092 1.2666 0.7420
0.86 1.8830 1.1326 1.4320 0.9915
1.52 0.2704 5.6162 1.2807 6.6506
1.6 0.3600 6.2625 0.7023 6.7651

Table 4
Number of iterations for S2-block-SOR and symmetric SOR methods

� S2-block-SOR Symmetric SOR

0.3 22 25
�opt 12 14
0.4 15 18
0.5 11 17

Example 2. Consider the following inconsistent system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x2 + 3x2 − 5x3 = 0,

4x1 + 5x2 + 3x3 = 12,

7x1 + 6x2 − 9x3 = 4,

6x1 + 8x2 − 2x3 = 5.

The coefficient matrix A is of rank 3. The least squares solution of minimal norm is (2.5400 − 0.7267 1.0467)T. For
this problem we have

� = ‖A2A
T
1 (A1A

T
1 )−1‖2 = 1.4142,

hence the convergence region of S2-block-SOR method is

(0, 0.5858) ∪ (1.4142, 2)

and the convergence region of 2-block- and 3-block-SOR methods, respectively, are 0 < � < 0.8284 and 0 < � < 0.8850.
In Table 3 we obtain the special radius of four iterative methods, namely, S2-block-SOR, 2-block-SOR, S3-block-SOR
and 3-block-SOR methods, for different values of relaxation parameter. As we can see from this table if � lies in the
convergence regions of all methods, the spectral radius of S2-block-SOR and S3-block-SOR methods is less than the
spectral radius of other methods. And so the spectral radius of S2-block-SOR method is less than the spectral radius of
S3-block-SOR method if � lies in the convergence region of the methods.

Darvishi and Khosro-Aghdam [3] solved this problem by symmetric SOR method; they obtained the optimal value
of relaxation parameter as

�opt = 0.46898994354.

We solve this problem by symmetric SOR method and S2-block-SOR method. The number of iterations for different
values of relaxation parameter are reported in Table 4. Table 4 shows the S2-block-SOR method is better than symmetric
SOR method.
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Example 3. We now consider a larger rank-deficient inconsistent linear system Ax = b, where A is a 20 × 12 random
matrix as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9501 0.2311 0.6068 0.4860 0.8913 0.7621 0.4565 0.0185 0.8214 0.4447 2.3894 0.2311

0.6154 0.7919 0.9218 0.7382 0.1763 0.4057 0.9355 0.9169 0.4103 0.8936 1.2744 0.7919

0.0579 0.3529 0.8132 0.0099 0.1389 0.2028 0.1987 0.6038 0.2722 0.1988 1.0910 0.3529

0.0153 0.7468 0.4451 0.9318 0.4660 0.4186 0.8462 0.5252 0.2026 0.6721 1.3771 0.7468

0.8381 0.0196 0.6813 0.3795 0.8318 0.5028 0.7095 0.4289 0.3046 0.1897 2.3449 0.0196

0.1934 0.6822 0.3028 0.5417 0.1509 0.6979 0.3784 0.8600 0.8537 0.5936 0.6046 0.6822

0.4966 0.8998 0.8216 0.6449 0.8180 0.6602 0.3420 0.2897 0.3412 0.5341 2.4576 0.8998

0.7271 0.3093 0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946 0.6213 1.5793 0.3093

0.7948 0.9568 0.5226 0.8801 0.1730 0.9797 0.2714 0.2523 0.8757 0.7373 0.8686 0.9568

0.1365 0.0118 0.8939 0.1991 0.2987 0.6614 0.2844 0.4692 0.0648 0.9883 1.4913 0.0118

0.5828 0.4235 0.5155 0.3340 0.4329 0.2259 0.5798 0.7604 0.5298 0.6405 1.3813 0.4235

0.2091 0.3798 0.7833 0.6808 0.4611 0.5678 0.7942 0.0592 0.6029 0.0503 1.7055 0.3798

0.4154 0.3050 0.8744 0.0150 0.7680 0.9708 0.9901 0.7889 0.4387 0.4983 2.4104 0.3050

0.2140 0.6435 0.3200 0.9601 0.7266 0.4120 0.7446 0.2679 0.4399 0.9334 1.7732 0.6435

0.6833 0.2126 0.8392 0.6288 0.1338 0.2071 0.6072 0.6299 0.3705 0.5751 1.1068 0.2126

0.4514 0.0439 0.0272 0.3127 0.0129 0.3840 0.6831 0.0928 0.0353 0.6124 0.0530 0.0439

0.6085 0.0158 0.0164 0.1901 0.5869 0.0576 0.3676 0.6315 0.7176 0.6927 1.1902 0.0158

0.0841 0.4544 0.4418 0.3533 0.1536 0.6756 0.6999 0.7275 0.4784 0.5548 0.7490 0.4511

0.1210 0.4508 0.7159 0.8928 0.2731 0.2548 0.8656 0.2324 0.8049 0.9084 1.2621 0.4508

0.2319 0.2393 0.0498 0.0784 0.6408 0.1909 0.8439 0.1739 0.1708 0.9943 1.3314 0.2393

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and b is the following vector:

bT = (5 9 8 7 3 1 8 8 4 8 7 5 3 5 8 1 3 9 4 7 ) .

We have rank(A) = 10. The least squares solution of minimal norm of this system is

xT = (0.5800, 1.6046, 4.9961, −1.6180, −1.8187, −2.8791, 0.2481, 0.5204,

− 1.5181, 4.0515, 1.3587, 1.6046).

We solve this system using S2-block-SOR and 2-block-SOR methods and the following initial vector:

y(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T.

The convergence region of S2-block-SOR method is

� ∈ (0, 0.0444) ∪ (1.9556, 2)

and the convergence region of 2-block-SOR method is � ∈ (0, 0.0868); the 3-block-SOR method diverges for all �.
Number of iterations (IT) and CPU time (in second) of S2-block- and 2-block-SOR methods are reported in Table 5
for some values of � and it is easy to see that S2-block-SOR is better than 2-block-SOR method.

6. Conclusion

The S2-block-SOR and S3-block-SOR methods are simple and powerful techniques to find the least squares solution
of minimal norm of rank-deficient linear systems. Its simplicity lies in the fact that one parameter is presented. Full
exploitation of the presence of this parameter will provide us with methods which will converge faster than any other
methods, e.g., SOR, SSOR and AOR. The determination of optimum value of the parameter needs further studies.
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Table 5
Number of iterations and CPU time for S2-block- and 2-block-SOR methods, using initial vector y(0)

S2-block-SOR 2-block-SOR

� IT CPU IT CPU

0.0100 861 0.3910 1723 0.5310
0.0200 428 0.2040 857 0.2500
0.0300 284 0.1285 569 0.1880
0.0400 212 0.1100 424 0.1560
0.0443 191 0.0780 383 0.0945
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