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a b s t r a c t

In this paper, the Liénard equation with a deviating argument

x′′(t)+ f1(t, x(t))x′(t)+ f2(x(t))(x′(t))2 + g(t, x(t − τ(t))) = p(t)

is studied. By applying the coincidence degree theory, we obtain some new results on the
existence and uniqueness of T -periodic solutions to this equation. Our results improve and
extend some existing ones in the literature.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider the Liénard equation with a deviating argument of the form

x′′(t)+ f1(t, x(t))x′(t)+ f2(x(t))(x′(t))2 + g(t, x(t − τ(t))) = p(t), (1.1)

where f2, τ , p : R → R and f1, g : R × R → R are continuous functions, τ and p are T -periodic, f1 and g are T -periodic in
their first argument, and T > 0.
As a model comes form physics, mechanics and engineering (for example, see [1–4]), Eq. (1.1) has been the object of

intensive analysis by numerous authors. In particular, there have been extensive results on the existence and uniqueness of
periodic solutions to Eq. (1.1) with f2(x) ≡ 0 (see [5–12]).
However, for the existence and uniqueness of periodic solutions to Eq. (1.1) without f2(x) ≡ 0, the results are scarce.

Thus, it is worthwhile to study Eq. (1.1) in this case.
The main purpose of this paper is to establish sufficient conditions ensuring the existence and uniqueness of T -periodic

solutions of Eq. (1.1) without f2(x) ≡ 0. By using an illustrative example, we show that our results improve the main results
obtained in [9–12].
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2. Preliminary results

In this section, we give some technical yet elementary results that will serve us well in the sections to follow.
For ease of exposition, throughout this paper we will adopt the following notations:

|x|k =
(∫ T

0
|x(t)|kdt

)1/k
, |x|∞ = max

t∈[0,T ]
|x(t)|.

Let

X = {x|x ∈ C1(R, R), x(t + T ) = x(t), for all t ∈ R}

and

Y = {x|x ∈ C(R, R), x(t + T ) = x(t), for all t ∈ R}

be two Banach spaces with the norms

‖x‖X = max{|x|∞, |x′|∞}, and ‖x‖Y = |x|∞.

Define a linear operator L : D(L) ⊂ X −→ Y by setting

D(L) = {x|x ∈ X, x′′ ∈ C(R, R)}

and for x ∈ D(L),

Lx = x′′. (2.1)

We also define a nonlinear operator N : X −→ Y by setting

Nx = −f1(t, x(t))x′(t)− f2(x(t))(x′(t))2 − g(t, x(t − τ(t)))+ p(t). (2.2)

It is easy to see that

Ker L = R, and Im L =
{
x|x ∈ Y ,

∫ T

0
x(s)ds = 0

}
.

Thus the operator L is a Fredholm operator with index zero.
Define the continuous projector P : X −→ Ker L and the averaging projector Q : Y −→ Y by setting

Px(t) = x(0) = x(T )

and

Qx(t) =
1
T

∫ T

0
x(s)ds.

Hence, ImP = Ker L and Ker Q = Im L. Denoting by L−1P : Im L −→ D(L) ∩ Ker P the inverse of L|D(L)∩Ker P , we have

L−1P y(t) = −
t
T

∫ T

0
(t − s)y(s)ds+

∫ t

0
(t − s)y(s)ds. (2.3)

It is convenient to introduce the following assumption.
(A0) Assume that there exist nonnegative constants C1 and C2 such that

|f1(t, x)| ≤ C1, for all t, x ∈ R

and

f2 ∈ C1(R, R), f ′2(x) ≤ 0, |f2(x1)− f2(, x2)| ≤ C2|x1 − x2|, f2(0) = 0,

for all x, x1, x2 ∈ R.
In view of (2.1) and (2.2), the operator equation Lx = λNx is equivalent to the following equation

x′′ + λ[f1(t, x(t))x′(t)+ f2(x(t))(x′(t))2 + g(t, x(t − τ(t)))] = λp(t), λ ∈ (0, 1). (2.4)

For convenience of use, we introduce the Continuation Theorem [15] as follows.

Lemma 2.1. Let X and Y be two Banach spaces. Suppose that L : D(L) ⊂ X −→ Y is a Fredholm operator with index zero and
N : X −→ Y is L-compact on Ω , where Ω is an open bounded subset of X. Moreover, assume that all the following conditions
are satisfied:

(1) Lx 6= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
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(2) Nx 6∈ Im L, for all x ∈ ∂Ω ∩ Ker L;
(3) The Brouwer degree

deg{QN, Ω ∩ Ker L, 0} 6= 0,

then equation Lx = Nx has at least one solution onΩ .

Lemma 2.2. If x ∈ C2(R, R) with x(t + T ) = x(t), then

|x′(t)|22 ≤
(
T
2π

)2
|x′′(t)|22. (2.5)

Proof. Lemma 2.2 is a direct consequence of Wirtinger inequality, and see [13,14] for its proof. �

Lemma 2.3. Suppose that there exists a constant d > 0 such that
(A1) x(g(t, x)− p(t)) < 0, for all t ∈ R, |x| ≥ d.
If x(t) is a T-periodic solution of (2.4), then

|x|∞ ≤ d+
1
2

√
T |x′|2. (2.6)

Proof. Let x(t) be a T -periodic solution of (2.4). Set

x(t1) = max
t∈R
x(t), x(t2) = min

t∈R
x(t), where t1, t2 ∈ R,

then we have

x′(t1) = 0, x′′(t1) ≤ 0, and x′(t2) = 0, x′′(t2) ≥ 0.

It follows from (2.4) that

g(t1, x(t1 − τ(t1)))− p(t1) ≥ 0 and g(t2, x(t2 − τ(t2)))− p(t2) ≤ 0.

In view of (A1), we obtain

x(t1 − τ(t1)) < d and x(t2 − τ(t2)) > −d.

Since x(t − τ(t)) is a continuous function on R, it follows that there exists a constant ξ ∈ R such that

|x(ξ − τ(ξ))| ≤ d.

Let ξ − τ(ξ) = mT + t0, where t0 ∈ [0, T ], andm be an integer. Then, we have

|x(t)| =
∣∣∣∣x(t0)+ ∫ t

t0
x′(s)ds

∣∣∣∣ ≤ d+ ∫ t

t0
|x′(s)|ds, t ∈ [t0, t0 + T ],

and

|x(t)| = |x(t − T )| =
∣∣∣∣x(t0)− ∫ t0

t−T
x′(s)ds

∣∣∣∣ ≤ d+ ∫ t0

t−T
|x′(s)|ds, t ∈ [t0, t0 + T ].

Combining the above two inequalities, we obtain

|x|∞ = max
t∈[t0, t0+T ]

|x(t)|

≤ max
t∈[t0, t0+T ]

{
d+

1
2

(∫ t

t0
|x′(s)|ds+

∫ t0

t−T
|x′(s)|ds

)}
= max
t∈[t0, t0+T ]

{
d+

1
2

∫ t

t−T
|x′(s)|ds

}
= d+

1
2

∫ T

0
|x′(s)|ds

≤ d+
1
2

√
T |x′|2. (2.7)

This completes the proof of Lemma 2.3. �
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Lemma 2.4. Suppose that (A0) and (A1) hold, and the following condition is satisfied:
(A2) There exists a nonnegative constant b such that

C1
T
2π
+ b
T 2

4π
< 1, and |g(t, x1)− g(t, x2)| ≤ b|x1 − x2|, for all t, x1, x2 ∈ R.

If x(t) is a T-periodic solution of Eq. (1.1), then

|x′|∞ ≤
1
2
[bd+max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

1− (C1 T2π + b
T2
4π )

:= D. (2.8)

Proof. Let x(t) be a T -periodic solution of Eq. (1.1). From (A1), we can easily show that (2.7) also holds. Multiplying Eq. (1.1)
by x′′(t) and integrating it from 0 to T , in view of (2.5) and (2.7), (A0), (A2) and the inequality of Schwarz, we have

|x′′|22 = −
∫ T

0
f1(t, x(t))x′(t)x′′(t)dt −

∫ T

0
f2(x(t))(x′(t))2x′′(t)dt −

∫ T

0
g(t, x(t − τ(t)))x′′(t)dt +

∫ T

0
p(t)x′′(t)dt

= −

∫ T

0
f1(t, x(t))x′(t)x′′(t)dt +

1
3

∫ T

0
f ′2(x(t))(x

′(t))4dt −
∫ T

0
g(t, x(t − τ(t)))x′′(t)dt +

∫ T

0
p(t)x′′(t)dt

≤ C1
T
2π
|x′′|22 +

∫ T

0
[|g(t, x(t − τ(t)))− g(t, 0)| + |g(t, 0)|] · |x′′(t)|dt +

∫ T

0
|p(t)| · |x′′(t)|dt

≤ C1
T
2π
|x′′|22 + b

∫ T

0
|x(t − τ(t))| · |x′′(t)|dt +

∫ T

0
|g(t, 0)| · |x′′(t)|dt +

∫ T

0
|p(t)| · |x′′(t)|dt

≤ C1
T
2π
|x′′|22 + b|x|∞

√
T |x′′|2 + [max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]

√
T |x′′|2

≤

(
C1
T
2π
+ b
T 2

4π

)
|x′′|22 + [bd+max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]

√
T |x′′|2, (2.9)

which, together with (A2), implies that

|x′′|2 ≤
[bd+max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]

√
T

1− (C1 T2π + b
T2
4π )

. (2.10)

Since x(0) = x(T ), there exists a constant ζ ∈ [0, T ] such that

x′(ζ ) = 0,

by using a similar argument as that in the proof of (2.9), we have

|x′(t)|∞ ≤
1
2

√
T |x′′|2. (2.11)

Thus, in view of (2.10) and (2.11), we get

|x′|∞ ≤
1
2
[bd+max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

1− (C1 T2π + b
T2
4π )

:= D.

This completes the proof of Lemma 2.4. �

Lemma 2.5. Suppose that (A1) holds, and the following condition is satisfied:
(A3) Suppose that (A0) hold, f1(t, x) ≡ f1(t) for all t, x ∈ R, g(t, x) is a strictly monotone decreasing function in x, and there

exists a nonnegative constant b such that

C1
T
2π
+ C2D2

T 2

4π
+ 2DC2(d+ TD)

T
2π
+ b
T 2

4π
< 1,

and

|g(t, x1)− g(t, x2)| ≤ b|x1 − x2|, for all t, x1, x2 ∈ R,

then Eq. (1.1) has at most one T-periodic solution.
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Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of Eq. (1.1). Set Z(t) = x1(t)− x2(t), we obtain

Z ′′(t)+ (f1(t)x′1(t)− f1(t)x
′

2(t))+ (f2(x1(t))(x
′

1(t))
2
− f2(x2(t))(x′2(t))

2)

+ (g(t, x1(t − τ(t)))− g(t, x2(t − τ(t)))) = 0. (2.12)

Set

Z(t̄1) = max
t∈R
Z(t), Z(t̄2) = min

t∈R
Z(t), where t̄1, t̄2 ∈ R.

Then, we have

Z ′(t̄1) = x′1(t̄1)− x
′

2(t̄1) = 0, Z ′′(t̄1) ≤ 0, (2.13)

and

Z ′(t̄2) = x′1(t̄2)− x
′

2(t̄2) = 0, Z ′′(t̄2) ≥ 0. (2.14)

Now, we prove that there exists a constant ξ̄ ∈ R such that

Z(ξ̄ ) = 0. (2.15)

Contrarily, one of the following cases occurs:
(a) Z(t) = x1(t)− x2(t) > 0, for all t ∈ R.
(b) Z(t) = x1(t)− x2(t) < 0, for all t ∈ R.
If (a) holds, in view of (A3), (2.12) and x′1(t̄1) = x

′

2(t̄1), we get

Z ′′(t̄1) = −(f1(t̄1)x′1(t̄1)− f1(t̄1)x
′

2(t̄1))− (f2(x1(t̄1))(x
′

1(t̄1))
2

− f2(x2(t̄1))(x′2(t̄1))
2)− (g(t̄1, x1(t̄1 − τ(t̄1)))− g(t̄1, x2(t̄1 − τ(t̄1))))

= −(x′1(t̄1))
2(f2(x1(t̄1))− f2(x2(t̄1)))− (g(t̄1, x1(t̄1 − τ(t̄1)))− g(t̄1, x2(t̄1 − τ(t̄1))))

> 0, (2.16)

which contradicts (2.13). So we have that (2.15) is true.
If (b) holds, in view of (A3), (2.12) and x′1(t̄2) = x

′

2(t̄2), we obtain

Z ′′(t̄2) = −(f1(t̄2)x′1(t̄2)− f1(t̄2)x
′

2(t̄2))− (f2(x1(t̄2))(x
′

1(t̄2))
2

− f2(x2(t̄2))(x′2(t̄2))
2)− (g(t̄2, x1(t̄2 − τ(t̄2)))− g(t̄2, x2(t̄2 − τ(t̄2))))

= −(x′1(t̄2))
2(f2(x1(t̄2))− f2(x2(t̄2)))− (g(t̄2, x1(t̄2 − τ(t̄2)))− g(t̄2, x2(t̄2 − τ(t̄2))))

< 0, (2.17)

which contradicts (2.14). Thus, (2.15) is true.
Let ξ̄ = nT + γ̃ , where γ̃ ∈ [0, T ] and n be an integer. Then,

Z(γ̃ ) = 0,

by arguments similar to those used in the proof of (2.9), we obtain

|Z |∞ ≤
1
2

√
T |Z ′|2. (2.18)

Multiplying (2.12) by Z ′′(t) and integrating it from 0 to T , from (A1), (A3), (2.5), (2.8) and (2.18) and Schwarz inequality,
we get

|Z ′′|22 = −
∫ T

0
(f1(t)x′1(t)− f (t)x

′

2(t))Z
′′(t)dt −

∫ T

0
(f2(x1(t))(x′1(t))

2

− f2(x2(t))(x′2(t))
2)Z ′′(t)dt −

∫ T

0
(g(t, x1(t − τ(t)))− g(t, x2(t − τ(t))))Z ′′(t)dt

≤

∫ T

0
|f1(t)‖x′1(t)− x

′

2(t)‖Z
′′(t)|dt +

∫ T

0
|f2(x1(t))‖(x′1(t))

2
− (x′2(t))

2
‖Z ′′(t)|dt

+

∫ T

0
|f2(x1(t))− f2(x2(t))|(x′2(t))

2
|Z ′′(t)|dt + b

∫ T

0
|x1(t − τ(t))− x2(t − τ(t))‖Z ′′(t)|dt

≤

∫ T

0
C1|x′1(t)− x

′

2(t)‖Z
′′(t)|dt + C2|x1|∞

∫ T

0
|x′1(t)+ x

′

2(t)‖x
′

1(t)− x
′

2(t)‖Z
′′(t)|dt
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+

∫ T

0
C2|x1(t)− x2(t)|(x′2(t))

2
|Z ′′(t)|dt + b

∫ T

0
|x1(t − τ(t))− x2(t − τ(t))||Z ′′(t)|dt

≤ C1|Z ′|2|Z ′′|2 + |x1|∞2DC2|Z ′|2|Z ′′|2 + C2D2|Z |∞
√
T |Z ′′|2 + b|Z |∞

√
T |Z ′′|2

≤

(
C1
T
2π
+ C2D2

T 2

4π
+ b
T 2

4π

)
|Z ′′|22 + |x1|∞2DC2

T
2π
|Z ′′|22. (2.19)

In view of (2.7), we have

|x|∞ ≤ d+
1
2

∫ T

0
|x′(s)|ds ≤ d+ T |x′|∞ ≤ d+ TD,

which, together with (2.19), implies that

|Z ′′|22 ≤
[
C1
T
2π
+ C2D2

T 2

4π
+ 2DC2(d+ TD)

T
2π
+ b
T 2

4π

]
|Z ′′|22. (2.20)

Since Z(t), Z ′(t) and Z ′′(t) are T -periodic and continuous functions, in view of (A3), (2.15) and (2.19), we have

Z(t) ≡ Z ′(t) ≡ Z ′′(t) ≡ 0, for all t ∈ R.

Thus, x1(t) ≡ x2(t), for all t ∈ R. Therefore, Eq. (1.1) has at most one T -periodic solution. The proof of Lemma 2.5 is now
completed. �

3. Main results

Theorem 3.1. Suppose that (A1) and (A3) hold, then Eq. (1.1) has a unique T-periodic solution.

Proof. By Lemma 2.5, it is easy to see that Eq. (1.1) has at most one T -periodic solution. Thus, to prove Theorem 3.1, it
suffices to show that Eq. (1.1) has at least one T -periodic solution. To do this, we shall apply Lemma 2.1. Firstly, we will
claim that the set of all possible T -periodic solutions of Eq. (2.4) is bounded.
Let x(t) be a T -periodic solution of Eq. (2.4). Multiplying x′′(t) and Eq. (2.4) and then integrating it from 0 to T , in view

of (A1), (A3), (2.5) and (2.6) and the inequality of Schwarz, we have

|x′′|22 = −λ
∫ T

0
f1(t)x′(t)x′′(t)dt − λ

∫ T

0
f2(x(t))(x′(t))2x′′(t)dt − λ

∫ T

0
g(t, x(t − τ(t)))x′′(t)dt + λ

∫ T

0
p(t)x′′(t)dt

= −λ

∫ T

0
f1(t)x′(t)x′′(t)dt + λ

1
3

∫ T

0
f ′2(x(t))(x

′(t))4dt − λ
∫ T

0
g(t, x(t − τ(t)))x′′(t)dt + λ

∫ T

0
p(t)x′′(t)dt

≤ C1
T
2π
|x′′|22 +

∫ T

0
[|g(t, x(t − τ(t)))− g(t, 0)| + |g(t, 0)|] · |x′′(t)|dt +

∫ T

0
|p(t)| · |x′′(t)|dt

≤

(
C1
T
2π
+ b
T 2

4π

)
|x′′|22 + [bd+max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]

√
T |x′′|2, (3.1)

which, together with (A3), implies that there exist positive constants D1 and D2 such that

|x′′|2 < D1, (3.2)

and

|x′|2 < D2, |x|∞ < D2. (3.3)

Since x(0) = x(T ), there exists a constant ζ̄ ∈ [0, T ] such that

x′(ζ̄ ) = 0,

and

|x′(t)| = |x′(ζ̄ )+
∫ t

ζ̄

x′′(s)ds| ≤
√
T |x′′|2 <

√
TD1, for all t ∈ [0, T ]. (3.4)

Therefore, in view of (3.3) and (3.4), there exists a positive constantM1 >
√
TD1 + D2 such that

‖x‖X = max{|x|∞, |x′|∞} ≤ |x|∞ + |x′|∞ < M1.
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If x ∈ Ω1 = {x|x ∈ Ker L ∩ X, and Nx ∈ Im L}, then there exists a constantM2 such that

x(t) ≡ M2, and
∫ T

0
[g(t,M2)− p(t)]dt = 0. (3.5)

Thus,

|x(t)| ≡ |M2| < d, for all x(t) ∈ Ω1. (3.6)

Let

M = M1 + d+ 1, Ω = {x|x ∈ X, |x|∞ < M, |x′|∞ < M}.

It is easy to see from (2.2) and (2.3) that N is L-compact onΩ . We have from (3.5) and (3.6) and the factM > max{M1, d}
that the conditions (1) and (2) in Lemma 2.1 hold.
Furthermore, define a continuous function H(x, µ) by setting

H(x, µ) = (1− µ)x− µ ·
1
T

∫ T

0
[g(t, x)− p(t)]dt, µ ∈ [0 1].

It follows from (A1) that

xH(x, µ) 6= 0, for all x ∈ ∂Ω ∩ Ker L.

Hence, using the homotopy invariance theorem, we have

deg{QN, Ω ∩ Ker L, 0} = deg
{
−
1
T

∫ T

0
[g(t, x)− p(t)]dt,Ω ∩ Ker L, 0

}
= deg{x, Ω ∩ Ker L, 0} 6= 0.

In view of all the discussions above, we conclude from Lemma 2.1 that Theorem 3.1 is proved. �

Remark 3.1. In the results of [9–12], we have found certain errors as following:
(1) In (2.4) of Liu [9], |x|2 should be replaced by |x|∞.
(2) In (16) and (35) of Liu [10], |x|2 should be replaced by |x|∞. Moreover, the same errors should be corrected in the proofs
whenever necessary.

(3) In (2.14) of Zhou [11], |x|2 should be replaced by |x|∞.
(4) In lines 17–18 of page 3 in Gao [12],

y1(t∗)− y2(t∗) > 0

does not imply

y1(t∗ − τ(t∗))− y2(t∗ − τ(t∗)) > 0.

Thus, the authors of [12] can not show v′′(t∗) > 0. So, Theorem 3.1 in [12] is incorrect.

In the proof of Theorem 3.1, one can find that the above-mentioned major mistakes have been corrected. This implies
that Theorem 3.1 improved some results of the literature to a certain extent.

4. An example

Example 4.1. Let g(t, x) = − 2
6π x, for all t, x ∈ R. Then the Liénard equation

x′′(t)+
1
8
(sin 4t)x′(t)−

1
8
(arctan x(t))(x′(t))2 + g(t, x(t − sin2 t)) =

1
6π
e− cos

2 t (4.1)

has a unique π2 -periodic solution.

Proof. By (4.1), we have d = 1, b = 2
6π , C1 = C2 =

1
8 , τ(t) = sin

2 t, T = π
2 and p(t) =

1
6π e
− cos2 t , then

1
2
[bd+max{|g(t, 0)| : 0 ≤ t ≤ T } + |p|∞]T

1− (C2 T2π + b
T2
4π )

:= D =
1
2
[
2
6π +

1
6π ] ×

π
2

1− 1
32 −

1
48

=
12
91
,

C1
T
2π
+ C2D2

T 2

4π
+ 2DC2(d+ TD)

T
2π
+ b
T 2

4π

=
1
32
+
1
8
·

(
12
91

)2
·
π

16
+ 2 ·

12
91
·
1
8
·

(
1+

π

2
·
12
91

)
·
1
4
+
1
48
< 1.
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It is obvious that the assumptions (A1) and (A3) hold. Hence, by Theorem 3.1, Eq. (4.1) has a unique π2 -periodic solution. �

Remark 4.1. Eq. (4.1) is a very simple version of Liénard equation. Since f2(x) = 1
8 (arctan x), all the results in [5–12,14,15]

and the references therein can not be applicable to Eq. (4.1) to obtain the existence and uniqueness of π2 -periodic solutions.
This implies that the results of this paper are essentially new.
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