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a b s t r a c t

The efficient and accurate calculation of sensitivities of the price of financial derivatives
with respect to perturbations of the parameters in the underlying model, the so-called
‘Greeks’, remains a great practical challenge in the derivative industry. This is true
regardless of whether methods for partial differential equations or stochastic differential
equations (Monte Carlo techniques) are being used. The computation of the ‘Greeks’ is
essential to risk management and to the hedging of financial derivatives and typically
requires substantially more computing time as compared to simply pricing the derivatives.
Any numerical algorithm (Monte Carlo algorithm) for stochastic differential equations
produces a time-discretization error and a statistical error in the process of pricing financial
derivatives and calculating the associated ‘Greeks’. In this article we show how a posteriori
error estimates and adaptive methods for stochastic differential equations can be used to
control both these errors in the context of pricing and hedging of financial derivatives.
In particular, we derive expansions, with leading order terms which are computable in a
posteriori form, of the time-discretization errors for the price and the associated ‘Greeks’.
These expansions allow the user to simultaneously first control the time-discretization
errors in an adaptive fashion, when calculating the price, sensitivities and hedging
parameters with respect to a large number of parameters, and then subsequently to ensure
that the total errors are, with prescribed probability, within tolerance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is fair to say that it is still a great practical challenge in the derivative industry to efficiently and accurately
calculate the so-called ‘Greeks’, that is sensitivities of the price of financial derivatives with respect to perturbations of the
parameters in the underlyingmodel. Focusing onmethods based on stochastic differential equations, the calculation of these
sensitivities remains a particularly topical area of current research and the prevailing techniques include finite difference
approximations, pathwise derivative estimates, the likelihood ratio method and its generalizations using the Malliavin
calculus. We refer to [1] for an excellent account of thesemethods and their advantages and disadvantages. Although [2,1,3]
containmost of the relevant references on these topics we here still would like to suggest [4–14] as additional references for
the interested reader. We emphasize that while these articles are almost exclusively devoted to financial applications, the
techniques developed are also useful inmany other contexts.Moreover, we note that a key feature of the techniques inmany
of these articles is, heuristically, that the computations tend to be organized in a forward lookingwaywhere the calculations
in the next step depend on the calculations up to the present. However, in [3] an adjoint formulation for the calculation of
sensitivities is suggested and it is shown, numerically, that this formulation can be used to accelerate the calculation of
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the ‘Greeks’. The method outlined in [3] is particularly well suited in applications requiring sensitivities to a large number
of parameters and particular examples of such applications include interest rate derivatives requiring sensitivities with
respect to all initial forward rates and equity derivatives requiring sensitivities with respect to all points on a volatility
surface. Furthermore, as emphasized in [3] the adjoint method has its advantages, compared to competing methods with
forward looking features, when calculating the sensitivities of a small number of securities with respect to a large number
of parameters. On the contrary, competing methods with forward looking features are advantageous when calculating the
sensitivities of many securities with respect to a small number of parameters. The notion of ‘small number of securities’ can
here be an entire book, consisting of many individual securities, as long as the sensitivities to be calculated are for the book
as a whole and not for the constituent securities.
In this article we further develop the adjoint method suggested in [3] by outlining how a posteriori error estimates and

adaptive methods for stochastic differential equations can be used to adaptively first control the time-discretization errors
in these calculations and then to ensure that the total error, defined as sumof the time-discretization error and the statistical
error, is, with prescribed probability, within tolerance. In particular, we give a theoretically sound base for the adjoint
method suggested in [3]. Our results concerning a posteriori error estimates and adaptivemethods for stochastic differential
equations build and expand on the work by Szepessy et al. [15] concerning adaptive weak approximations of stochastic
differential equations and, to our knowledge, a posteriori error estimates for stochastic differential equations applied to the
pricing of financial derivatives and, in particular, applied to the calculation of hedging parameters for financial derivatives,
have previously not been discussed in the literature. Hence,we claim to give a novel contribution to the literature concerning
the numerical aspects of pricing and hedging of financial derivatives, as well as to the general problem of conducting
sensitivity analysis for solutions of second order parabolic partial differential equations using stochastic techniques. Finally,
this article is based on the results developed in the thesis of the second author, see [16].
To more thoroughly describe the methodology outlined in this article we first have to introduce some notation. Let

(t, x) = (t, x1, . . . , xn) ∈ R+ × Rn and let M(n,R) be the set of all n × n-matrices with real valued entries. Given a
matrix σ ∈ M(n,R) its transpose is denoted by σ ∗. Let

µ(t, x) = µ(t, x, θµ) = µ̄(t, x)+ θµµ̃(t, x),

σ (t, x) = σ(t, x, θσ ) = σ̄ (t, x)+ θσ σ̃ (t, x), (1.1)

where µ̄, µ̃ : R+ × Rn → Rn, σ̄ , σ̃ : R+ × Rn → M(n,R), θµ ∈ R, θσ ∈ R, and |θµ| ≤ ε, |θσ | ≤ ε, for some small ε > 0.
µ̃ and σ̃ represent perturbations of µ̄ and σ̄ . In the following we assume that there exists η > 0 such that the following
ellipticity condition is satisfied,

ξ ∗(σ̄ (t, x)+ θσ σ̃ (t, x))(σ̄ (t, x)+ θσ σ̃ (t, x))∗ξ ≥ η|ξ |2, (1.2)

whenever |θσ | ≤ ε, ξ ∈ Rn and (t, x) ∈ R+ × Rn. The ellipticity condition in (1.2) is not crucial to the analysis outlined
in this article. In fact, the more general assumption of hypoellipticity suffices as discussed at the end of the article. Define
θ = (θµ, θσ ) and let, for i ∈ {1, . . . , n},

Xi(t) = Xi(t, θ) = xi +
∫ t

0
µi(s, X(s), θ)ds+

n∑
j=1

∫ t

0
σij(s, X(s), θ)dWj(s). (1.3)

Let X(t) = (X1(t), . . . , Xn(t))∗ denote the corresponding vector. Here (W (t))0≤t≤T , W (t) = (W1(t), . . . ,Wn(t))∗, is a
standard Brownian motion in Rn defined on a filtered probability space (Ω,F , (Ft)0≤t≤T , P) with the usual assumptions
on (Ft)0≤t≤T . By a standard Brownianmotion inRnwemean a processwhose components are independent one-dimensional
Brownian motions. In the definition of Xi(t) = Xi(t, θ) we have indicated the dependence on the parameter vector
θ = (θµ, θσ ). Assuming appropriate growth and regularity conditions on the coefficients µi and σij, as will be discussed
in detail below, the system in (1.3) has a unique strong solution for all parameters θ = (θµ, θσ ), |θµ| ≤ ε, |θσ | ≤ ε. We
recall that there is a well-known close connection between stochastic differential equations and second order parabolic
partial differential equations. We therefore introduce the second order parabolic operator

L =
1
2

n∑
i,j=1

[σσ ∗]ij(t, x)∂ij +
n∑
i=1

µi(t, x)∂i, (1.4)

and we note that the structural assumption on the operator L, imposed by (1.2), is that the operator ∂t + L is uniformly
elliptic–parabolic. Let T > 0 and let the function g : Rn → R be given. Define

u(t, x) = u(t, x, θ) = u(t, x, (θµ, θσ )) = E[g(X(T , θ))|X(t, θ) = x]. (1.5)

Then, under appropriate smoothness and growth conditions onµi, σij and g , the Feynman–Kac formula asserts that u in (1.5)
is the unique solution to the Cauchy problem{

∂tu(t, x)+ Lu(t, x) = 0, whenever (t, x) ∈ (0, T )× Rn,
u (T , x) = g(x), whenever x ∈ Rn, (1.6)
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where L is defined in (1.4). In this article we focus on numerical algorithms for stochastic differential equations, with control
of the errors, using which we can calculate, simultaneously, the quantities

u(t, x, (0, 0)), (∂θµu)(t, x, (0, 0)), (∂θσ u)(t, x, (0, 0)). (1.7)

In fact, when calculating the quantities in (1.7) we also, as part of our analysis, calculate all derivatives of u(t, x, (0, 0)),
with respect to the spatial variables, up to fourth order. Furthermore, as u in (1.5) solves the Cauchy problem in (1.6) this
article can also be considered to be devoted to the numerical aspects of a sensitivity analysis for the Cauchy problem, for
the operator ∂t + L, using stochastic differential equations and the stochastic representation formula in (1.5). To proceed,
we note, as a general motivation which is not only limited to the hedging of financial derivatives, that in many applications
it is important not only to solve for u(t, x, (0, 0)) but also to quantify the effect, on the solution, of misspecifications of µ
and σ . Moreover, one would often like to do this for many different perturbations, i.e. for many different choices of the pair
(µ̃, σ̃ ), without too much additional computational effort compared to the calculation of the solution itself. Naturally one
would also like to control the error, relative to the true theoretical value, produced by the numerical and computational
scheme. In particular, assuming that the coefficients are given through measurements, any such measurement should be
seen as a sample from a distribution and hence the coefficients are not known with certainty. One way to account for this is
to calculate the sensitivity of the solution to perturbations of the parameters in the underlying model and then to derive an
approximative distribution of u based on distributional assumptions on the parameters.
To outline the actual numerical approximation of (1.5), and to formulate the main results, we next describe the Euler

scheme associated to the system in (1.3). In particular, given a time horizon of T we let {tk}Nk=0 define a partition ∆ of the
interval [0, T ], i.e. 0 = t0 < t1 < · · · < tN−1 < tN = T , and we let ∆tk = tk+1 − tk for k ∈ {0, . . . ,N − 1}. Let
{X̄(t) : t ∈ [0, T ]} solve (1.3) for parameter values (θµ, θσ ) = (0, 0). In the following we let {X̄∆(t) : t ∈ [0, T ]} denote the
continuous Euler approximation of {X̄(t) : t ∈ [0, T ]} defined as follows. X̄∆(t) satisfies the initial condition X̄∆i (t0) = xi
and, for k ∈ {0, . . . ,N − 1}, the difference equation

X̄∆i (tk+1) = X̄
∆
i (tk)+ µ̄i(tk, X̄

∆(tk))∆tk +
n∑
j=1

σ̄ij(tk, X̄∆(tk))∆Wj(tk), (1.8)

where∆Wj (tk) = Wj (tk+1)−Wj (tk) represents the Wiener increment during the time step [tk, tk+1]. In the following we
make use of the function φ(t) = sup{tk : tk ≤ t}, which is defined whenever t ∈ [0, T ]. Using this notation, we define the
continuous Euler approximation {X̄∆(t) : t ∈ [0, T ]} through the relation

X̄∆i (t) = X̄
∆
i (φ(t))+

∫ t

φ(t)
µ̄i(φ(s), X̄∆(φ(s)))ds+

n∑
j=1

∫ t

φ(t)
σ̄ij(φ(s), X̄∆(φ(s)))dWj(s). (1.9)

The set {X̄∆(t) : t ∈ {t0, . . . , tN}} is often referred to as the associated discrete Euler approximation. We let ū denote
u(t, x, (0, 0)) and introduce

ū∆(tk, x) = E[g(X̄∆(T ))|X̄∆(tk) = x], (1.10)

for k ∈ {0, . . . ,N−1}, x ∈ Rn, as an approximation of ū. Furthermore, we letM be an integer andwe let {ωr}Mr=1 representM
realizations of the discrete Euler approximation of {X̄(t) : t ∈ [0, T ]}. Then, focusing on the calculation of (∂θµu)(t, x, (0, 0))
and (∂θσ u)(t, x, (0, 0)), we prove, by proceeding similar to [15], that

(∂θµu)(0, x, (0, 0)) = ū
∆,M
µ (x)+ Ē∆,Mµ,s + Ē

∆,M
µ,d + Ē

∆,M
µ,d,s + R̄

∆
µ,d,

(∂θσ u)(0, x, (0, 0)) = ū
∆,M
σ (x)+ Ē∆,Mσ ,s + Ē

∆,M
σ ,d + Ē

∆,M
σ ,d,s + R̄

∆
σ ,d, (1.11)

where

ū∆,Mµ (x) =
M∑
r=1

N−1∑
k=0

µ̃i(tk, X̄∆(tk,ωr))ψ̄i(tk,ωr)
∆tk
M
,

ū∆,Mσ (x) =
1
2

M∑
r=1

N−1∑
k=0

[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij
(
tk, X̄∆(tk, ωr)

)
ψ̄
(1)
ij (tk,ωr)

∆tk
M
. (1.12)

In particular, ū∆,Mµ (x) and ū∆,Mσ (x) are to be used as Monte Carlo estimators of (∂θµu)(0, x, (0, 0)) and (∂θσ u)(0, x, (0, 0))
respectively. The functions ψ̄i and ψ̄

(1)
ij , appearing in (1.12), are first and second order dual functions associated to the

underlying system. These functions solve certain backwards in time stochastic differential equations which facilitate their
computation, as outlined in the bulk of the article, and make no reference to the perturbations µ̃ and σ̃ . Furthermore (1.11)
gives an expansion of the errors produced when ū∆,Mµ (x) and ū∆,Mσ (x) are used as approximations of (∂θµu)(0, x, (0, 0))
and (∂θσ u)(0, x, (0, 0)), respectively. The expansions in (1.11) makes it possible to control the errors |(∂θµu)(0, x, (0, 0))−
ū∆,Mµ (x)| and |(∂θσ u)(0, x, (0, 0)) − ū

∆,M
σ (x)|. To describe the characteristics of the remaining terms in (1.11), we first note
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that Ē∆,Mµ,s , Ē
∆,M
µ,d,s, Ē

∆,M
σ ,s and Ē

∆,M
σ ,d,s all represent statistical errors, resulting from the use of the finite set {ωr}

M
r=1, while Ē

∆,M
µ,d ,

R̄∆,Mµ,d , Ē
∆,M
σ ,d and R̄

∆,M
σ ,d represent time-discretization errors due to the discrete Euler scheme. In general, the statistical errors

can be controlled using the central limit theorem and in this article we focus mainly on the time-discretization error term.
In particular, Ē∆,Mµ,d , R̄

∆,M
µ,d , Ē

∆,M
σ ,d and R̄

∆,M
σ ,d have the following important features. Let∆

∗

N = max{∆t0,∆t1, . . . ,∆tN−1}. Then,

(i) Ē∆,Mµ,d and Ē
∆,M
σ ,d are of order O(∆

∗

N),

(ii) R̄∆,Mµ,d , and R̄
∆,M
σ ,d are of order O((∆

∗

N)
2),

(iii) Ē∆,Mµ,d and Ē
∆,M
σ ,d are computable in a posteriori form. (1.13)

Hence Ē∆,Mµ,d and Ē
∆,M
σ ,d are the leading order terms in the expansions of the time-discretization errors and these leading order

terms are computable in a posteriori form. The exact form of Ē∆,Mµ,d and Ē
∆,M
σ ,d are derived in the bulk of the article, but a

few additional and important features of Ē∆,Mµ,d and Ē
∆,M
σ ,d should be mentioned here. In particular, Ē

∆,M
µ,d and Ē

∆,M
σ ,d depend

on the first, second, third and fourth order dual functions, (ψ̄, ψ̄ (1), ψ̄ (2), ψ̄ (3)) as well as on the Euler discretization, here
denoted (X̄∆, X̄ (1),∆, X̄ (2),∆, X̄ (3),∆, X̄ (4),∆), of (X̄, X̄ (1), X̄ (2), X̄ (3), X̄ (4)), the latter being a high-dimensional vector containing
the variation processes of X̄(t) up to fourth order. Furthermore, the expressions for Ē∆,Mµ,d and Ē

∆,M
σ ,d also contain derivatives

of µ̄, µ̃, σ̄ and σ̃ up to second order. However,

neither (ψ̄, ψ̄ (1), ψ̄ (2), ψ̄ (3)) nor (X̄∆, X̄ (1),∆, X̄ (2),∆, X̄ (3),∆, X̄ (4),∆)

make any reference to the perturbations µ̃ and σ̃ and these perturbations enter in Ē∆,Mµ,d and Ē
∆,M
σ ,d in a linear fashion. We

emphasize that while (1.11)–(1.13) are theoretically rigorous results, their practical use may, at first glance, seem unclear.
In particular, due to the potentially very costly computations of (ψ̄, ψ̄ (1), ψ̄ (2), ψ̄ (3)) and (X̄∆, X̄ (1),∆, X̄ (2),∆, X̄ (3),∆, X̄ (4),∆),
the result may be of limited practical use in some applications and we emphasize that the approach described in this
article will not, from an efficiency perspective, outperform competing approaches if the aim is to calculate sensitivities
with respect to only one set of perturbations (µ̃, σ̃ ). Instead, the methodology outlined has its potential merits in case
one wants to calculate sensitivities with respect to a set of perturbations {(µ̃l, σ̃l)}Kl=1 where K is large. Still, if there is a
need to rigorously control the errors, and in particular the time-discretization errors, in a calculation of (∂θµu)(0, x, (0, 0))
and (∂θσ u)(0, x, (0, 0)) our result gives, in a posteriori form, the fundamentals and details for such an implementation.
Furthermore, as the leading order terms in the expansions of the time-discretization errors are in a posteriori form these
terms can also be computed simply to get an estimate of the magnitude of the time-discretization errors. The numerical
examples in Sections 5 and 6 illustrate the advantages and disadvantages of the methodology outlined. Moreover, we stress
that in many application the statistical errors will, in general, be much larger compared to the time-discretization error.
Thus, to obtain computational efficiency and accuracywithin a limited computational budget, the use of variance reductions
techniques is strongly recommended. We refer to [1] for the fundamentals on variance reductions techniques for financial
applications.
Returning to the adjointmethod proposed in [3], we note that this is simply an efficientway to organize the calculation of

the estimators ū∆,Mµ (x) and ū∆,Mσ (x) in (1.12), when calculating the ‘Greeks’, and, as such, this computational scheme comes
about naturally from the very definition of the discrete dual functions. We claim that our results take the approach in [3]
one step further as we rigorously derive theoretical expansions of the time-discretization errors with leading order terms
in a posteriori form. This renders the possibility of actually controlling, using adaptive type algorithms as proposed in [15],
that the errors produced by the method in [3] are, with given probability, within a given tolerance.
The rest of the article is organized as follows. Section 2 is of preliminary nature. In Section 3 we present a general error

expansion for the solution to problem (1.6) allowing also for a nonzero right-hand side. The results of Section 3 are utilized
in Section 4 as we present and derive the details of (1.11)–(1.13). In Sections 5 and 6 we illustrate the use of (1.11)–(1.13) in
two applications. The first application, outlined in Section 5, is a simple benchmark example, forwhich u and the sensitivities
can be explicitly calculated. This example serves as a stylized illustration of the techniques involved and, in particular, we
use this example to evaluate the performance of the estimators in (1.12). The second application, outlined in Section 6,
concerns the problem of pricing and hedging of interest rate derivatives in LIBOR market models. This choice is based on
the fact that in a fixed-income setting one is often interested in understanding the change of the value of a portfolio of
derivative instruments with respect to multi-dimensional structures and hence the approach of this article is attractive in
this setting. Moreover, concerning numerical evaluations we note that in [3] the adjoint method is numerically illustrated in
the setting of LIBOR market models and is found to be very fast for this application. Section 7 contains a brief summary and
discussion.

2. Preliminaries

In this section we introduce notation, state representation formulas for solutions to second order parabolic partial
differential equations and introduce the Euler scheme.
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2.1. Notation

Throughout the article we write ∂if for
∂ f
∂xi
, ∂ijf for

∂2f
∂xi∂xj

and so on. If f = f (t, x), (t, x) ∈ R+ × Rn, then ∂i, ∂ij and so on
will refer to differentiation with respect to the space variable x. For a multi-index α = (α1, α2, . . . , αn), αi ∈ Z+, we define
|α| = α1+α2+· · ·+αn and let ∂α denote differentiationwith respect to the space variables according to themulti-index α.

Remark 2.1. Throughout the article we use the Einstein summation convention for indices representing spatial directions,
implying that when an index occurs more than once in the same expression, the expression is implicitly summed over all
possible values for that index.

Given an open set U ⊂ Rn we let Ckb (U) denote functions f : U → Rwhich are k times continuously differentiable with
bounded derivatives. Similarly, we let Ckp (R

n) denote functions g : Rn → R which are k times continuously differentiable
and satisfies

|∂αg(x)| ≤ cα(1+ |x|qα ), whenever x ∈ Rn, |α| ≤ k, (2.1)

for some constants cα , qα ∈ Z+. Furthermore, we let C∞0 (R
n) be the set of infinitely differentiable functions with compact

support and let Ckb (R+ × Rn), k ∈ Z+, be the space of all functions defined on R+ × Rn, which are continuous and bounded
and have continuous and bounded partial derivatives, in both space and time, up to order k. We also let C∞b (R+ × Rn) =⋂
k≥1 C

k
b (R+ × Rn).

2.2. Representation formulas

Let µ and σ be defined as in (1.1). We assume (1.2) and that

µ̄i, µ̃i, σ̄ij, σ̃ij ∈ C∞b (R+ × Rn). (2.2)

We let A = A(t, x) = (aij(t, x))ni,j=1 and Ā = Ā(t, x) = (āij(t, x))
n
i,j=1 denote the n× n-matrices defined as

aij(t, x) =
1
2
[σσ ∗]ij (t, x) , āij(t, x) =

1
2
[σ̄ σ̄ ∗]ij(t, x), (2.3)

whenever (t, x) ∈ R+ × Rn. In the following we let L∗ denote the adjoint operator to L, i.e.

L∗ = (∂ijaij)+ 2(∂iaij)∂j + aij∂ij − ((∂iµi)+ µi∂i) . (2.4)

Then, for fixed (t, x) ∈ [0, T ] × Rn, the Green function Γ (s, y) = Γ (t, x, s, y) = Γ (t, x, s, y, θ) solves the problem

(−∂s + L∗)Γ (s, y) = δt,x(s, y), whenever (s, y) ∈ [t, T ] × Rn, (2.5)

where δt,x(·, ·) is the Dirac delta function with mass at (t, x). Moreover, formally

u(t, x) = 〈u, δt,x〉 =
∫

Rn

∫ T

t
u(s, y)(−∂s + L∗)Γ (s, y)dsdy =

∫
Rn
g(y)Γ (t, x, T , y)dy. (2.6)

In particular, (2.6) gives a representation formula for u (t, x) in terms of the function Γ (s, y) = Γ (t, x, s, y) which solves
the dual problem in (2.5). The following theorem makes this formal calculation rigorous.

Theorem 2.2. Assume (1.2) and (2.2). Let T > 0 be given and let f ∈ C∞p ((0, T ) × Rn), g ∈ C∞p (R
n). Then there exists a

fundamental solution Γ = Γ (s, y) = Γ (t, x, s, y) to the operator ∂t + L∗ in the sense of (2.5). Furthermore, a classical solution
v ∈ C∞p ((0, T )× Rn) to the Cauchy problem{

∂tv(t, x)+ Lv(t, x) = f (t, x), whenever (t, x) ∈ (0, T )× Rn,
v (T , x) = g(x), whenever x ∈ Rn, (2.7)

is given by

v(t, x) =
∫

Rn
Γ (t, x, T , y)g(y)dy−

∫ T

t

∫
Rn
Γ (t, x, s, y)f (s, y)dyds. (2.8)

The formula in (2.8) holds whenever there exists a positive constant M such that

|f (t, x)| ≤ MeM|x|
2
, |g(x)| ≤ MeM|x|

2
, (t, x) ∈ (0, T )× Rn. (2.9)

Furthermore, v in (2.8) is the unique solution to the problem in (2.7) in the class of all functions satisfying (2.9).
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Theorem 2.3. Assume (1.2) and (2.2). Let T > 0 be given and let f ∈ C∞p ((0, T ) × Rn), g ∈ C∞p (R
n). Let X(t) =

(X1(t), . . . , Xn(t))∗ be the stochastic process introduced in (1.3) and let v be given as in Theorem 2.2. Then v is uniquely
determined by

v(t, x) = E
[
g(X(T ))−

∫ T

t
f (s, X(s))ds|X(t) = x

]
. (2.10)

Proof of Theorems 2.2 and 2.3. These results are classical. For the theory of partial differential equations we refer to [17]
and for the derivation of the stochastic representation formula in (2.10) we refer to Theorem 5.7.6 in [18]. �

2.3. The Euler scheme for an extended system

Let (Ω,F , (Ft)0≤t≤T , P) be a probability space with a filtration (Ft)0≤t≤T generated by aWiener processW (t) ∈ Rn and
letD∞ =

⋂
k≥1

⋂
p≥1 Dk,p, whereDk,p are standard stochastic Sobolev spaces as introduced on page 27 in [19]. For the proof

of the following theorem we refer to Theorem 2.2.2 in [19].

Theorem 2.4. Let X(t), t ∈ [0, T ], be a stochastic process satisfying (1.3) and assume that µi
(
t, x, θµ

)
, σij (t, x, θσ ) ∈

C∞b (R+ × Rn × R). Then Xi(t) ∈ D∞ for all t ∈ [0, T ].

In the following analysis we make use of variations of the process X(t) up to fourth order and associated Euler
approximations. Theorem2.4 states thatXi(t) ∈ D∞, for all t ∈ [0, T ], and, in particular, this implies that the p-th variation of
the process X(t) = (X1(t), . . . , Xn(t))∗, with respect to x, exists for any p ∈ Z+. We denote, for t ∈ [0, T ], the p-th variation
of X(t) by X (p)(t) and, for 0 ≤ t ≤ s ≤ T , the first variation process X (1)(s) = X (1)(t, s) = (∂X (s|X(t) = x) /∂xi)ni=1, see
Section 2.3 in [19], solves the stochastic differential equation

dX (1)ij (s) = ∂βµi(s, X(s))X
(1)
βj (s)ds+ ∂βσiγ (s, X(s))X

(1)
βj (s)dWγ (s),

X (1)ij (t) = δij, (2.11)

where δij is the Kronecker delta. In particular, X (1)(·) is an n× n-matrix and X (1)(s) ∈ (D∞)n×n. Similarly, for 0 ≤ t ≤ s ≤ T ,
the second variation solves the stochastic differential equation

dX (2)ijl (s) =
[
∂βµi(s, X(s))X

(2)
βjl (s)+ ∂βγµi(s, X(s))X

(1)
βj (s)X

(1)
γ l (s)

]
ds

+

[
∂βσiγ (s, X(s))X

(2)
βjl (s)+ ∂βϕσiγ (s, X(s))X

(1)
βj (s)X

(1)
ϕl (s)

]
dWγ (s),

X (2)ijm (t) = 0. (2.12)

X (2)(·) is an n× n× n-matrix and X (2)(s) ∈ (D∞)n×n×n. We let

Z(s) = (X(s), X (1)(s), X (2)(s), X (3)(s), X (4)(s))∗, 0 ≤ t ≤ s ≤ T , (2.13)

be a vector containing the process X and its variations up to fourth order. As above we note that X (3)(·) is an n× n× n× n-
matrix and that X (4)(·) is an n×n×n×n×n-matrix. Hence the vector Z(s) contains ñ := n+n2+· · ·+n5 = n(n5−1)/(n−1)
elements. Moreover, the vector of variations Z(s) satisfies the following system of stochastic differential equations

dZ(s) = Λ(s, Z(s))ds+Σj(s, Z(s))dWj(s), 0 ≤ t ≤ s ≤ T ,

Z(t) = (x, In, 0, 0, 0)∗ := z (x) , (2.14)

where Λ and Σ are matrix valued functions. In (2.14) In denotes the n × n unit matrix. Note that Λ(s, z) =
(Λ1(s, z), . . . ,Λñ(s, z))∗ and that the matrixΣ has dimension ñ× n.
We next introduce the Euler scheme for the system defined in (2.14). Given a time horizon of T , we let {tk}Nk=0 define

a partition ∆ of the interval [0, T ], i.e. 0 = t0 < t1 < · · · < tN−1 < tN = T , and we define ∆tk = tk+1 − tk for
k ∈ {0, . . . ,N − 1}. Recall that the Euler scheme associated to the system in (1.3) was introduced in (1.8)–(1.9). In analogy
with (1.8)–(1.9), we define, for m ∈ {0, . . . ,N − 1}, the continuous Euler approximation of {Z(s) : 0 ≤ tm ≤ s ≤ T } =
{Z(tm, s) : 0 ≤ tm ≤ s ≤ T }, denoted

{
Z∆(s) : 0 ≤ tm ≤ s ≤ T

}
=

{
Z∆(tm, s) : 0 ≤ tm ≤ s ≤ T

}
, through the difference

equation

Z∆(tk+1) = Z∆(tk)+Λ
(
tk, Z∆ (tk)

)
∆tk +Σj

(
tk, Z∆ (tk)

)
∆Wj(tk),

Z∆(tm) = (x, In, 0, 0, 0)∗ = z (x) (2.15)

for k ∈ {m, . . . ,N − 1}. Furthermore, for general 0 ≤ tm ≤ s ≤ T , we have

Z∆(s) = Z∆(φ(s))+
∫ s

φ(s)
Λ(φ(r), Z∆(φ(r)))dr +

∫ s

φ(s)
Σj(φ(r), Z∆(φ(r)))dWj(r), (2.16)
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where φ(s) = sup{tk : tk ≤ s}. For 0 ≤ tm ≤ tk ≤ T , we write X (1),∆ij (tk) = X (1),∆ij (tm, tk) for the first
variation of X∆ with initial data X (1),∆ij (tm, tm) = δij and X

(2),∆
ijl (tk) = X (2),∆ijl (tm, tk) for the second variation of X∆

with initial data X (2),∆ijl (tm, tm) = 0. A similar notation will be used for the higher order variations of X∆. Note also that
Z∆(tk) = (X∆(tk), X (1),∆(tk), X (2),∆(tk), X (3),∆(tk), X (4),∆(tk)) for k ∈ {m, . . . ,N}.

3. An error expansion for the Cauchy problem

Assume that the assumptions of Theorem 2.3 are satisfied, let v be as in Theorem 2.3 and let α, |α| ≤ 4, be a multi-index.
Recall that the vector of variations {Z(s) : 0 ≤ t ≤ s ≤ T } was introduced in (2.14). Then, using the notation in (2.13), we
have

∂αv(t, x) = E
[
gα(Z(T ))−

∫ T

t
fα(s, Z(s))ds|Z(t) = z

]
, (3.1)

where z = z(x) and the functions gα and fα are composed of partial derivatives of g and f , respectively, up to order |α|
multiplied by polynomials, of degree at most |α|, defined using the components of the vector Z as coordinates. In particular,
by an explicit calculation,

∂iv(t, x) = E
[
∂βg(X(T ))X

(1)
βi (T )

]
− E

[∫ T

t
∂β f (s, X (s)) X

(1)
βi (s)ds

]
, (3.2)

conditioned on X (1)βi (t) = δβi, X(t) = x, and

∂ijv(t, x) = E
[
∂βg(X(T ))X

(2)
βij (T )+ ∂βγ g(X(T ))X

(1)
βi (T )X

(1)
γ j (T )

]
− E

[∫ T

t

(
∂β f (s, X(s))X

(2)
βij (s)+ ∂βγ f (s, X(s))X

(1)
βi (s)X

(1)
γ j (s)

)
ds
]
, (3.3)

conditioned on X (2)βij (t) = 0, X
(1)
βi (t) = δβi, X(t) = x. Hence

gi(Z) = ∂βg(X)X
(1)
βi , gij(Z) = ∂βg(X)X

(2)
βij + ∂βγ g(X)X

(1)
βi X

(1)
γ j , (3.4)

fi(t, Z) = ∂β f (t, X) X
(1)
βi , fij(t, Z) = ∂β f (t, X) X

(2)
βij + ∂βγ f (t, X) X

(1)
βi X

(1)
γ j .

Next we define

∆αv(tk, z) := E
[
gα(Z∆(T ))−

∫ T

tk
fα(φ(s), Z∆(φ(s)))ds|Z∆(tk) = z

]
, (3.5)

whenever k ∈ {0, 1, . . . ,N − 1}. We let G(z) and F(t, z) denote, respectively, the column vectors having an enumeration of
{gα(z)} and {fα(t, z)} as their components. Similarly, for k ∈ {0, 1, . . . ,N − 1} and z ∈ Rñ, we let V (tk, z) = VG,F (tk, z) and
V∆(tk, z) = V∆G,F (tk, z) be the column vectors having an enumeration of {∂αv(tk, z)} and {∆αv(tk, z)}, respectively, as their
components. Moreover, we let

∆∆
G,F (tk, z) := V (tk, z)− V

∆(tk, z), whenever k ∈ {0, 1, . . . ,N − 1}, z ∈ Rñ, (3.6)

and we note that∆∆
G,F (tk, z) is a column vector of the same dimensions as V (tk, z) and V

∆(tk, z). To continue we let

Dij(t, z) =
1
2
[ΣΣ∗]ij(t, z), whenever (t, z) ∈ R+ × Rñ, (3.7)

and

Λ∆(t, z) = Λ(φ(t), z), Σ∆
j (t, z) = Σj(φ(t), z), D∆ij (t, z) =

1
2
[Σ∆(Σ∆)∗]ij(t, z), (3.8)

whenever (t, z) ∈ R+ × Rñ. Furthermore, we write

L̃ = Λi(t, z)∂i + Dij(t, z)∂ij,

L̃∆ = Λ∆
i (t, z)∂i + D

∆
ij (t, z)∂ij. (3.9)

In this general setting we first derive the following representation formula for the time-discretization error∆∆G,F (tk, z).
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Lemma 3.1. Let T > 0 be given, let f ∈ C∞p ((0, T )×Rn), g ∈ C∞p (R
n) and assume that (1.2) and (2.2) hold. Let ∆∆G,F (tk, z) be

defined as in (3.6) whenever k ∈ {0, 1, . . . ,N − 1} and z ∈ Rñ. Then∆∆
G,F (tk, z) equals∫ T

tk
E
[
(L̃− L̃∆)V (t, Z∆(t))+ F

(
φ(t), Z∆(φ(t))

)
− F

(
t, Z∆(t)

)
|Z∆(tk) = z

]
dt. (3.10)

Proof. To prove the error representation, we first apply Itô’s formula to dV (t, Z∆(t))

dV (t, Z∆(t)) =
(
∂tV + L̃∆V

)
(t, Z∆(t))dt +Σ∆

ij (t, Z
∆(t))∂iV (t, Z∆(t))dWj(t). (3.11)

By Theorem 2.3, V solves the equation ∂tV + L̃V = F and hence we can eliminate the term ∂tV (t, Z∆(t)) in (3.11) and obtain

dV (t, Z∆(t))− F(t, Z∆(t))dt = (L̃∆ − L̃)V (t, Z∆(t))dt +Σ∆
ij (t, Z

∆(t))∂iV (t, Z∆(t))dWj(t). (3.12)

Integrating both sides of (3.12) and taking expectations we see, using standard arguments, that

E
[
V (T , Z∆(T ))|Z∆(tk) = z

]
− E[V

(
tk, Z∆ (tk)

)
|Z∆(tk) = z] −

∫ T

tk
E
[
F(t, Z∆(t))dt|Z∆(tk) = z

]
=

∫ T

tk
E[(L̃∆ − L̃)V

(
t, Z∆ (t)

)
|Z∆(tk) = z]dt. (3.13)

Furthermore,

E
[
V (T , Z∆(T ))|Z∆(tk) = z

]
− E[V

(
tk, Z∆ (tk)

)
|Z∆(tk) = z] = E

[
G(Z∆(T ))|Z∆(tk) = z

]
− V (tk, z)

= V∆(tk, z)+ E
[∫ T

tk
F(φ(s), Z∆(φ(s)))ds|Z∆(tk) = z

]
− V (tk, z). (3.14)

Now combining (3.13) and (3.14), the lemma follows readily. �

To proceed, we define

Γ
(k)
i = Λi(tk+1, Z

∆(tk+1))−Λi(tk, Z∆(tk)),

Γ
(k)
ij = Dij(tk+1, Z

∆(tk+1))− Dij(tk, Z∆(tk)), (3.15)

whenever k ∈ {0, 1, . . . ,N − 1}, i, j ∈ {1, . . . , ñ}. Next, we introduce

∆̃∆
G,F (tk, z) =

N−1∑
h=k

E
[
Γ
(h)
i ∂iV (th+1, Z∆(th+1))+ Γ

(h)
ij ∂ijV (th+1, Z

∆(th+1))
] ∆th
2

+

N−1∑
h=k

E
[
F
(
th, Z∆(th)

)
− F

(
th+1, Z∆(th+1)

)] ∆th
2
, (3.16)

conditioned on the event Z∆(tk) = z and, similarly,

∆̄∆
G,F (tk, z) =

N−1∑
h=k

E
[
Γ
(h)
i ∂iV∆(th+1, Z∆(th+1))Γ

(h)
ij ∂ijV

∆(th+1, Z∆(th+1))
] ∆th
2

+

N−1∑
h=k

E
[
F
(
th, Z∆(th)

)
− F

(
th+1, Z∆(th+1)

)] ∆th
2
, (3.17)

conditioned on the event Z∆(tk) = z. Equipped with this notation we derive the following lemma, which provides an
expansion of the error∆∆

G,F (tk, z)with ∆̄
∆
G,F (tk, z) as the leading order term.

Lemma 3.2. Let T > 0 be given, let f ∈ C∞p ((0, T ) × Rn), g ∈ C∞p (R
n) and assume that (1.2) and (2.2) hold. Let ∆∆G,F (tk, z),

∆̃∆G,F (tk, z) and ∆̄
∆
G,F (tk, z) be defined as in (3.6) and (3.16) and (3.17), respectively, whenever k ∈ {0, 1, . . . ,N − 1}, z ∈ Rñ.

Then

∆∆
G,F (tk, z)− ∆̃

∆
G,F (tk, z) =

N−1∑
h=k

O
(
(∆th)3

)
, (3.18)

∆̃∆
G,F (tk, z)− ∆̄

∆
G,F (tk, z) =

N−1∑
h=k

(
(∆th)2

N−1∑
p=h

O
(
(∆tp)2

))
, (3.19)
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which immediately implies that

∆∆
G,F (tk, z)− ∆̄

∆
G,F (tk, z) = O((∆∗N)

2), (3.20)

where∆∗N = max {∆t0,∆t1, . . . ,∆tN−1}.

Proof. Since all components of Λi, Dij, V , G and F are smooth and have polynomial growth, (3.18) follows by a standard
interpolation estimate, analogous to Lemma 2.3 in [15]. To prove (3.19), we first conclude, proceeding as in the proof of
Lemma 3.1, that

V
(
th, Z∆ (tk)

)
− V∆(th, Z∆(tk)) =

∫ T

th
E
[
H
(
t, Z∆(t)

)
|Fth

]
dt, (3.21)

where

H
(
t, Z∆(t)

)
= (L̃− L̃∆)V (t, Z∆(t))+ F

(
φ(t), Z∆ (φ (t))

)
− F

(
t, Z∆(t)

)
. (3.22)

The generator of the process Z∆(t) is L̃∆ and hence, for th ≤ tp ≤ t < tp+1,

E
[
H
(
t, Z∆(t)

)
|Fth

]
=

∫ t

tp
E
[
L̃∆H

(
s, Z∆(s)

)
|Fth

]
ds. (3.23)

Since all components of Λi, Λ∆
i , Dij, D

∆
ij , V , G and F are smooth and have polynomial growth, the integrand in (3.23) is

bounded and, hence, the right-hand side of (3.23) is of order O
(
∆tp

)
. Inserting this estimate into (3.21), we immediately

obtain

V
(
th, Z∆ (th)

)
− V∆

(
th, Z∆ (th)

)
=

N−1∑
p=h

O
((
∆tp

)2)
. (3.24)

The remainder of the proof of (3.19) now follows directly along the lines of the proof of Lemma 2.4 in [15]. �

Finally we note that if F ≡ 0, then

V∆G,0(tk, z) = E
[
G(Z∆(T ))|Z∆(tk) = z

]
, (3.25)

∆∆
G,0(tk, z) = E

[
G(Z(T ))− G(Z∆(T ))|Z(tk) = Z∆(tk) = z

]
, (3.26)

and

∆̄∆
G,0(tk, z) =

N−1∑
h=k

E
[
Γ
(h)
i ∂iV∆(th+1, Z∆(th+1))+ Γ

(h)
ij ∂ijV

∆(th+1, Z∆(th+1))
] ∆th
2
, (3.27)

conditioned on the event Z∆(tk) = z, with V∆ = V∆G,0.

4. Error expansions in a posteriori form

Let T > 0 be given, let f ∈ C∞p ((0, T ) × Rn), g ∈ C∞p (R
n) and assume that (1.2) and (2.2) hold. Let v̄g,f be the

solution to (2.7) for data given by g, f and parameter values (θµ, θσ ) = (0, 0). Furthermore, we let, as in the introduction,
{X̄(t) : t ∈ [0, T ]} solve (1.3) for parameter values (θµ, θσ ) = (0, 0) and we let {X̄∆(t) : t ∈ [0, T ]} be the corresponding
continuous Euler approximation introduced in (1.8)–(1.9). Moreover, in the following, we let

µ̄∆i (t, X̄
∆(t)) = µ̄i(φ(t), X̄∆(φ(t))), σ̄∆ij (t, X̄

∆(t)) = σ̄ij(φ(t), X̄∆(φ(t))),

ā∆ij (t, X̄
∆(t)) = āij(φ(t), X̄∆(φ(t))), (4.1)

whenever t ∈ [0, T ]. Recall that āij was introduced in (2.3). Let Z̄(t) be the vector defined in (2.13) based on X̄(t) and let
Z̄∆(t) be the Euler discretization of Z̄(t). Note that the first n components of the vector Z̄(t) introduced in (2.13) equal X̄(t)
and also that Z̄∆(t) = (X̄∆(t), X̄ (1),∆(t), X̄ (2),∆(t), X̄ (3),∆(t), X̄ (4),∆(t)). We define

v̄∆g,f (tk, x) = E
[
g(X̄∆(T ))−

∫ T

tk
f (φ(t), X̄∆(φ(t)))dt|X̄∆(tk) = x

]
, (4.2)

whenever k ∈ {0, 1, . . . ,N − 1} and we let

∆∆
g,f (tk, x) := v̄g,f (tk, x)− v̄

∆
g,f (tk, x), whenever k ∈ {0, 1, . . . ,N − 1}. (4.3)



572 K. Nyström, T. Önskog / Journal of Computational and Applied Mathematics 235 (2010) 563–592

Moreover, we let∆∆
g,f (x) := ∆

∆
g,f (0, x) and write

L̄ = µ̄i(t, x)∂i + āij (t, x) ∂ij,

L̄∆ = µ̄∆i (t, x)∂i + ā
∆
ij (t, x)∂ij. (4.4)

Then, arguing as in the proof of Lemma 3.1 it follows that∆∆
g,f (x) equals∫ T

0
E
[
(L̄− L̄∆)v̄g,f (t, X̄∆(t))+ f

(
φ(t), X̄∆(φ(t))

)
− f

(
t, X̄∆(t)

)
|X̄∆(0) = x

]
dt. (4.5)

To proceed, we let

ε̄
(k)
i = µ̄i(tk+1, X̄

∆(tk+1))− µ̄i(tk, X̄∆(tk)),

ε̄
(k)
ij = āij(tk+1, X̄

∆(tk+1))− āij(tk, X̄∆(tk)), (4.6)

whenever k ∈ {0, 1, . . . ,N − 1}, i, j ∈ {1, . . . , n}, and we introduce

∆̄∆
g,f (x) =

N−1∑
k=0

E
[
ε̄
(k)
i ∂iv̄

∆
g,f (tk+1), X̄

∆(tk+1)+ ε̄
(k)
ij ∂ijv̄

∆
g,f (tk+1, X̄

∆(tk+1))
] ∆tk
2

+

N−1∑
k=0

E
[
f
(
tk, X̄∆(tk

)
)− f

(
tk+1, X̄∆(tk+1)

)] ∆tk
2
, (4.7)

conditioned on the event X̄∆(0) = x. Now, by reproducing the proof of Lemma 3.2, we arrive at the following lemma.

Lemma 4.1. Let T > 0 be given, let f ∈ C∞p ((0, T ) × Rn), g ∈ C∞p (R
n) and assume that (1.2) and (2.2) hold. Let v̄g,f be the

solution to (2.7) for data given by g, f and parameter values (θµ, θσ ) = (0, 0), let v̄∆g,f and∆
∆
g,f be defined as in (4.2) and (4.3)

respectively. Furthermore, let ∆̄∆g,f be defined as in (4.7). Then,

∆∆
g,f (x)− ∆̄

∆
g,f (x) = O((∆∗N)

2), (4.8)

where∆∗N = max {∆t0,∆t1, . . . ,∆tN−1}.

4.1. Discrete dual functions

Recall that

ū∆(tk, x) = E
[
g(X̄∆(T ))|X̄∆(tk) = x

]
. (4.9)

In the following we introduce appropriate dual functions associated to g , X̄∆ and related to ū∆. In particular, a simple
generalization of Lemma 2.5 in [15] shows that

∂iū∆(tk, X̄∆(tk)) = E[ψ̄i(tk)|Ftk ],

∂ijū∆(tk, X̄∆(tk)) = E[ψ̄
(1)
ij (tk)|Ftk ],

∂ijlū∆(tk, X̄∆(tk)) = E[ψ̄
(2)
ijl (tk)|Ftk ],

∂ijlqū∆(tk, X̄∆(tk)) = E[ψ̄
(3)
ijlq (tk)|Ftk ], (4.10)

for i, j, l, q ∈ {1, . . . , n} and k ∈ {0, . . . ,N}. The functions ψ̄ , ψ̄ (1), ψ̄ (2) and ψ̄ (3) are referred to as dual functions and can
be explicitly calculated by means of certain backwards in time difference equations. In particular, let

ci(tk, x) = xi + µ̄i(tk, x)∆tk + σ̄iβ(tk, x)∆Wβ(tk), (4.11)

whenever i ∈ {1, . . . , n}, k ∈ {0, . . . ,N − 1} and x ∈ Rn. The discrete dual function ψ̄ , associated to g and X̄∆, is then
recursively defined as

ψ̄i(tN) = ∂ig(X̄∆(tN)),

ψ̄i(tk) = ∂icβ(tk, X̄∆(tk))ψ̄β(tk+1), (4.12)

whenever i ∈ {1, . . . , n} and k ∈ {0, . . . ,N − 1}. The second dual function ψ̄ (1), which is the first variation of ψ̄ , satisfies

ψ̄
(1)
ij (tN) = ∂ijg(X̄

∆(tN)),

ψ̄
(1)
ij (tk) = ∂icβ(tk, X̄

∆(tk))∂jcγ (tk, X̄∆(tk))ψ̄
(1)
βγ (tk+1)+ ∂ijcβ(tk, X̄

∆(tk))ψ̄β(tk+1), (4.13)
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for i, j ∈ {1, . . . , n} and k ∈ {0, . . . ,N − 1}. Analogously we can, by differentiating ψ̄ (1), derive the following recursive
relations for the third dual function ψ̄ (2), for i, j, l ∈ {1, . . . , n} and k ∈ {0, . . . ,N − 1},

ψ̄
(2)
ijl (tN) = ∂ijlg(X̄

∆(tN)),

ψ̄
(2)
ijl (tk) = ∂icβ(tk, X̄∆(tk))∂jcγ (tk, X̄∆(tk))∂lcϕ(tk, X̄∆(tk))ψ̄

(2)
βγ ϕ(tk+1)

+ ∂ilcβ(tk, X̄∆(tk))∂jcγ (tk, X̄∆(tk))ψ̄
(1)
βγ (tk+1)+ ∂icβ(tk, X̄

∆(tk))∂jlcγ (tk, X̄∆(tk))ψ̄
(1)
βγ (tk+1)

+ ∂ijcβ(tk, X̄∆(tk))∂lcγ (tk, X̄∆(tk))ψ̄
(1)
βγ (tk+1)+ ∂ijlcβ(tk, X̄

∆(tk))ψ̄β(tk+1). (4.14)

Finally, a similar calculation also yields a recursive scheme for the calculation of the fourth dual function ψ̄ (3), but we omit
the details.

4.2. Calculation of ū

In this section we apply the general theory above to the special case of calculating ū. This corresponds to setting f = 0
in the above deductions and we emphasize that the results in this section has previously been derived in [15]. To proceed
we see, by applying the results above to the case f = 0, that

ū(x) = ū(0, x) = u(0, x, (0, 0)) = ū∆(x)+ ∆̄∆
g,0(x)+ R̄

∆
d (4.15)

where

∆̄∆
g,0(x) =

N−1∑
k=0

E
[
ε̄
(k)
i ψ̄i(tk+1)+ ε̄

(k)
ij ψ̄

(1)
ij (tk+1)

] ∆tk
2
, (4.16)

and R̄∆d = O((∆∗N)
2). It is standard to determine ū∆(x) by means of the Monte Carlo estimator

ū∆,M(x) =
1
M

M∑
m=1

g(X̄∆(T , ωm)), (4.17)

whereM is some positive integer and {ωm}Mm=1 representsM realizations of the discrete Euler approximation of {X̄(t) : t ∈
[0, T ]}. In particular, we see that

ū(x) = ū∆,M(x)+ ū(x)− ū∆(x)︸ ︷︷ ︸
Ē∆d (x)

+ ū∆(x)− ū∆,M(x)︸ ︷︷ ︸
Ē∆,Ms (x)

, (4.18)

where Ē∆d (x) and Ē
∆,M
s (x) represent the time-discretization error and the statistical error, respectively. For k ∈ {0, . . . ,N−1}

andm ∈ {1, . . . ,M}, we define

ρ̄k(ωm) =
ε̄
(k)
i (ωm)ψ̄i(tk+1, ωm)+ ε̄

(k)
ij (ωm)ψ̄

(1)
ij (tk+1, ωm)

2∆tk
. (4.19)

Then, using (4.16) and (4.18), we see that

Ē∆d (x) = Ē
∆,M
d (x)+ Ē∆,Md,s (x)+ R̄∆d , (4.20)

where

Ē∆,Md (x) =
1
M

N−1∑
k=0

M∑
m=1

ρ̄k(ωm)(∆tk)2, (4.21)

and

Ē∆,Md,s (x) =
N−1∑
k=0

E [ρ̄k (·)] (∆tk)2 −
1
M

N−1∑
k=0

M∑
m=1

ρ̄k(ωm)(∆tk)2. (4.22)

Furthermore, by the central limit theorem, we have

Ē∆,Md,s =
N−1∑
k=0

∫ tk+1

tk
Ik,Mdt, (4.23)

where, for each k ∈ {0, 1, . . . ,N−1}, the random variable
√
MIk,M converges asM →∞ to a normally distributed random

variable with zero mean and variance

σ 2k = Var
[
ε̄
(k)
i ψ̄i(tk+1)

]
+ Var

[
ε̄
(k)
ij ψ̄

(1)
ij (tk+1)

]
. (4.24)
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4.3. Calculation of ∂θµu and ∂θσ u

Assume (1.2) and (2.2), let T > 0 be given, let g ∈ C∞p (R
n) and let u = u(t, x) = u(t, x, θ) be the unique solution to (1.6)

defined with respect to µ and σ . Similarly, let ū = ū(t, x) be the unique solution to (1.6) defined with respect to µ̄ and σ̄ .
Then, formally differentiating (1.6) with respect to θµ and θσ , we see that ∂θµu(t, x, (0, 0)) and ∂θσ u(t, x, (0, 0)) satisfy

∂t(∂θµu)(t, x)+ L̄(∂θµu)(t, x) = −µ̃i (t, x) ∂iū(t, x),

∂t(∂θσ u)(t, x)+ L̄(∂θσ u)(t, x) = −
1
2
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij (t, x) ∂ijū(t, x), (4.25)

whenever (t, x) ∈ (0, T )× Rn, and

∂θµu (T , x) = ∂θσ u (T , x) = 0, (4.26)

whenever x ∈ Rn. By (4.25) and (4.26), it is clear that (∂θµu)(t, x, (0, 0)) and (∂θσ u)(t, x, (0, 0)) solve, respectively, the
problem stated in Theorem 2.2 with g ≡ 0 and with right-hand sides

Fµ(t, x) := f (t, x) = −µ̃i (t, x) ∂iū(t, x),

Fσ (t, x) := f (t, x) = −
1
2
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij (t, x) ∂ijū(t, x), (4.27)

respectively. Recall that u solves the same problem but with Cauchy data defined by g and with f ≡ 0. An application of
Theorem 2.3 now yield the following stochastic representation formulas for (∂θµu)(t, x, (0, 0)) and (∂θσ u)(t, x, (0, 0)).

(∂θµu)(t, x, (0, 0)) = E
[
−

∫ T

t
Fµ(s, X(s))ds|X(t) = x

]
,

(∂θσ u)(t, x, (0, 0)) = E
[
−

∫ T

t
Fσ (s, X(s))ds|X(t) = x

]
. (4.28)

Hence, by (4.3) and (4.8) we deduce that, in our context,

(∂θµu)(0, x, (0, 0)) = v̄
∆
0,Fµ (x)+ ∆̄

∆
0,Fµ(x)+ R̄

∆
µ,d,

(∂θσ u)(0, x, (0, 0)) = v̄
∆
0,Fσ (x)+ ∆̄

∆
0,Fσ (x)+ R̄

∆
σ ,d, (4.29)

where R̄∆µ,d + R̄
∆
σ ,d = O((∆∗N)

2), and furthermore, based on (4.2), (4.7) and (4.27), we have

v̄∆0,Fµ (x) =
N−1∑
k=0

E
[
µ̃i
(
tk, X̄∆(tk)

)
∂iū
(
tk, X̄∆(tk)

)]
∆tk,

v̄∆0,Fσ (x) =
1
2

N−1∑
k=0

E
[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij

(
tk, X̄∆(tk)

)
∂ijū

(
tk, X̄∆(tk)

)]
∆tk, (4.30)

and

∆̄∆
0,Fµ(x) =

N−1∑
k=0

E
[
ε̄
(k)
i ∂iv̄

∆
0,Fµ(tk+1, X̄

∆(tk+1))+ ε̄
(k)
ij ∂ijv̄

∆
0,Fµ(tk+1, X̄

∆(tk+1))
] ∆tk
2

+

N−1∑
k=0

E
[
[µ̃i∂iū](tk+1, X̄∆(tk+1))− [µ̃i∂iū](tk, X̄∆(tk))

] ∆tk
2
,

∆̄∆
0,Fσ (x) =

N−1∑
k=0

E
[
ε̄
(k)
i ∂iv̄

∆
0,Fσ (tk+1, X̄

∆(tk+1))+ ε̄
(k)
ij ∂ijv̄

∆
0,Fσ (tk+1, X̄

∆(tk+1))
] ∆tk
2

+

N−1∑
k=0

E
[
[[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij∂ijū](tk+1, X̄∆(tk+1))− [[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij∂ijū](tk, X̄∆(tk))

] ∆tk
4
, (4.31)

conditioned on the event X̄∆(0) = x. For v ∈ {ū, ū∆}, we introduce the notation

Ā∆Fµ,k(v) = µ̃i
(
tk, X̄∆(tk)

)
∂iv
(
tk, X̄∆(tk)

)
,

Ā∆Fσ ,k(v) = [σ̄ σ̃
∗
+ σ̃ σ̄ ∗]ij

(
tk, X̄∆(tk)

)
∂ijv

(
tk, X̄∆(tk)

)
, (4.32)
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and, as a consequence, (4.30) can be neatly rewritten as

v̄∆0,Fµ (x) =
N−1∑
k=0

E
[
Ā∆Fµ,k(ū)|X̄

∆(0) = x
]
∆tk,

v̄∆0,Fσ (x) =
N−1∑
k=0

E
[
Ā∆Fσ ,k(ū)|X̄

∆(0) = x
] ∆tk
2
. (4.33)

Moreover, arguing as in (3.2)–(3.4), we can calculate the first and second order derivatives of v̄∆0,Fµ(tk+1, X̄
∆(tk+1)) and

v̄∆0,Fσ (tk+1, X̄
∆(tk+1)) explicitly, conditioned on the event X̄∆(0) = x. Indeed, introducing, for v ∈ {ū, ū∆}, the notation

B̄∆Fµ,k(v) = µ̃i(tk+1, X̄
∆(tk+1))∂iv(tk+1, X̄∆(tk+1))− µ̃i(tk, X̄∆(tk))∂iv(tk, X̄∆(tk)),

B̄∆Fσ ,k(v) = [σ̄ σ̃
∗
+ σ̃ σ̄ ∗]ij(tk+1, X̄∆(tk+1))∂ijv(tk+1, X̄∆(tk+1))− [σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij(tk, X̄∆(tk))∂ijv(tk, X̄∆(tk)), (4.34)

C̄∆Fµ,k,h(v) = ε̄
(k)
i ∂l[µ̃r1∂r1v](th, X̄

∆(th))X̄
(1),∆
li (tk+1, th)+ ε̄

(k)
ij ∂l[µ̃r1∂r1v](th, X̄

∆(th))X̄
(2),∆
lij (tk+1, th)

+ ε̄
(k)
ij ∂lm[µ̃r1∂r1v](th, X̄

∆(th))X̄
(1),∆
li (tk+1, th)X̄

(1),∆
mj (tk+1, th),

C̄∆Fσ ,k,h(v) = ε̄
(k)
i ∂l[[σ̄ σ̃

∗
+ σ̃ σ̄ ∗]r1r2∂r1r2v](th, X̄

∆(th))X̄
(1),∆
li (tk+1, th)

+ ε̄
(k)
ij ∂l[[σ̄ σ̃

∗
+ σ̃ σ̄ ∗]r1r2∂r1r2v](th, X̄

∆(th))X̄
(2),∆
lij (tk+1, th)

+ ε̄
(k)
ij ∂lm[[σ̄ σ̃

∗
+ σ̃ σ̄ ∗]r1r2∂r1r2v](th, X̄

∆(th))X̄
(1),∆
li (tk+1, th)X̄

(1),∆
mj (tk+1, th), (4.35)

we deduce that (4.31) can be rewritten as

∆̄∆
0,Fµ(x) =

N−1∑
k=0

E
[
B̄∆Fµ,k(ū)

] ∆tk
2
+

N−1∑
k=0

N−1∑
h=k+1

E
[
E
[
C̄∆Fµ,k,h(ū)|Z̄

∆ (tk+1) = z
(
X̄∆(tk+1)

)]] ∆th∆tk
2

,

∆̄∆
0,Fσ (x) =

N−1∑
k=0

E
[
B̄∆Fσ ,k(ū)

] ∆tk
4
+

N−1∑
h=k+1

E
[
E
[
C̄∆Fσ ,k,h(ū)|Z̄

∆ (tk+1) = z
(
X̄∆(tk+1)

)]] ∆th∆tk
4

, (4.36)

conditioned on X̄∆(0) = x. For the remainder of this section we consider, for the sake of brevity, only the calculation of
(∂θσ u)(0, x, (0, 0)). The calculation of (∂θµu)(0, x, (0, 0)) proceeds analogously. Then, to start with, combining (4.29), (4.33)
and (4.36), we see that (∂θσ u)(0, x, (0, 0)) equals

N−1∑
k=0

E
[
Ā∆Fσ ,k(ū)|X̄

∆(0) = x
] ∆tk
2
+

N−1∑
k=0

E
[
B̄∆Fσ ,k(ū)|X̄

∆(0) = x
] ∆tk
4

+

N−1∑
k=0

N−1∑
h=k+1

E
[
E
[
C̄∆Fσ ,k,h(ū)|Z̄

∆ (tk+1) = z
(
X̄∆(tk+1)

)]
|X̄∆(0) = x

] ∆th∆tk
4
+ O((∆∗N)

2). (4.37)

To find a computable expansion, in a posteriori form, of (∂θσ u)(0, x, (0, 0)) and the time-discretization error produced, we
have to replace ū by ū∆ in (4.37). To do this we first note, simply by using linearity, that

E
[
Ā∆Fσ ,k(ū)|X̄

∆(0) = x
]
= E

[
Ā∆Fσ ,k(ū

∆)|X̄∆(0) = x
]
+ E

[
Ā∆Fσ ,k(ū− ū

∆)|X̄∆(0) = x
]
, (4.38)

and analogously for the second and third term in (4.37). Hence the three terms in (4.37) can be written as a sum of three
terms containing ū∆ and three terms containing ū − ū∆. The terms containing ū∆ are computable in a posteriori form and
can, by means of (4.10), easily be expressed using the discrete dual functions ψ̄ , ψ̄ (1), ψ̄ (2) and ψ̄ (3) defined in (4.12)–(4.14).
Concerning the terms containing ū−ū∆, we first note that the ε̄-factors in C̄∆Fσ ,k,h give rise to a termof orderO

(
∆∗N

)
, implying

that the term including C̄∆Fσ ,k,h(ū− ū
∆) is of order O((∆∗N)

2). Similarly, since B̄∆Fσ ,k can be expanded as[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij(tk+1, X̄∆(tk+1))− [σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij(tk, X̄∆(tk))

]
∂ijv

(
tk+1, X̄∆ (tk+1)

)
+ [σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij(tk, X̄∆(tk))

[
∂ijv

(
tk+1, X̄∆ (tk+1)

)
− ∂ijv

(
tk, X̄∆ (tk)

)]
, (4.39)

and since the regularity assumptions assert that the differences in brackets on the right-hand side of (4.39) give rise to
terms which are of orderO

(
∆∗N

)
, we conclude that the term including B̄∆Fσ ,k(ū− ū

∆) is of orderO((∆∗N)
2) as well. It remains

to consider the term involving Ā∆Fσ ,k(ū − ū
∆). However, this term can be handled as follows. By elementary properties of

conditional expectations, we obtain

E
[
Ā∆Fσ ,k(ū− ū

∆)|X̄∆(0) = x
]
= E

[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij

(
tk, X̄∆(tk)

)
∂ij(ū− ū∆)

(
tk, X̄∆(tk)

)
|X̄∆(0) = x

]
= E

[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij

(
tk, X̄∆(tk)

)
E
[
∂ij(ū− ū∆)

(
tk, X̄∆(tk)

)
|Z̄∆ (tk) = z

(
X̄∆(tk)

)]
|X̄∆(0) = x

]
. (4.40)
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Moreover, using (3.26) and (3.27), we have

E
[
∂ij(ū− ū∆)

(
tk, X̄∆(tk)

)
|Z̄∆ (tk) = z

(
X̄∆(tk)

)]
= O((∆∗N)

2)+

N−1∑
h=k

E
[
Γ̄
(h)
l ∂lV̄

k,∆
ij

(
th+1, Z̄∆(th+1)

)
|Z̄∆ (tk) = z

(
X̄∆(tk)

)] ∆th
2

+

N−1∑
h=k

E
[
Γ̄
(h)
lm ∂lmV̄

k,∆
ij

(
th+1, Z̄∆(th+1)

)
|Z̄∆ (tk) = z

(
X̄∆(tk)

)] ∆th
2
, (4.41)

where

V̄ k,∆ij
(
th+1, Z̄∆(th+1)

)
= ∂βg(X̄∆(th+1))X̄

(2),∆
βij (tk,th+1)+ ∂βγ g(X̄∆(th+1))X̄

(1),∆
βi (tk, th+1)X̄

(1),∆
γ j (tk, th+1), (4.42)

and the terms Γ̄ (h)
l and Γ̄ (h)

lm are determined by replacing Z
∆ by Z̄∆ in (3.15). The derivatives of V̄ k,∆ij can be computed by

means of first and second order dual function for the extended system Z̄∆. As we are only interested in first and second
order derivatives of the function V̄ k,∆ij it suffices to consider the subset of components of the vector

Z̄∆ (tk, th) =
(
X̄∆ (th) , X̄ (1),∆ (tk, th) , X̄ (2),∆ (tk, th) , X̄ (3),∆ (tk, th) , X̄ (4),∆ (tk, th)

)∗
which coincides with

(
X̄∆ (th) , X̄ (1),∆ (tk, th) , X̄ (2),∆ (tk, th)

)∗
. Hence, with a slight abuse of notation, we shall, in the

following, let Z̄∆ (th) denote the vector(
X̄∆ (th) , X̄ (1),∆ (tk, th) , X̄ (2),∆ (tk, th)

)∗
and we note that this vector contains n̂ = n+ n2 + n3 = n(n3 − 1)/(n− 1) elements. Naturally Z̄∆ (th) can be considered
as consisting of three blocks of components and in the following we, for clarity, treat the three blocks of components of Z̄∆

separately in the definition of the dual functions. Let i, j and k be the indices in the definition of V̄ k,∆ij . Then, for i, j and k
fixed, V̄ k,∆ij gives rise to three sets of first order dual functions(

(ξ̄ kij )
0
a (ξ̄ kij )

1
ab (ξ̄ kij )

2
abc

)
(4.43)

where a, b, c ∈ {1, . . . , n}. In particular, the sets (ξ̄ kij )
0
a , (ξ̄

k
ij )
1
ab and (ξ̄

k
ij )
2
abc relate to X̄

∆, X̄ (1),∆, and X̄ (2),∆ respectively.
Similarly, for i, j and k fixed, V̄ k,∆ij gives rise to nine sets of second order dual functions, (ξ̄ kij )

00
a,d (ξ̄ kij )

01
a,de (ξ̄ kij )

02
a,def

(ξ̄ kij )
10
ab,d (ξ̄ kij )

11
ab,de (ξ̄ kij )

12
ab,def

(ξ̄ kij )
20
abc,d (ξ̄ kij )

21
abc,de (ξ̄ kij )

22
abc,def

 , (4.44)

for a, b, c, d, e, f ∈ {1, . . . , n}. Note that in (4.43) and (4.44) the number of elements are of the order n3 and n6, respectively,
and the calculation of the second order dual functions in (4.44) may seem prohibitively extensive and expensive for large
n. However, in many application the ‘matrix’ of dual functions in (4.44) turns out to be very sparse in the sense that many
entries are zero. In particular, in our example in Section 6 concerning the LIBOR market models the number of nonzero
entries turns out to be of the order n2 instead of n6. To get a more thorough understanding of the complexity of the set of
elements in (4.43) and (4.44) we refer the reader to the examples in Sections 5 and 6. To continue we, in the following, let
(x, x1, x2) denote an n̂-dimensional vector describing the components of the vector

(
X̄∆, X̄ (1),∆, X̄ (2),∆

)∗
. Equippedwith this

notation we note that in the extended system the counterpart of (4.11) are the three equations

w0r
(
th, x, x1, x2

)
= xr + µ̄r(th, x)∆th + σ̄rβ(th, x)∆Wβ(th), (4.45)

w1rs
(
th, x, x1, x2

)
= x1rs + ∂γ µ̄r(th, x)x

1
γ s∆th + ∂γ σ̄rβ(th, x)x

1
γ s∆Wβ(th), (4.46)

w2rst
(
th, x, x1, x2

)
= x2rst +

(
∂γ µ̄r(th, x)x2γ st + ∂γ ϕµ̄r(th, x)x

1
γ sx
1
ϕt

)
∆th

+
(
∂γ σ̄rβ(th, x)x2γ st + ∂γ ϕ σ̄rβ(th, x)x

1
γ sx
1
ϕt

)
∆Wβ(th). (4.47)

Now, the first order dual function (ξ̄ kij )
0
a is defined by the recursive relation

(ξ̄ kij )
0
a(T ) = ∂aV̄

k,∆
ij

(
T , Z̄∆(T )

)
,

(ξ̄ kij )
0
a (th) = ∂aw

0
r

(
th, Z̄∆ (th)

)
(ξ̄ kij )

0
r (th+1)+ ∂aw

1
rs

(
th, Z̄∆ (th)

)
(ξ̄ kij )

1
rs (th+1)

+ ∂aw
2
rst

(
th, Z̄∆ (th)

)
(ξ̄ kij )

2
rst (th+1) , (4.48)
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for h < N . Moreover, analogous relations hold for (ξ̄ kij )
1
ab and (ξ̄

k
ij )
2
abc . To define the second order dual function (ξ̄

k
ij )
00
a,d, we

note that

(ξ̄ kij )
00
a,d(T ) = ∂adV̄

k,∆
ij

(
T , Z̄∆(T )

)
, (4.49)

and that (ξ̄ kij )
00
a,d (th), for h < N , equals

∂aw
0
r

(
th, Z̄∆ (th)

)
∂dw

0
u

(
th, Z̄∆ (th)

)
(ξ̄ kij )

00
r,u (th+1)+ ∂aw

0
r

(
th, Z̄∆ (th)

)
∂dw

1
uv

(
th, Z̄∆ (th)

)
(ξ̄ kij )

01
r,uv (th+1)

+ ∂aw
0
r

(
th, Z̄∆ (th)

)
∂dw

2
uvw

(
th, Z̄∆ (th)

)
(ξ̄ kij )

02
r,uvw (th+1)+ ∂aw

1
rs

(
th, Z̄∆ (th)

)
∂dw

0
u

(
th, Z̄∆ (th)

)
(ξ̄ kij )

10
rs,u (th+1)

+ ∂aw
1
rs

(
th, Z̄∆ (th)

)
∂dw

1
uv

(
th, Z̄∆ (th)

)
(ξ̄ kij )

11
rs,uv (th+1)+ ∂aw

1
rs

(
th, Z̄∆ (th)

)
∂dw

2
uvw

(
th, Z̄∆ (th)

)
(ξ̄ kij )

12
rs,uvw (th+1)

+ ∂aw
2
rst

(
th, Z̄∆ (th)

)
∂dw

0
u

(
th, Z̄∆ (th)

)
(ξ̄ kij )

20
rst,u (th+1)+ ∂aw

2
rst

(
th, Z̄∆ (th)

)
∂dw

1
uv

(
th, Z̄∆ (th)

)
(ξ̄ kij )

21
rst,uv (th+1)

+ ∂aw
2
rst

(
th, Z̄∆ (th)

)
∂dw

2
uvw

(
th, Z̄∆ (th)

)
(ξ̄ kij )

22
rst,uvw (th+1)+ ∂a∂dw

0
r

(
th, Z̄∆ (th)

)
(ξ̄ kij )

0
r (th+1)

+ ∂a∂dw
1
rs

(
th, Z̄∆ (th)

)
(ξ̄ kij )

1
rs (th+1)+ ∂a∂dw

2
rst

(
th, Z̄∆ (th)

)
(ξ̄ kij )

2
rst (th+1) . (4.50)

Furthermore, analogous relations hold for the other eight blocks of dual functions of second order. Using the counterpart of
(4.10) associated to the dual functions of the extended system, we obtain

E
[
∂ij(ū− ū∆)

(
tk, X̄∆(tk)

)
|Z̄∆ (tk) = z

(
X̄∆(tk)

)]
=

N−1∑
h=k

(
µ̄a(th+1, X̄∆(th+1))− µ̄a(th, X̄∆(th))

)
(ξ̄ kij )

0
a (th+1)

∆th
2
+
{
two sums containing (ξ̄ kij )

1
ab and (ξ̄

k
ij )
2
abc

}
+

N−1∑
h=k

(
āad(th+1, X̄∆(th+1))− āad(th, X̄∆(th))

)
(ξ̄ kij )

00
a,d (th+1)

∆th
2
+
{
eight sums containing (ξ̄ kij )

01
a,de,

(ξ̄ kij )
02
a,def , (ξ̄

k
ij )
10
ab,d, (ξ̄

k
ij )
11
ab,de, (ξ̄

k
ij )
12
ab,def , (ξ̄

k
ij )
20
abc,d, (ξ̄

k
ij )
21
abc,de and (ξ̄

k
ij )
22
abc,def

}
, (4.51)

In particular, inserting (4.51) into (4.40), we obtain an expression for (4.40) which is computable in a posteriori form. To
conclude, we have shown that

(∂θσ u)(0, x, (0, 0)) = ū
∆
σ (x)+ Ē

∆
σ ,d (x)+ R̄

∆
σ ,d, (4.52)

where

ū∆σ (x) =
N−1∑
k=0

E
[
Ā∆Fσ ,k(ū

∆)|X̄∆(0) = x
] ∆tk
2
=

N−1∑
k=0

E
[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij

(
tk, X̄∆(tk)

)
ψ̄
(1)
ij (tk) |X̄

∆(0) = x
] ∆tk
2
, (4.53)

Ē∆σ ,d (x) equals

N−1∑
k=0

E
[
2Ā∆Fσ ,k(ū− ū

∆)+ B̄∆Fσ ,k(ū
∆)|X̄∆(0) = x

] ∆tk
4

+

N−1∑
k=0

N−1∑
h=k+1

E
[
E
[
C̄∆Fσ ,k,h(ū

∆)|Z̄∆ (tk+1) = z
(
X̄∆(tk+1)

)]
|X̄∆(0) = x

] ∆th∆tk
4

. (4.54)

and R̄∆σ ,d = O((∆∗N)
2). As noted above Ē∆σ ,d can be written down explicitly in a posteriori form. An analogous representation

holds for (∂θµu)(0, x, (0, 0)) aswell. Finally replacing the expectationswith averages over a finite set of simulations {ωm}
M
m=1

we obtain (1.11). This completes the proof of (1.11)–(1.13).

4.4. Controlling statistical errors

To discuss how to control the statistical errors in the calculation above we first consider a general random variable Y
defined on a probability space (Ω,F , P) andwe let {Y (ωm)}Mm=1,ωm ∈ Ω , denoteM independent samples of Y . LetA(M, Y )
and S(M, Y ) denote the sample average and the sample standard deviation, respectively,

A(M, Y ) =
1
M

M∑
j=1

Y (ωj), S(M, Y ) =
(
A(M, Y 2)− (A(M, Y ))2

)1/2
. (4.55)

Moreover, let σ = (E(|Y − E(Y )|2))1/2 and assume that λ = 1
σ
(E(|Y − E(Y )|3))1/3 <∞. Define

ZM =
A(M, Y )− E(Y )

σ/
√
M

, (4.56)
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and let FZM (z) = P(ZM ≤ z) be the cumulative distribution function of ZM . Similarly let Φ(z), z ∈ R, be the cumulative
distribution function of a standard normal random variablewith zeromean and unit variance. By the Berry–Esséen theorem,
see for example Theorem 2.4.10 in [20], we see that

sup
z∈R
|FZM (z)− Φ(z)| ≤

3λ3
√
M
. (4.57)

In particular, if we introduce the error ES(M, Y ) := E(Y )−A(M, Y ) then

P
(
|ES(M, Y )| ≤ c0

σ
√
M

)
≥ 2Φ(c0)− 1− 2 sup

z∈R
|FZM (x)− Φ(z)|. (4.58)

LetM = β2λ6 where β � 1 and let ζ be defined through the relationΦ(c0) = ζ . Then, combining the estimates in the last
two displays we see that

P
(
|ES(M, Y )| ≤ c0

σ
√
M

)
≥ 2ζ − 1− 6β−1. (4.59)

In particular, if we let β2 � 14400 and c0 ≥ 1.96 then P
(
|ES(M, Y )| ≤ c0 σ

√
M

)
≥ 0.90. Finally, using S(M, Y ) as an

approximation of σ we can ensure that

|ES(M, Y )| ≤ ES(M, Y ) := c0
S(M, Y )
√
M

(4.60)

with probability close to one. To apply this general theory to the calculation of ū we let Y (ωm) = g(X∆(T , ωm)), for
j = 1, . . . ,M , where M is sufficiently large. Then, from the discussion above it follows that the statistical error has the
upper bound

Ē∆,Ms (x) ≤
c0
√
M

S
(
M, g(X∆(T , ·))

)
, (4.61)

with probability close to one. The same argument can be applied to Ē∆,Mµ,s (x) and Ē
∆,M
σ ,s (x). Moreover, due to (4.22), Ē

∆,M
d,s can

be handled by setting Y (ωm) =
∑N−1
k=0 ρ̄k (ωm) (∆tk)

2. Then,

Ē∆,Md,s ≤
c0
√
M

S

(
M,

N−1∑
k=0

ρ̄k (·) (∆tk)2
)
. (4.62)

4.5. An adaptive algorithm to control errors

Firstly, focusing on the calculation of ū we now outline, equipped with the error expansions for Ē∆,Md , Ē∆,Md,s and Ē
∆,M
s in

(4.21), (4.62) and (4.61), respectively, the adaptive algorithm for deterministic time steps proposed in [15]. We begin by
calculating Minit trajectories of (1.8) using the standard Euler approximation on a uniform mesh of Ninit time steps. Using
these trajectories, we calculate the errors Ē∆,Md and Ē∆,Md,s by means of (4.21) and (4.62). If Ē

∆,M
d,s is larger than some given

tolerance, we discard theMinit trajectories and generateM � Minit new trajectories on the same mesh and if Ē
∆,M
d is larger

than some given tolerance, we refine the time steps where the time-discretization error is too large. This process is then
iterated until Ē∆,Md and Ē∆,Md,s are sufficiently small. As the final step, (4.61) is used to estimate the statistical error. If the
statistical error exceeds some given tolerance, theM trajectories are discarded andM ′ � M new trajectories are generated
on the refined mesh. This process is then iterated until the statistical error is sufficiently low. For details we refer to Section
5.3 in [15]. Secondly, focusing on the calculation of ∂θµu and ∂θσ uwe see, by analogy, that the same algorithm, together with
(1.11)–(1.13), can be used to adaptively control the error in the calculation of the sensitivities.

5. A numerical benchmark example

In this sectionwe supply a simple one-dimensional benchmark example forwhich u and the sensitivities can be explicitly
calculated. This example serves as a stylized illustration of the techniques involved and we use this example, in particular,
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to evaluate the performance of the estimators in (1.12). To outline the example we let T > 0 and consider

σ(t) = σ(t, θσ ) = σ̄ (t)+ θσ σ̃ (t), where σ̄ (t) =
1+ t
10

, σ̃ (t) = t2. (5.1)

Then σ(t) satisfies (1.2) whenever (t, x) ∈ [0, T ] × R. Using σ(t), we let X solve the stochastic differential equation

dX(t) = X(t)dt + σ(t)dW (t) (5.2)

and the corresponding differential operator is

L =
1
2
(σ (t))2 ∂11 + x∂1. (5.3)

Let

u(t, x) = u (t, x, (0, θσ )) = E
[
(X(T ))2 |X(t) = x

]
. (5.4)

Then, using the Feynman–Kac formula, we see that u solves the Cauchy problem{
∂tu(t, x)+ Lu(t, x) = 0, whenever (t, x) ∈ (0, T )× R,
u (T , x) = x2, whenever x ∈ R. (5.5)

Moreover, using Itô calculus, we deduce that u (t, x, (0, θσ )) equals

x2e2T +
1
400

((
5+ 6t + 2t2

)
e2(T−t) −

(
5+ 6T + 2T 2

))
+ θσ

1
40

((
5+ 10t + 10t2 + 4t3

)
e2(T−t)

−
(
5+ 10T + 10T 2 + 4T 3

))
+ θ2σ

1
4

((
3+ 6t + 6t2 + 4t3 + 2t4

)
e2(T−t) −

(
3+ 6T + 6T 2 + 4T 3 + 2T 4

))
, (5.6)

and, hence,

u (t, x, (0, 0)) = x2e2T +
1
400

((
5+ 6t + 2t2

)
e2(T−t) −

(
5+ 6T + 2T 2

))
, (5.7)

and

(∂θσ u) (t, x, (0, 0)) =
1
40

((
5+ 10t + 10t2 + 4t3

)
e2(T−t) −

(
5+ 10T + 10T 2 + 4T 3

))
. (5.8)

We intend to demonstrate how the methodology outlined in the previous sections can be used to find u (t, x, (0, 0)),
(∂θσ u) (t, x, (0, 0)) and the associated time-discretization errors numerically. In the following, we let T = 1 andwe consider
t = 0, x = 1. Then,

u (0, 1, (0, 0)) =
81
80
e2 −

13
400
≈ 7.44892,

(∂θσ u) (0, 1, (0, 0)) =
5e2 − 29
40

≈ 0.19863. (5.9)

Let {tk}Nk=0 define a partition ∆ of the interval [0, 1], i.e. 0 = t0 < t1 < · · · < tN−1 < tN = 1 with ∆tk = tk+1 − tk for
k ∈ {0, . . . ,N − 1}. Let X̄∆ be the Euler approximation of X for θσ = 0 and note that

X̄∆ (tk+1) = X̄∆ (tk) (1+∆tk)+ σ̄ (t)∆W (tk) , (5.10)

with initial condition X̄∆ (t0) = 1. Furthermore, in this particular case (4.11) reduces to

c(tk, x) = x (1+∆tk)+ σ̄ (tk)∆W (tk), (5.11)

for all x ∈ Rn. Hence

∂1c(tk, x) = 1+∆tk, (5.12)

while all higher order derivatives of c with respect to x are zero. Given the data g (x) = x2, the first and second dual functions
ψ̄ , ψ̄ (1), associated to g(X̄∆(tN)), are recursively defined as follows

ψ̄(tN) = 2X̄∆(tN), ψ̄ (1)(tN) = 2,
ψ̄(tk) = (1+∆tk) ψ̄(tk+1), ψ̄ (1)(tk) = (1+∆tk)2 ψ̄ (1)(tk+1).

(5.13)

Now, using the deductions in Section 4.2, we see that

ū(0, 1) = ū∆,M(x)+ Ē∆,Md + Ē∆,Md,s + Ē
∆,M
s + O((∆∗N)

2), (5.14)
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where

ū∆,M(x) =
1
M

M∑
m=1

(
X̄∆(tN , ωm)

)2
, (5.15)

and the time-discretization error Ē∆,Md is given by

Ē∆,Md =

M∑
m=1

N−1∑
k=0

[(
X̄∆(tk+1, ωm)− X̄∆(tk, ωm)

)
ψ̄(tk+1, ωm)

] ∆tk
2M

+

M∑
m=1

N−1∑
k=0

[(
(σ̄ (tk+1))2 − (σ̄ (tk))2

)
ψ̄ (1)(tk+1, ωm)

] ∆tk
4M

. (5.16)

Similarly, to find ∂θσ u, we use the results deduced in Section 4.3. In particular, (4.52)–(4.54) reduce to

(∂θσ u)(0, 1, (0, 0)) = ū
∆,M
σ (x)+ Ē∆,Mσ ,d + Ē

∆,M
σ ,d,s + Ē

∆,M
s + O((∆∗N)

2), (5.17)

where

ū∆,Mσ (x) =
1
M

M∑
m=1

N−1∑
k=0

σ̄ (tk) σ̃ (tk) ψ̄ (1) (tk, ωm)∆tk. (5.18)

Regarding Ē∆,Mσ ,d , which is the sample mean of Ē
∆
σ ,d, we first note the term in (4.54) containing C̄

∆
Fσ ,k,h(ū

∆) is zero. Indeed,
this easily follows from the definition of the dual functions and that the facts that ∂αc = 0, for |α| ≥ 2, and ∂αg = 0, for
|α| ≥ 3, imply that the third and fourth order dual functions are identically zero. The term in (4.54) containing B̄∆Fσ ,k(ū

∆)
can be rewritten as

N−1∑
k=0

E
[
σ̄ (tk+1) σ̃ (tk+1) ψ̄ (1) (tk+1)− σ̄ (tk) σ̃ (tk) ψ̄ (1) (tk) |X̄∆(0) = 1

] ∆tk
2
. (5.19)

Hence it remains to consider the term in (4.54) containing Ā∆Fσ ,k(ū− ū
∆) and, as outlined in Section 4.3, we use dual functions

for the extended system. However, by the recursive relation (2.12), and the fact that spatial second order derivatives of the
drift and diffusion coefficients of the stochastic differential equation (5.2) are zero,we can conclude that the second variation
of this system is identically zero. Hence, the extended system reduces to Z̄∆ (th) =

(
X̄∆ (th) , X̄ (1),∆ (tk, th)

)
, where the Euler

approximation X̄ (1),∆ of the first variation is defined through the recursive relation

X̄ (1),∆ (tk, th+1) = (1+∆th) X̄ (1),∆ (tk, th) , X̄ (1),∆ (tk, tk) = 1. (5.20)

Furthermore, in this case (4.42) and (4.45)–(4.47) reduce to

V̄ k,∆
(
th+1, Z̄∆(th+1)

)
= 2

(
X̄ (1),∆(tk, th+1)

)2
,

w0
(
th, x, x1

)
= x (1+∆th)+

1+ t
10

∆W (th),

w1
(
th, x, x1

)
= x1 (1+∆th) , (5.21)

andw2
(
th, x, x1

)
≡ 0. By induction, (ξ̄ kij )

0 is identically zero and, as a consequence, the only nonzero first order dual function
is (ξ̄ kij )

1 which satisfies,

(ξ̄ kij )
1(T ) = 4X̄ (1),∆(tk, T ), (5.22)

(ξ̄ kij )
1 (th) =

(
∂w1

(
th, Z̄∆ (th)

)
/∂x1

)
(ξ̄ kij )

1 (th+1) = (1+∆th) (ξ̄ kij )
1 (th+1) ,

for h < N . Similarly, by induction it follows that all second order dual functions, except (ξ̄ kij )
11, vanish. However, since Γ̄ (h)

lm

is nonzero only for coordinates corresponding to X̄∆ (th), the dual function (ξ̄ kij )
11 does not contribute to ∂11(ū − ū∆) and

can be omitted. In particular, we obtain

E
[
∂11(ū− ū∆)

(
tk, X̄∆(tk)

)
|Z̄ (tk) = z

(
X̄∆(tk)

)]
=

N−1∑
h=k

((
X̄ (1),∆(tk, th+1)− X̄ (1),∆(tk, th)

))
(ξ̄ kij )

1 (th+1)
∆th
2
. (5.23)
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Table 1
Simulation results for the benchmark example.

N ū∆,M Ē∆,Md Ē∆,Md,s Ē∆,Ms ū∆σ Ē∆,Mσ ,d

2 5.0851 1.7121 6.099 · 10−5 1.324 · 10−4 0.08438 0.11406
4 5.9958 1.2113 4.812 · 10−5 1.806 · 10−4 0.13758 0.06066
8 6.6288 0.7440 3.128 · 10−5 2.152 · 10−4 0.16708 0.03138
16 7.0107 0.4166 1.803 · 10−5 2.365 · 10−4 0.18259 0.01599
32 7.2209 0.2211 9.712 · 10−6 2.484 · 10−4 0.19054 0.00807
64 7.3337 0.1140 5.044 · 10−6 2.547 · 10−4 0.19457 0.00406
128 7.3909 0.0579 2.571 · 10−6 2.579 · 10−4 0.19660 0.00203
256 7.4200 0.0292 1.298 · 10−6 2.596 · 10−4 0.19761 0.00102

Fig. 1. Plot of the differences |
(
∂θσ u

)
(0, 1, (0, 0)) − (ū∆,M + Ē∆,Mσ ,d )| (solid, thin) and |u (0, 1, (0, 0)) − (ū

∆,M
+ Ē∆,Md )| (dash) and as a function of the

number of time steps forM = 108 trajectories. Reference line representing order of convergence equal to two (solid, thick).

and, combining (5.23) with the deductions above, we can conclude that Ē∆σ ,d equals

N−1∑
k=0

E
[
σ̄ (tk+1) σ̃ (tk+1) ψ̄ (1) (tk+1)− σ̄ (tk) σ̃ (tk) ψ̄ (1) (tk)

] ∆tk
2
,

+

N−1∑
k=0

N−1∑
h=k

E
[
σ̄ (tk) σ̃ (tk)

(
X̄ (1),∆(tk, th+1)− X̄ (1),∆(tk, th)

)
(ξ̄ kij )

1 (th+1)
] ∆th∆tk

2
, (5.24)

conditioned on X̄∆(0) = 1.
We now present the results of our simulation study. In Table 1 we have collected the simulation results for ū∆,M , Ē∆,Md ,

Ē∆,Md,s , Ē
∆,M
s , ū∆σ and Ē

∆,M
σ ,d with M = 10

8 trajectories. The statistical error and statistical time-discretization error for the
sensitivity is zero in this particular case as can be deduced from the equations for ū∆σ and Ē

∆
σ ,d. It is clear from Table 1 that

the time-discretization errors Ē∆,Md and Ē∆,Mσ ,d have asymptotic orders of convergence close to one. Fig. 1 displays the rest
terms R̄∆σ ,d and R̄

∆
σ ,d as a function of the number of time steps. A least square approximation shows that, in the limit of

vanishing statistical error, these terms are of order O
(
N−α

)
, with α ≈ 1.8. Note, in this context, that the error expansion

in this article can be used to construct extrapolation methods with order of convergence close to two for the sensitivity.
Moreover, we stress that, in this and many other examples, the approach described in this article is much more efficient
than the finite difference method, which suggests that ∂θσ u (0, 1) is approximated by means of

u (0, 1, (0, θσ ))− u (0, 1, (0, 0))
θσ

, (5.25)

for some θσ . In particular, we conclude from (5.6) that θσ must be very small in order to assert that higher order terms in
θσ do not influence the estimate of the sensitivity. Furthermore, as θσ appears in the denominator of (5.25), the statistical
error in the calculation of u is magnified by a factor 2θ−1σ . Hence, to obtain the same statistical error in the estimate of the
sensitivity as in the estimate of u, we need to multiply the number of trajectories used in the estimate of u by a factor 4θ−2σ ,
which, in most cases, will result in an immense number of trajectories.
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6. Pricing and hedging of financial derivatives

In this section we illustrate the method outlined in this article in the context of pricing and hedging of interest rate
derivatives in LIBOR market models. In particular, we first show how to calculate the value of European swaptions, with
control of the errors, using the analysis outlined in Section 4.2. We then illustrate and evaluate (1.11) and the estimators
in (1.12) as we perturb the underlying volatility structure. Note that the basic articles on LIBOR market models and swap
market models are [21–23]. However, today there exists an extensive literature on the subject and we refer to [24] for a
thorough outline of this type of models.
LIBOR market models. To outline these models we let Ti, i ∈ {1, 2, . . . , n+ 1}, denote a fixed set of n+ 1 bond maturities
with equal spacings Ti+1 − Ti = δ for some δ > 0. We let Li(t), i ∈ {1, 2, . . . , n}, denote the forward LIBOR rate, contracted
at 0 ≤ t ≤ Ti, for the interval [Ti, Ti+1) and we let L(t) = (L1(t), . . . , Ln(t)). Furthermore, we let η(t) denote the index of
the next maturity date, at time t , and we note that Tη(t)−1 < t ≤ Tη(t). In LIBOR market models the arbitrage free dynamics
of the forward rates are given by

dLi(t) = µ̂i(t, L(t))Li(t)dt + (σ̂i(t, L(t)))∗Li(t)dW (t), (6.1)
whenever 0 ≤ t ≤ Ti, i ∈ {1, . . . , n}, where W is a standard n-dimensional Brownian motion under the risk-adjusted
measure and

µ̂i(t, L(t)) =
i∑

j=η(t)

(σ̂i(t, L(t)))∗σ̂j(t, L(t))δLj(t)
1+ δLj(t)

, (6.2)

is the drift under the forward measure. In the following we let Xi(t) = log Li(t), X(t) = (X1(t), . . . , Xn(t)), and we note that

dXi(t) =

(
µ̂i(t, L(t))−

1
2

n∑
j=1

(σ̂ij(t, L(t)))2
)
dt + (σ̂i(t, L(t)))∗dW (t), (6.3)

whenever 0 ≤ t ≤ Ti, i = 1, . . . , n. Moreover, we introduce

µi(t, X(t)) = µ̂i(t, L(t))−
1
2

n∑
j=1

σ̂ij(t, L(t))2,

σi(t, X(t)) = σ̂i(t, L(t)), (6.4)
and, using the notation in (6.4), we can rewrite (6.3) as

dXi(t) = µi(t, X(t))dt + (σi(t, X(t)))∗dW (t), (6.5)
whenever 0 ≤ t ≤ Ti, i ∈ {1, . . . , n}. In the following we assume, in order to limit the complexity in the example, that

σi(t, X(t)) = σ̂i(t, L(t)) = σi(t), for i ∈ {1, . . . , n}. (6.6)
In particular, we assume that the volatility structure is independent of X(t) (and L(t)) but depends on t . To summarize, we
consider

dXi(t) = µi(t, X(t))dt + (σi(t))∗dW (t), (6.7)
whenever 0 ≤ t ≤ Ti, i ∈ {1, . . . , n}, where the drift coefficient can be specified according to

µi(t, X(t)) = δ
i∑

j=η(t)

(σi(t))∗σj(t)eXj(t)

1+ δeXj(t)
−
1
2

n∑
j=1

(σij(t))2. (6.8)

Perturbations of the volatility structure. In the example we will perturb the volatility structure as in (1.1). In particular,
we let

σi(t) = σi(t, θσ ) = σ̄i(t)+ θσ σ̃i(t), for i ∈ {1, . . . , n}, (6.9)
where σ̄ , σ̃ : R+ → M(n,R), θσ ∈ R, and |θσ | ≤ ε̄, for some small ε̄ > 0. Combining (6.8) and (6.9) we see that the
perturbations in (6.9) give rise to perturbations of µ. In particular, inserting (6.9) in (6.8) we see, for i ∈ {1, . . . , n}, that

µi(t) = µi(t, θµ) = µ̄i (t)+ θµµ̃i(t)+ a term of second order in θµ, (6.10)
where θµ = θσ and

µ̄i(t) = δ
i∑

j=η(t)

(σ̄i(t))∗σ̄j(t)eXj(t)

1+ δeXj(t)
−
1
2

n∑
j=1

(σ̄ij(t))2,

µ̃i(t) = δ
i∑

j=η(t)

((σ̄i(t))∗σ̃j(t)+ (σ̃i(t))∗σ̄j(t))eXj(t)

1+ δeXj(t)
−

n∑
j=1

σ̄ij(t)σ̃ij(t). (6.11)
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Financial derivatives.We illustrate themethod outlined in this article by applying it to the pricing and hedging of European
swaptions. In the following we let

Bm+1(Tp) =
m∏
i=p

1
1+ δLi(Tp)

, whenever 1 ≤ p ≤ m ≤ n, (6.12)

be the value at Tp of a zero-coupon bond maturing at Tm+1. In our setting the forward swap rate at Tp, p ∈ {1, . . . , n}, for a
swap with payment dates Tp+1, . . . , Tn+1 equals

Sp(Tp) =
1− Bn+1(Tp)

δ
n∑
m=p
Bm+1(Tp)

. (6.13)

We recall that a European (payer) swaption grants the holder the right, expiring at Tp, to enter into a swap with payment
dates Tp+1, . . . , Tn+1, where the holder pays the fixed leg and receives the floating leg on a principle of 1. Let χp denote the
pay-off of this option and let R be the fixed rate specified in the underlying swap. Then

χp = δ

n∑
m=p

Bm+1(Tp)(Sp(Tp)− R)+ := Fp

(
Hp
Fp
− R

)+
, (6.14)

where

Fp := δ
n∑
m=p

Bm+1(Tp), Hp := 1− Bn+1(Tp). (6.15)

We next note that we, in analogue with most other approaches to the calculation of the ‘Greeks’, somehow have to adjust
to the fact that the function x+ is not differentiable at x = 0. In particular, as derivatives of the pay-off up to fourth order is
required in order to define the dual functions, we have to work with a smooth approximation of x+ instead of x+ itself. To
proceed we let, for fixed ε > 0, φε = φε(x) : R → R be a sufficiently smooth approximation of the function x+ such that
φε(x)→ x+, for every x ∈ R, as ε → 0. As we, in order to determine the dual functions, need to calculate derivatives of φε
up to fourth order one possible choice for φε is the four times continuously differentiable piecewise polynomial

φε (x) =
1

256ε7
(
−5x8 + 28x6ε2 − 70x4ε4 + 140x2ε6 + 128xε7 + 35ε8

)
χ(−ε,ε) (x)+ xχ[ε,∞) (x) , (6.16)

where χI(x) denotes the indicator function for the interval I ⊂ R. Recall that X
(
Tp
)
is the vector of solutions to (6.7) at time

Tp. It is clear, by (6.12), (6.15) and the definition of X , that Fp and Hp are completely determined by the values of X
(
Tp
)
. We

let

gp
(
X
(
Tp
))
:= Fp

(
Hp
Fp
− R

)+
, gεp

(
X
(
Tp
))
:= Fpφε

(
Hp
Fp
− R

)
. (6.17)

Then, our ambition is to calculate

up (0, x) = E[gp
(
X
(
Tp
))
|X(0) = x], (6.18)

where xwill be specified below, but, for the reasons discussed above, we instead focus on the calculation of

uεp (0, x) := E[g
ε
p

(
X
(
Tp
))
|X(0) = x], (6.19)

for small ε. In particular, uεp (0, x) is an approximation of the expectation in (6.18). Furthermore, based on (6.9)–(6.11) and
(6.19), we see that the approximation of the sensitivity of the expectation in (6.18), with respect to perturbations of the
volatility structure, based on (6.19) and at (0, x), equals

(∂θµu
ε
p) (0, x, (0, 0))+ (∂θσ u

ε
p) (0, x, (0, 0)) . (6.20)

Parameterization and model reductions of the LIBOR market model.We introduce the parameters

γi(t) = ‖σi(t)‖ :=

√√√√ n∑
j=1

(σij(t))2, whenever 0 ≤ t ≤ Ti, i ∈ {1, . . . , n}, (6.21)

ρij(t) =
(σi(t))∗σj(t)
‖σi(t)‖‖σj(t)‖

, whenever 0 ≤ t ≤ min{Ti, Tj}, i, j ∈ {1, . . . , n},

where γi(t) and ρij(t) represent, respectively, the instantaneous volatility of log Li(t) and the instantaneous correlation
between log Li(t) and log Lj(t). Using this notation it is clear that we have to specify γi(t) and ρij(t) in order to specify the
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model. In reality the calibration of these quantities is a non-trivial problem, e.g. see [25], and there are many suggested
approaches to the reduction of the effective number of parameters. One frequently used parameterization of the LIBOR
market model is

γi(t) = cih(Ti − t), whenever 0 ≤ t ≤ Ti, i ∈ {1, . . . , n},

ρij(t) = ρ(Ti − t, Tj − t), whenever 0 ≤ t ≤ min{Ti, Tj}, i, j ∈ {1, . . . , n}, (6.22)

where h is a positive real valued function, {ci} are positive real numbers and ρ : R+ × R+ → M(n,R) satisfies the
characteristics of a correlation matrix. This model reduction is thoroughly described in [25]. In the following we let ρ be
a piecewise constant function with the property

ρ(Ti − t, Tj − t) = ρ̂i−η(t),j−η(t), whenever 0 ≤ t ≤ min{Ti, Tj}, i, j ∈ {1, . . . , n}, (6.23)

and where the matrix ρ̂ ∈ M (n,R) can be decomposed

ρ̂i,j = e∗i ej, (6.24)

for i, j ∈ {1, . . . , n}, for some set of (constant) unit vectors {ei}ni=1 in Rn. Using (6.22)–(6.24), we see that

σi(t) = dih(Ti − t)ei−η(t), whenever 0 ≤ t ≤ Ti, i ∈ {1, . . . , n} (6.25)

for some positive real numbers {di}. Hence it remains to fix the function h and one possible form of h(t), suggested in [26],
is

h(t) = ha,b,c(t) = c + (1− c + at)e−bt , where a, b, c > 0. (6.26)

This class of functions is, according to [26], designed to replicate volatility structures that are often observed in real markets.
Finally, to complete themodelwe have to specify the parameters to be used in the numerical simulation below. In particular,
we let

n = 21, δ = 1/2, Tp = 5, T = 10, R = 0.04,

and we consider x = log L (0)where1

L (0) = (0.03691, 0.04425, 0.04984, 0.05292, 0.05268, 0.05426, 0.05565, . . .
. . . , 0.05664, 0.05825, 0.05920, 0.05965, 0.06029, 0.05981, 0.05964, . . .
. . . , 0.06062, 0.06048, 0.06278, 0.06238, 0.06021, 0.06004, 0.06136) . (6.27)

Furthermore, concerning the unperturbed model volatility structure σ̄ we use parameters calibrated by means of the
methods in [25]. In particular, we let

σ̄i(t) = di
(
c + (1− c + a (Ti − t)) e−b(Ti−t)

)
ei−η(t), (6.28)

where

a = 0, b =
1
δ
, c = 0.9, di = 0.15, for i ∈ {1, . . . , n}. (6.29)

Finally, the unit vector ei−η(t) in (6.28) is determined as in (6.24) based on the matrix {̂ρi,j}ni,j=1 where

ρ̂i,j = exp
(
|i− j|
n− 1

(
log 0.13− 1.76

i2 + j2 + ij+ 3 (i+ j) (1− n)+ 2n2 − n− 4
(n− 2) (n− 3)

))
. (6.30)

This specification can be found in [25]. To specify the perturbations, we let, for ν ∈ {1, . . . , n}, a perturbation σ̃ (ν)(t) of the
volatility structure be given by

σ̃
(ν)
i (t) = di

(
c + (1− c + a (Ti − t)) e−b(Ti−t)

)
ei−η(t)δiν, (6.31)

where δiν is the Kronecker delta and a, b, c, {di} are defined in (6.29). This perturbation corresponds to multiplicative noise
in the ν-th coordinate of σ̄ (t).
Discrete dual functions. Let p ∈ {1, . . . , n} be given, let i, j ∈ {1, . . . , n} and let {tk}Nk=0 define a partition∆ of the interval
[0, Tp], i.e. 0 = t0 < t1 < · · · < tN−1 < tN = Tp with ∆tk = tk+1 − tk for k ∈ {0, . . . ,N − 1}. Let X̄∆ be the Euler
approximation of X̄ , i.e.,

X̄∆i (tk+1) = X̄
∆
i (tk)+ µ̄i(tk, X̄

∆ (tk))∆tk + (σ̄i(t))∗∆W (tk) ,

X̄∆i (0) = x = log L (0) , (6.32)

1 L(0) are the Libor market rates as of the 14th of May 2002.
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for i ∈ {1, . . . , n}. Next we note that in this case (4.11) becomes

ci(tk, x) = xi + µ̄i(tk, x)∆tk + σ̄iβ(tk)∆Wβ(tk), whenever x ∈ Rn. (6.33)

Hence

∂βci(tk, x) = δβi + ∂βµ̄i(tk, x)∆tk,

∂βγ ci(tk, x) = ∂βγ µ̄i(tk, x)∆tk, (6.34)

with similar expressions for the third and fourth order derivatives of ci. Furthermore

∂βµ̄i(tk, x) = δ
(σ̄i(tk))∗σ̄β(tk)exβ

(1+ δexβ )2
, for η (tk) ≤ β ≤ i, (6.35)

and

∂βγ µ̄i(tk, x) = δ
(σ̄i(tk))∗σ̄β(tk)exβ (1− δexβ )

(1+ δexβ )3
δβγ , for η (tk) ≤ β, γ ≤ i. (6.36)

Moreover, the third and fourth order derivatives of µ̄ can also be derived in a similar fashion. In particular, we note that due
to the presence of the Kronecker delta δβγ in (6.36), and similarly for the higher order derivatives, it follows that all mixed
derivatives of µ̄i (and hence of ci), of order two and higher, are zero and this fact reduces the computational complexity
considerably.
We are now ready to define the dual functions. In particular, given the data gεp , the first, second and third dual functions ψ̄ ,
ψ̄ (1) and ψ̄ (2), associated to gεp (X̄

∆(tN)), are recursively defined as follows. To start with, we have

ψ̄i(tN) = ∂igεp (X̄
∆(tN)), ψ̄

(1)
ij (tN) = ∂ijg

ε
p (X̄

∆(tN)), ψ̄
(2)
ijl (tN) = ∂ijlg

ε
p (X̄

∆(tN)). (6.37)

Then for k < N ,

ψ̄i(tk) =
(
δiβ + ∂iµ̄β(tk, X̄∆(tk))∆tk

)
ψ̄β(tk+1),

ψ̄
(1)
ij (tk) =

(
δiβ + ∂iµ̄β(tk, X̄∆(tk))∆tk

) (
δjγ + ∂jµ̄γ (tk, X̄∆(tk))∆tk

)
ψ̄
(1)
βγ (tk+1)+ δij∂iiµ̄β(tk, X̄

∆(tk))∆tkψ̄β(tk+1),

ψ̄
(2)
ijl (tk) =

(
δiβ + ∂iµ̄β(tk, X̄∆(tk))∆tk

) (
δjγ + ∂jµ̄γ (tk, X̄∆(tk))∆tk

)
·
(
δlϕ + ∂lµ̄ϕ(tk, X̄∆(tk))∆tk

)
ψ̄
(2)
βγ ϕ(tk+1)

+ δij∂iiµ̄β(tk, X̄∆(tk))∆tk
(
δlγ + ∂lµ̄γ (tk, X̄∆(tk))∆tk

)
ψ̄
(1)
βγ (tk+1)

+ δjl∂jjµ̄β(tk, X̄∆(tk))∆tk
(
δiγ + ∂iµ̄γ (tk, X̄∆(tk))∆tk

)
ψ̄
(1)
βγ (tk+1)

+ δli∂llµ̄β(tk, X̄∆(tk))∆tk
(
δjγ + ∂jµ̄γ (tk, X̄∆(tk))∆tk

)
ψ̄
(1)
βγ (tk+1)

+ δijl∂iiiµ̄β(tk, X̄∆(tk))∆tkψ̄β(tk+1). (6.38)

The fourth order dual function ψ̄ (3) is defined similarly but we omit further details. The calculation of the dual functions
requires that derivatives of gεp up to fourth order are determined and we note that these derivatives can be calculated
explicitly from (6.15)–(6.17).
Calculation of ū. Using the deductions in Section 4.2, we have that

uεp (0, x) = ū
∆,M
p (x)+ Ē∆,Md + Ē∆,Md,s + Ē

∆,M
s + R̄∆d , (6.39)

where

ū∆,Mp (x) =
1
M

M∑
m=1

gεp (X̄
∆(tN , ωm)), (6.40)

and the time-discretization error is given by

Ē∆,Md =

M∑
m=1

N−1∑
k=0

[[
µ̄i(tk+1, X̄∆(tk+1,ωm))− µ̄i(tk, X̄∆(tk,ωm))

]
ψ̄i(tk+1,ωm)

] ∆tk
2M

+

N−1∑
k=0

M∑
m=1

[[
āij(tk+1)− āij(tk)

]
ψ̄
(1)
ij (tk+1,ωm)

] ∆tk
2M

. (6.41)

Using (6.39)–(6.41) and the method for controlling the statistical error described in Section 4.4, it is straightforward to
construct an adaptive algorithm, as outlined in [15] and described in Section 4.5, to calculate uεp (0, x) such that the error
with high probability is within a predefined tolerance. In this example we omit the details and instead we focus on the
problem of calculating the sensitivities.



586 K. Nyström, T. Önskog / Journal of Computational and Applied Mathematics 235 (2010) 563–592

Discrete dual functions for the extended system. To explicitly calculate the time-discretization error, arising in the
calculation of the sensitivities below,wemust, as outlined in Section 4.3, determine the first and second order dual functions
of the extended system Z̄∆ (th) =

(
X̄∆ (th) , X̄ (1),∆ (tk, th) , X̄ (2),∆ (tk, th)

)
associated with the functional

V̄ k,∆ij
(
tN , Z̄∆(tN)

)
= ∂βgε(X̄∆(tN))X̄

(2),∆
βij (tk,tN)+ ∂βγ gε(X̄∆(tN))X̄

(1),∆
βi (tk, tN)X̄

(1),∆
γ j (tk, tN). (6.42)

We here note that in this case the Euler approximations of the first and second variation processes are defined recursively
as

X̄ (1),∆uv (tk, th+1) = X̄ (1),∆uv (tk, th)+ ∂βµ̄u
(
th, X̄∆ (th)

)
X̄ (1),∆βv (tk, th)∆th, (6.43)

with initial condition X (1)
,∆

uv (tk, tk) = δuv and

X̄ (2),∆uvw (tk, th+1) = X̄ (2),∆uvw (tk, th)+ ∂βµ̄u
(
th, X̄∆ (th)

)
X̄ (2),∆βvw (tk, th)∆th

+ ∂ββµ̄u
(
th, X̄∆ (th)

)
X̄ (1),∆βv (tk, th)X̄

(1),∆
βw (tk, th)∆th, (6.44)

with initial condition X̄ (2),∆uvw (tk, tk) = 0. To perform the explicit calculation of the dual functions for the extended system
associated to the numerical example at hand we first note that in this case, (4.45)–(4.47) can be written

w0r
(
th, x, x1, x2

)
= xr + µ̄r(th, x)∆th + σ̄rβ(th)∆Wβ(th), (6.45)

w1rs
(
th, x, x1, x2

)
= x1rs + ∂βµ̄r(th, x)x

1
βs∆th, (6.46)

w2rst
(
th, x, x1, x2

)
= x2rst + ∂βµ̄r(th, x)x

2
βst∆th + ∂

2
βµ̄r(th, x)x

1
βsx
1
βt∆th. (6.47)

We emphasize that in the following we consider i, j and k as fixed and use the Einstein summation convention (see
Remark 2.1) for the variables r, s, t, u, v, w, β and γ .
Discrete dual functions of first order for the extended system. Using (6.45)–(6.47) in (4.48) we first see that

(ξ̄ kij )
0
a (tN) = ∂aβg

ε
(
X̄∆ (tN)

)
X̄ (2),∆βij (tN)+ ∂aβγ gε

(
X̄∆ (tN)

)
X̄ (1),∆βi (tN) X̄

(1),∆
γ j (tN) ,

(ξ̄ kij )
0
a (th) =

(
δar + ∂aµ̄r(th, X̄∆ (th))∆th

)
(ξ̄ kij )

0
r (th+1)

+ ∂aaµ̄r(th, X̄∆ (th))∆th
(
X̄ (1),∆ai (th) (ξ̄ kij )

1
ri (th+1)+ X̄

(1),∆
aj (th) (ξ̄ kij )

1
rj (th+1)

)
+ ∂aaµ̄r(th, X̄∆ (th))∆thX̄

(2),∆
aij (th) (ξ̄ kij )

2
rij (th+1)

+ ∂aaaµ̄r(th, X̄∆ (th))∆thX̄
(1),∆
ai (th) X̄

(1),∆
aj (th) (ξ̄ kij )

2
rij (th+1) . (6.48)

Furthermore, the dual function (ξ̄ kij )
1
ab is zero unless b = i or b = j. For b = iwe get

(ξ̄ kij )
1
ai (tN) = ∂aβg

ε
(
X̄∆ (tN)

)
X̄ (1),∆βj (tN) ,

(ξ̄ kij )
1
ai (th) =

(
δar + ∂aµ̄r(th, X̄∆ (th))∆th

)
(ξ̄ kij )

1
ri (th+1)+ ∂aaµ̄r(th, X̄

∆ (th))∆thX̄
(1),∆
aj (th) (ξ̄ kij )

2
rij, (6.49)

and similarly for (ξ̄ kij )
1
aj. Finally, we conclude, by induction, that (ξ̄

k
ij )
2
abc is nonzero only if b = i and c = j. Moreover, (ξ̄

k
ij )
2
aij

satisfies

(ξ̄ kij )
2
aij (tN) = ∂ag

ε
(
X̄∆ (tN)

)
,

(ξ̄ kij )
2
aij (th) =

(
δar + ∂aµ̄r(th, X̄∆ (th))∆th

)
(ξ̄ kij )

2
rij (th+1) . (6.50)

Discrete dual functions of second order for the extended system. To calculate the dual functions of second order we use
(6.45)–(6.47) in (4.50). However, for the sake of brevity, we refer the reader to the appendix, Section 8, in [16] for the explicit
calculations. Based on the calculations in Section 8 in [16] we conclude, see [16], that there are, for every choice of (i, j), a
total of 4n + 9n2 nonzero distinct dual functions to be calculated for the extended system. In particular, the complexity
is much lower compared to the upper theoretical bound, see (4.44) and the subsequent discussion, on the number of dual
functions which is of the order n6.
Calculation of sensitivities. We here calculate the sensitivity in (6.20) for the perturbations σ̃ = σ̃ ν in (6.31). We will
accomplish this by means of the results established in Section 4.3. In particular, applying (4.52)–(4.54) in our case we see
that

(∂θµu
ε
p)(x, (0, 0)) = ū

∆,M
µ (x)+ Ē∆,Mµ,d + Ē

∆,M
µ,d,s + Ē

∆,M
µ,s + O((∆∗N)

2),

(∂θσ u
ε
p)(x, (0, 0)) = ū

∆,M
σ (x)+ Ē∆,Mσ ,d + Ē

∆,M
σ ,d,s + Ē

∆,M
σ ,s + O((∆∗N)

2), (6.51)
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where

ū∆,Mµ (x) =
M∑
m=1

N−1∑
k=0

µ̃i(tk, X̄∆(tk,ωm))ψ̄i(tk,ωm)
∆tk
M
,

ū∆,Mσ (x) =
M∑
m=1

N−1∑
k=0

[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij (tk) ψ̄

(1)
ij (tk,ωm)

] ∆tk
2M

. (6.52)

Furthermore, Ē∆,Mµ,d and Ē
∆,M
σ ,d are the naturally defined Monte Carlo estimators associated to the time-discretization errors

Ē∆µ,d and Ē
∆
σ ,d. With the notation introduced in Section 4.3, Ē

∆
µ,d equals

N−1∑
k=0

E
[
2Ā∆Fµ,k(ū− ū

∆)+ B̄∆Fµ,k(ū
∆)|X̄∆(0) = x

] ∆tk
4

+

N−1∑
k=0

N−1∑
h=k+1

E
[
E
[
C̄∆Fµ,k,h(ū

∆)|Z̄ (tk+1) = z
(
X̄∆(tk+1)

)]
|X̄∆(0) = x

] ∆th∆tk
4

, (6.53)

and Ē∆σ ,d equals

N−1∑
k=0

E
[
2Ā∆Fσ ,k(ū− ū

∆)+ B̄∆Fσ ,k(ū
∆)|X̄∆(0) = x

] ∆tk
4

+

N−1∑
k=0

N−1∑
h=k+1

E
[
E
[
C̄∆Fσ ,k,h(ū

∆)|Z̄ (tk+1) = z
(
X̄∆(tk+1)

)]
|X̄∆(0) = x

] ∆th∆tk
4

. (6.54)

In Section 4.3 we proved that all terms in Ē∆µ,d and Ē
∆
σ ,d are computable in a posteriori form and we here need to derive

explicit expressions for these quantities. In the following we again, for the sake of brevity, only supply the details for Ē∆σ ,d.
We consider the terms in (6.54) one at a time. First, the term involving Ā∆Fσ ,k equals, due to (4.40),

N−1∑
k=0

E
[
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij(tk)∂ij(ū− ū∆)

(
tk, X̄∆(tk)

)
|X̄∆(0) = x

] ∆tk
2
. (6.55)

Moreover, introducing the notation µ̄ha := µ̄a
(
th, X̄∆(th)

)
, ∂r µ̄ha := ∂r µ̄a

(
th, X̄∆(th)

)
, ∂rr µ̄ha := ∂rr µ̄a

(
th, X̄∆(th)

)
,

X̄ (1),∆ri (th) := X̄
(1),∆
ri (tk, th), X̄

(2),∆
rij (th) := X̄

(2),∆
rij (tk, th), we conclude, by (4.51) and the definition of the extended system,

that the derivative ∂ij
(
ū− ū∆

) (
tk, X̄∆(tk)

)
can be rewritten as

N−1∑
h=k

((
∂r µ̄

h+1
a X̄ (2),∆rij (th+1)− ∂r µ̄haX̄

(2),∆
rij (th)

)
(ξ̄ kij )

2
aij (th+1)

+

(
∂rr µ̄

h+1
a X̄ (1),∆ri (th+1) X̄

(1),∆
rj (th+1)− ∂rr µ̄haX̄

(1),∆
ri (th) X̄

(1),∆
rj (tk, th)

)
(ξ̄ kij )

2
aij (th+1)

+

(
∂r µ̄

h+1
a X̄ (1),∆ri (th+1)− ∂r µ̄haX̄

(1),∆
ri (th)

)
(ξ̄ kij )

1
ai (th+1)

+

(
∂r µ̄

h+1
a X̄ (1),∆rj (th+1)− ∂r µ̄haX̄

(1),∆
rj (th)

)
(ξ̄ kij )

1
aj (th+1)

+
(
µh+1a − µ

h
a

)
(ξ̄ kij )

0
a (th+1)+ (āad (th+1)− āad (th)) (ξ̄

k
ij )
00
a,d (th+1)

) ∆th
2
. (6.56)

Note that the conditional expectation with respect to Z̄∆ (tk) =
(
X̄∆(tk), In, 0

)
, occurring in (4.51), can be removed in this

case as the randomness in (6.43)–(6.44) only enters through X̄∆. Next, for term containing B̄∆Fσ ,k(ū
∆)we obtain

B̄∆Fσ ,k(ū
∆) = [σ̄ σ̃ ∗ + σ̃ σ̄ ∗]ij(tk+1)ψ̄

(1)
ij (tk+1)− [σ̄ σ̃

∗
+ σ̃ σ̄ ∗]ij(tk)ψ̄

(1)
ij (tk) . (6.57)

Finally, focusing on the term containing C̄∆Fσ ,k,h we first note that the conditional expectation can be removed for the same
reason as in (6.56). Furthermore, recalling (4.6) and (4.35), we see that

N−1∑
h=k+1

E
[
C̄∆Fσ ,k,h(ū

∆)|Z̄ (tk+1) = z
(
X̄∆(tk+1)

)]
∆th
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Fig. 2. Plot of the dependence on ε of the relative error
∣∣uεp (0, x)− up (0, x)∣∣ /up (0, x) based on M = 104 trajectories and N = 10 time steps. Legend:

Relative error (solid thin); reference line with slope 2 (solid thick). Note that the gradual widening of the thin line represents the effect of the statistical
error.

Fig. 3. Plot of the sensitivities as a function of the number of time steps based onM = 106 trajectories and N = 10 time steps. The left plot corresponds
to ν ∈ {2, . . . , 10} (the sensitivities increase with ν) and the right plot corresponds to ν ∈ {11, . . . , 21}.

=

N−1∑
h=k+1

(
µ̄k+1i − µ̄

k
i

)
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]uv (th) ψ̄

(2)
luv (th) X̄

(1),∆
li (tk+1, th)∆th

+

N−1∑
h=k+1

(
āij(tk+1)− āij(tk)

)
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]uv (th) ψ̄

(2)
luv (th)X̄

(2),∆
lij (tk+1, th)∆th

+

N−1∑
h=k+1

(
āij(tk+1)− āij(tk)

)
[σ̄ σ̃ ∗ + σ̃ σ̄ ∗]uv (th) ψ̄

(3)
lmuv(th)X̄

(1),∆
li (tk+1, th)X̄

(1),∆
mj (tk+1, th)∆th. (6.58)

Combining (6.54)–(6.57), we arrive at a computable expression, in a posteriori form, for the time-discretization error Ē∆,Mσ ,d .
Moreover, to handle Ē∆,Mµ,d we can argue similarly.
Numerical results from the simulations. In order to be able to estimate the price of European swaptions in LIBOR market
models and the corresponding sensitivities with respect to the underlying volatility structure we must first choose an
appropriate value of ε. Fig. 2 shows that the error in the swaption price that is due to up being approximated by uεp decreases
as ε2 as ε tends to zero, suggesting that a very small value of ε should be used.
Moreover, we see from Fig. 3 that the sensitivities initially increase as ε is decreased and then saturates at some level,
implying that as long as we choose ε < 10−1, the sensitivities will be more or less the same. However, as seen in Fig. 4, the
statistical error in the estimate of the sensitivities behaves asymptotically as ε−0.65 and the number of trajectories required to
assert that the statistical error is below a given tolerance varies asM ∝ ε−1.3. As we shall see below, the time-discretization
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Fig. 4. Plot of the dependence on ε of the relative statistical error of the sensitivities based on M = 106 trajectories and N = 10 time steps. Legend:
Relative statistical error (solid thin, the lower batch corresponds to ν ∈ {2, . . . , 10} and the upper batch to ν ∈ {11, . . . , 21}); reference line with slope
−0.65 (solid thick).

Table 2
Simulation results for the swaption price in the LIBOR market model example. The upper half of the table corresponds to ε = 10−1 and the lower half to
ε = 10−2 .

N ūε,∆,Mp Ē∆,Md Ē∆,Md,s Ē∆,Ms

10 0.12772 1.79 · 10−4 2.27 · 10−8 3.77 · 10−5

20 0.12750 8.96 · 10−5 1.12 · 10−8 3.74 · 10−5

40 0.12744 4.49 · 10−5 5.53 · 10−9 3.72 · 10−5

80 0.12737 2.25 · 10−5 2.77 · 10−9 3.71 · 10−5

10 0.09845 1.86 · 10−4 8.54 · 10−8 3.76 · 10−5

20 0.09824 9.32 · 10−5 4.27 · 10−8 3.75 · 10−5

40 0.09816 4.65 · 10−5 2.12 · 10−8 3.72 · 10−5

80 0.09811 2.33 · 10−5 1.07 · 10−8 3.72 · 10−5

error for the sensitivities also increases as ε is decreased and consequently, as far as the sensitivities are concerned, we
should not choose ε too small. Based on this discussion, we have chosen to work with the two cases ε = 10−1 and ε = 10−2
in the numerical simulations below.
With ε fixed, we first consider the calculation of uεp and the corresponding time-discretization error and statistical error.

Table 2 displays the results of a simulation withM = 1.25 · 107 trajectories. As expected the time-discretization errors are
of order O

(
∆∗N

)
. Note also the fourfold increase in statistical discretization error as ε is decreased from 10−1 to 10−2. This

is due to the fact that the derivatives ∂αgεp (x), for x ∈ (−ε, ε) and |α| ≥ 2, diverge as ε → 0. Extrapolating the values of
ūε,∆,Mp for the two choices of ε, we conclude that the true values of ūεp are approximately 0.12730 and 0.09803, respectively,
and hence we can also conclude that the estimated time-discretization errors, Ē∆,Md , certainly are of the correct order.
Next, we consider the estimates of the sensitivities. Fig. 5 displays the sensitivities (∂θ

σ(ν)
uεp) (0, x, (0, 0)) for different

choices of ν and we see that the sensitivities increase rapidly for 1 ≤ ν < p but are fairly constant for p ≤ ν ≤ n. To ensure
that the sensitivity estimate in (6.52) gives the correct value, we have performed a finite difference approximation of the
sensitivity with respect to σ̃ (21) for ε = 10−2. In particular, using a finite difference approximation based on θσ (21) = 0,
θσ (21) = 0.05,M = 1.2 · 10

8 trajectories and N = 10 time steps, we obtained the approximation

(∂θ
σ(ν)
uεp) (0, x, (0, 0)) ≈ 0.00196± 0.00048. (6.59)

The corresponding estimate based on (6.52) is 0.001932 ± 0.000002 which certainly is of the same order. Note here that,
as there is no known way of quantifying the error due to the choice θσ (21) = 0.05 in the finite difference approximation, the
margin of error in (6.59) is only based on the statistical error.
Next we consider the estimates of the time-discretization and statistical time-discretization errors for the sensitivities

and, for brevity, we shall only consider the sensitivity corresponding to ν = 21. Fig. 6 shows, for ε = 10−1 and ε = 10−2
respectively, the dependence of the terms including Ā∆Fσ ,k, B̄

∆
Fσ ,k and C̄

∆
Fσ ,k,h on the number of time steps. The first two terms

are of order O
(
∆∗N

)
whereas the last term turns out to be of order O

((
∆∗N

)2) and can thus be omitted in this setting.
Note also that the error terms containing Ā∆Fσ ,k and C̄

∆
Fσ ,k,h increase with ε but that the term containing B̄

∆
Fσ ,k appears to be

independent of ε. Table 3 displays the results of a simulation with M = 2 · 106 trajectories. Note that since the estimates
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Fig. 5. Plot of the sensitivities as a function of ν based onM = 2 · 106 trajectories and N = 10 time steps.

Table 3
Simulation results for the sensitivities in the LIBOR market model example. The upper half of the table corresponds to ε = 10−1 and the lower half to
ε = 10−2 .

N ∂θ
σ(21)
uε,∆,Mp Ē∆,Mσ ,d Ē∆,Mσ ,d,s Ē∆,Mσ ,s

10 1.796 · 10−3 5.18 · 10−5 5.57 · 10−8 6.94 · 10−7

20 1.788 · 10−3 2.39 · 10−5 2.65 · 10−8 5.85 · 10−7

40 1.783 · 10−3 1.11 · 10−5 1.16 · 10−8 6.64 · 10−7

10 1.928 · 10−3 1.00 · 10−3 2.68 · 10−6 1.79 · 10−6

20 1.927 · 10−3 4.18 · 10−4 1.18 · 10−6 1.74 · 10−6

40 1.920 · 10−3 1.65 · 10−4 5.02 · 10−7 1.65 · 10−6

Fig. 6. Plot of the three terms of the time-discretization and statistical time-discretization error for the sensitivities as a function of the number of time
steps for M = 200 trajectories. The left plot corresponds to ε = 10−1 and the right plot to ε = 10−2 . Legend: Time-discretization error (solid thin);
statistical time-discretization error (dash thin); terms containing Ā∆Fσ ,k (circles); terms containing B̄

∆
Fσ ,k (diamonds); terms containing C̄

∆
Fσ ,k,h (squares);

reference line with slope−1 (solid thick); reference line with slope−2 (dash thick).

of the time-discretization error turn to infinity as ε → 0, the term Ē∆,Mσ ,d will increase as ε is decreased. Nevertheless, the
time-discretization error is bounded by Ē∆,Mσ ,d .

7. Summary and discussion

Any numerical algorithm (Monte Carlo algorithm) for stochastic differential equations produces a time-discretization
error and a statistical error in the process of pricing financial derivatives and calculating the associated ‘Greeks’. In this
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article we have shown how a posteriori error estimates and adaptive methods for stochastic differential equations can be
used to control both these errors in the context of pricing and hedging of financial derivatives. In particular, we have derived
expansions, with leading order terms which are computable in a posteriori form, of the time-discretization errors for the
price and the associated ‘Greeks’. These expansions allow the user to simultaneously first control the time-discretization
errors in an adaptive fashion,when calculating the price, sensitivities andhedging parameterswith respect to a large number
of parameters, and then subsequently to ensure that the total errors are, with prescribed probability, within tolerance.
Furthermore, we have demonstrated the methodology outlined through two numerical examples.
One point left open in the bulk of the article is a discussion of the importance of the ellipticity condition in (1.2). This

condition is used to ensure the appropriate elliptic regularity theory for the operator ∂t + L. However, there are many
important classes of systems and operators which do not satisfy this ellipticity condition. One important class of such
operators, relevant in the context of mathematical finance, is the class of second order differential operators of Kolmogorov
type of the form ∂t + L, where

L =
m∑
i,j=1

aij(t, x)∂ij +
m∑
i=1

bi(t, x)∂i +
N∑
i,j=1

bijxi∂j, (7.1)

(t, x) ∈ RN+1,m is a positive integer satisfyingm < N , the functions {aij(·, ·)} and {bi(·, ·)} are continuous and bounded and
B = {bij} is a matrix containing constant real numbers. As m < N these operators cannot be uniformly elliptic–parabolic
but this is compensated for by assuming appropriate regularity on the coefficients and by assuming that the operator

∂t + K = ∂t +
m∑
i=1

∂ii +

N∑
i,j=1

bijxi∂j (7.2)

is hypoelliptic, i.e., every distributional solution of (∂t + K)u = f is, whenever f is infinitely smooth, an infinitely smooth
solution. Let

Y =
N∑
i,j=1

bijxi∂j + ∂t , (7.3)

and let Lie(Y , ∂1, . . . , ∂m) denote the Lie algebra generated by the vector fields Y , ∂1, . . . , ∂m. Then it is well known that the
above assumption of hypoellipticity of ∂t + K can be stated in terms of the well-known Hörmander condition [27]:

rank Lie(Y , ∂1, . . . , ∂m) = N + 1. (7.4)

We comment that, assuming that the coefficients of the operator ∂t + L belong to C∞b (R+ × RN), hypoellipticity of ∂t + L is
sufficient for the methodology outlined in this article. As a consequence, the methodology is also applicable to operators of
Kolmogorov type. For applications where these operators occur we refer to [28–32] and the references in these articles.
As mentioned earlier, the methodology outlined in this article can be used in a variety of situations. In a future article we

will investigate several extensions of the example in Section 6, including an extension to the setting of SABR/LIBOR market
models [33].
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