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a b s t r a c t

Linear discrete ill-posed problems of small to medium size are commonly solved by
first computing the singular value decomposition of the matrix and then determining
an approximate solution by one of several available numerical methods, such as the
truncated singular value decomposition or Tikhonov regularization. The determination of
an approximate solution is relatively inexpensive once the singular value decomposition
is available. This paper proposes to compute several approximate solutions by standard
methods and then extract a new candidate solution from the linear subspace spanned by
the available approximate solutions. We also describe how the method may be used for
large-scale problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the numerical solution of linear least-squares problems
min
x∈Rn

‖Ax − b‖ (1)

with a matrix A ∈ Rm×n with many singular values of different orders of magnitude close to the origin. Throughout this
paper, ‖ · ‖ denotes the Euclidean vector norm. The ‘‘clustering’’ of singular values at zero makes the matrix A severely ill-
conditioned; in particular, A may be singular. Least-squares problems with a matrix with many singular values of different
sizes close to the origin are commonly referred to as discrete ill-posed problems because they arise, for instance, from the
discretization of ill-posed problems such as Fredholm integral equations of the first kind. The vector b ∈ Rm in discrete
ill-posed problems (1) that arise in applications represents measured data and, therefore is typically contaminated by an
error e ∈ Rm. For notational simplicity, we will assume that m ≥ n; however, the solution methods discussed also can be
applied, after minor modifications, whenm < n.

Let b̂ ∈ Rm denote the unknown error-free right-hand side vector associated with b, i.e.,

b = b̂ + e.
We assume the linear system of equations with the unavailable error-free right-hand side,

Ax = b̂, (2)
to be consistent, andwewould like to determine an accurate approximation of its solution x̂ ∈ Rn ofminimal Euclideannorm
by computing a suitable approximate solution of the available least-squares problem (1). We remark that, due to the error
e in b and the ill-conditioning of A, the straightforward solution of (1) generally does not give a meaningful approximation
of x̂.
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Discrete ill-posed problems (1) of small to moderate size are often solved by first computing the singular value
decomposition (SVD),

A = UΣV T , (3)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n.

The superscript T denotes transposition and the singular values are ordered according to

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Availability of the singular value decomposition makes it possible to compute approximations of x̂, e.g., by Tikhonov
regularization or truncated singular value decomposition (TSVD), in a simplemanner. The computationallymost demanding
part of the solution process is the determination of the SVD. Usually the SVD is applied to compute only one approximation
of x̂; see, e.g., [1,2] for discussions and illustrations. We propose to first apply the SVD to determine several approximations,
say x1, x2, . . . , xp, of x̂ and then to extract a new approximation of x̂ from the available approximations. The extraction is
carried out by forming a suitable linear combination of x1, x2, . . . , xp. Numerical examples in Section 4 illustrate the benefit
of this approach. We remark that for small to moderate values of p, the computational effort to determine the approximate
solutions x1, x2, . . . , xp of (1) is negligible in comparison with the arithmetic work required to evaluate the factorization
(3) of A.

This paper is organized as follows. Section 2 discusses the details of our approach to form a new linear combination of
available approximations of x̂. Somemethods to determine approximations of x̂ using the SVD of A are reviewed in Section 3.
Here, we assume that a bound

‖e‖ ≤ ε (4)

is available. This bound makes it possible to use the discrepancy principle when determining approximations of x̂.
Computed examples are presented in Section 4, and a conclusion and comments on how to extend the approach of this
paper to large-scale problems can be found in Section 5.

2. A linear combination approach

Let x1, x2, . . . , xp denote computed approximations of the desired minimal-norm solution x̂ of the error-free linear
system of Eq. (2). Numerical methods based on the SVD for computing these approximations are described in Section 3.
Let

m = min
i=1,2,...,p

‖xi‖, M = max
i=1,2,...,p

‖xi‖.

Introduce the linear space

W = span{x1, x2, . . . , xp} (5)

and let the columns of W ∈ Rn×p form an orthonormal basis for W . The number of approximate solutions, p, typically is
fairly small. In the computed examples of Section 4, we let p = 3.

We describe an approach for extracting a new approximationx of x̂ from W . Thus,x = Wy (6)

for a certain vectory ∈ Rp. We would like to choosey so that the residual norm ‖b − AWy‖ is small. The residual norm
is minimized byy = (AW )Ďb, where (AW )Ď denotes the Moore–Penrose pseudoinverse of the matrix AW . However, this
vectory may be of (much) larger norm than the desired vector x̂, i.e.,

‖x‖ = ‖y‖ = ‖(AW )Ďb‖ > ‖x̂‖.
This is usually undesirable, and experiments suggest that this generally renders solutions of (much) worse quality than the
approach of the present paper. We propose to impose constraints on ‖y‖ = ‖x‖. For instance, we may require

m ≤ ‖y‖ ≤ M

for certain constantsm andM . The following result shows that under a weak condition it suffices to only consider the upper
bound

‖y‖ = M. (7)

Proposition 2.1. Consider the constrained least-squares problem

min
m≤‖y‖≤M

‖b − AWy‖, (8)

and assume that M ≤ ‖(AW )Ďb‖, where (AW )Ď denotes the Moore–Penrose pseudoinverse of the matrix AW. Then the solutiony of (8) satisfies (7).
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Proof. Consider the constrained least-squares problem

min
‖y‖=∆

‖b − AWy‖, (9)

and assume that ∆ ≤ ‖(AW )Ďb‖. Then using Lagrange multipliers, one can show that the solution y of (9) satisfies

(W TATAW + µI)y = W TATb (10)

for some constant µ ≥ 0. Here and throughout this paper, I denotes the identity matrix of appropriate order. It can be
established, e.g., by using the SVD of the matrix AW , that the norm of the solution y = yµ of (10) is a monotonically
decreasing function of µ with

lim
µ↘0

‖yµ‖ = ‖(AW )Ďb‖, lim
µ→∞

‖yµ‖ = 0.

Moreover, the norm of the residual error ‖b − AWyµ‖ is monotonically increasing with µ. The proposition follows from
these observations. �

Generally, we would like to choose ∆ = M ≈ ‖x̂‖ in (8) and (9). We will return to the choice ofM in Section 3.
The solution of (9) with the constraint (7) can be computed efficiently with the aid of the QR factorization

AW = QR,

where Q ∈ Rm×p has orthonormal columns and R ∈ Rp×p is upper triangular. Substituting this factorization into (10) yields

(RTR + µI)y = RTQ Tb.
These are the normal equations associated with the least-squares problem

min
y∈Rp

[
R

√
µI

]
y −

[
Q Tb
0

] .

We solve this least-squares problem for a sequence of µ-values and apply Newton’s method to determine a value of µ that
yields a solution y = yµ that satisfies (7); see, e.g., [3] for details on these computations.

The following results shed some light on when the minimization problem (8) may yield an improved approximate
solution of (1).

Proposition 2.2. Let x ∈ Rn be a given approximation of x̂. Assume that there is a vector w ∈ W such that (Ax − b)TAw ≠ 0.
Then there is a vector δx ∈ W with

‖A(x + δx) − b‖ < ‖Ax − b‖.

Proof. The result follows from

‖A(x + w) − b‖2
= ‖Ax − b‖2

+ 2 (Ax − b)TAw + ‖Aw‖
2

and by letting δx be a sufficiently small multiple ofw. �

Proposition 2.3. Let x ∈ Rn satisfy ‖x‖ = M for some constant M. Assume that there is a vector w ∈ W such that

(Ax − b)TAw < 0,

−γ ≤
xTw
wTw

< 0, (11)

for some γ > 0 sufficiently small. Then there is a vector δx ∈ W with

‖A(x + δx) − b‖ < ‖Ax − b‖, (12)
‖x + δx‖ = M. (13)

Proof. Let δx = αw. Then by the proof of Proposition 2.2, the inequality (12) holds for all constants α > 0 sufficiently small.
We obtain from (13) that

M2
= ‖x + αw‖

2
= M2

+ 2αxTw + α2wTw.

It follows that α = −2xTw/wTw. In view of (11), we have α ≤ 2γ . Therefore, by choosing γ sufficiently small, we can
secure that (12) holds. �

3. The choice of the search space

First, we review the discrepancy principle and some solutions methods for (1) based on the SVD (3) of A. These methods
can be used to determine the search space W . Other approaches to determine suitable components in W are also discussed.
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A vector x is said to satisfy the discrepancy principle if

‖Ax − b‖ ≤ ηε, (14)

where ε is the error bound (4) and η > 1 is a user-specified constant. The discrepancy principle is commonly used to
determine the truncation index in the truncated SVD method or the regularization parameter in Tikhonov regularization;
see below.

Popular techniques for the solution of (1) include:

(a) The truncated SVD method using the discrepancy principle; this method uses the singular value decomposition (3) to
determine the approximate solution

xtsvd =

k−
j=1

uT
j b
σj

vj (15)

of (1). The truncation index k is chosen as small as possible so that xtsvd satisfies the discrepancy principle (14). Thus, k
is such that

n−
j=k+1

(uT
j b)

2
≤ (ηε)2 ≤

n−
j=k

(uT
j b)

2.

Properties of this method are discussed in, e.g., [1].
(b) Tikhonov regularization using the discrepancy principle: Tikhonov regularization in its simplest form replaces the

solution of (1) by the solution of

(ATA + µI)x = ATb (16)

for a suitable value of the regularization parameter µ > 0. Denote the solution by xµ. Substituting the singular value
decomposition (3) into (16) shows that

xµ =

n−
j=1

σj

σ 2
j + µ

(uT
j b)vj. (17)

The parameter µ is commonly chosen as large as possible so that xµ satisfies (14), so that

‖b − Axµ‖
2

=

n−
j=1

µ2

(σ 2
j + µ)2

(uT
j b)

2
= (ηε)2;

see, e.g., [1,4] for properties of this method. The desired value of µ can be determined, e.g., with the aid of Newton’s
method.

(c) Tikhonov regularization using the quasi-optimality criterion: the regularization parameter µ > 0 in the Tikhonov
Eq. (16) is determined so that the solution, which is of the form (17), minimizes µ → ‖µ x′(µ)‖. This criterion can
be applied when no bound (4) for the norm of the error in b is available. Properties of the quasi-optimality criterion
have recently been discussed in [5].

Themethodsmentioned are used to determine a search space in the computed examples of Section 4; eachmethod yields
an approximate solution, the span of which defines a search space W ; cf. (5). We would like to stress the fact that other
solution methods for (1) can also be used to determine components of W . These include the regularized total least-squares
method, modified TSVD methods using enriched solution subspaces, generalized singular value decomposition methods,
andmethods that impose upper or lower bounds on the computed solution or on the norm of the computed solution. Large-
scale problems can be handled by applying the approach of the present paper to the reduced problems obtained by Krylov
subspace methods; see, e.g., [6,3,7–10] and references therein for discussions on a variety of the mentioned methods. Other
selection criteria for the regularization parameter in Tikhonov regularization (16), such as the L-curve, also can be applied
to determine candidate solutions for inclusion in W .

Assume that the approximate solutions x1, x2, . . . , xp of (1) have been determined by p different methods. We then
propose to define the parameterM in (7) by

M = max
i=1,2,...,p

‖xi‖.

This generally allows the computed solution to be larger than the smallest one(s) of the candidate solutions xi; moreover,
it may be viewed as a natural choice in the light of Proposition 2.1. The computed examples of the following section show
that this approach often yields a better approximation of x̂ than any one of the candidate solutions xi.
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Table 1
Qualities of the TSVD and Tikhonov solution (both matching the discrepancy principle), the quasi-optimal solution, and the linear combination technique,
for n = 100 examples with 0.1% error and η = 1.1. The last column shows the ρ-value of the linear combination solution. Each column represents the
average over 1000 different error vectors.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 1.59 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1
−0.44

deriv2-1 1.87 · 10−1 2.05 · 10−1 1.92 · 10−1 1.73 · 10−1
−0.82

deriv2-2 1.80 · 10−1 1.96 · 10−1 1.85 · 10−1 1.66 · 10−1
−0.91

deriv2-3 1.94 · 10−2 2.51 · 10−2 1.88 · 10−2 1.87 · 10−2
−0.0046

foxgood 2.26 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2
−0.45

gravity 2.06 · 10−2 2.75 · 10−2 1.78 · 10−2 1.65 · 10−2
−0.13

heat 4.62 · 10−2 5.84 · 10−2 4.31 · 10−2 4.44 · 10−2 0.089
ilaplace 1.20 · 10−1 1.26 · 10−1 1.10 · 10−1 1.06 · 10−1

−0.26
phillips 1.36 · 10−2 1.90 · 10−2 1.60 · 10−2 1.23 · 10−2

−0.26
shaw 6.33 · 10−2 4.91 · 10−2 5.66 · 10−2 5.81 · 10−2 0.64

Table 2
Same as Table 1, but now with 1% error, η = 1.1.

Problem Tikh (di.pr.) TSVD (di.pr) Tikh (quasi) Lin.comb. ρ

baart 2.21 · 10−1 1.69 · 10−1 1.74 · 10−1 1.72 · 10−1 0.046
deriv2-1 2.87 · 10−1 3.10 · 10−1 7.34 · 10−1 2.92 · 10−1 0.011
deriv2-2 2.77 · 10−1 2.99 · 10−1 3.77 · 10−1 2.57 · 10−1

−0.19
deriv2-3 4.89 · 10−2 4.89 · 10−2 4.46 · 10−2 4.69 · 10−2 0.53
foxgood 4.69 · 10−2 3.21 · 10−2 3.17 · 10−2 3.73 · 10−2 0.37
gravity 4.54 · 10−2 6.15 · 10−2 4.02 · 10−2 3.80 · 10−2

−0.1
heat 1.40 · 10−1 1.71 · 10−1 1.23 · 10−1 1.20 · 10−1

−0.072
ilaplace 1.59 · 10−1 1.67 · 10−1 1.48 · 10−1 1.42 · 10−1

−0.3
phillips 2.98 · 10−2 2.58 · 10−2 2.87 · 10−2 4.02 · 10−2 3.6
shaw 1.55 · 10−1 1.70 · 10−1 1.51 · 10−1 1.28 · 10−1

−1.1

4. Numerical examples

Let x1, x2, . . . , xp be approximate solutions of (1) and define the qualities (relative errors)

qi =
‖x̂ − xi‖

‖x̂‖
, i = 1, 2, . . . , p.

Without loss of generality, we order the approximations according to increasing quality,

q1 ≤ q2 ≤ · · · ≤ qp.

Letq denote the relative error of the approximate solutionx defined by (6). We define the following indicator of the quality
ofx,

ρ =
q − q1
qp − q1

.

The parameter ρ is a convenient measure with:

• ρ < 0 indicating thatx is a better approximation of x̂ than any one of the approximate solutions xi, i = 1, 2, . . . , p;
• ρ = 0 indicating thatx approximates x̂ as accurately as the best of the approximate solutions xi;
• ρ = 1 indicating thatx approximates x̂ as well as the worst of the approximate solutions x1, x2, . . . , xp;
• ρ > 1 indicating that all of the approximate solutions x1, x2, . . . , xp approximate x̂more accurately thanx.

Table 1 presents results for several test examples from [11] of dimension n = 100 with 0.1% error in b. The search space
W is spanned by three standard approximate solutions of (1) computed by TSVD (15) using the discrepancy principle to
determine the truncation index, by Tikhonov regularization using the discrepancy principle to determine the regularization
parameter, and by Tikhonov regularization using the quasi-optimal criterion to define the regularization parameter; see
Section 3. Once the SVD has been computed, the solutions obtainedwith these threemethods can be evaluated quite rapidly.
However, we remark that any space spanned by approximate solutions may be used.

Each column of Table 1 represents the average over 1000 different error vectors e with normally distributed random
entries with zero mean. The table shows that, on average the approximate solutionx often yields better approximations of
x̂ than the best of the approximate solutions determined by the original three methods. For two of the problems, the quality
ofx is between the best and the worst of first computed approximate solutions.

For the results of Tables 2–6, we vary the error level and the parameter η in (14). We see that the linear combination
approach frequently gives a new approximate solution that improves on the three basis solutions, in particular for low error
levels and/or larger η-values.
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Table 3
Same as Table 1, but now with 10% error, η = 1.1.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 3.76 · 10−1 3.47 · 10−1 3.20 · 10−1 2.88 · 10−1
−0.57

deriv2-1 4.45 · 10−1 4.75 · 10−1 9.37 · 10−1 4.05 · 10−1
−0.081

deriv2-2 4.32 · 10−1 4.55 · 10−1 8.61 · 10−1 3.90 · 10−1
−0.098

deriv2-3 1.14 · 10−1 1.21 · 10−1 1.05 · 10−1 1.11 · 10−1 0.4
foxgood 2.22 · 10−1 2.76 · 10−1 8.83 · 10−2 9.35 · 10−2 0.028
gravity 1.25 · 10−1 1.66 · 10−1 1.65 · 10−1 1.65 · 10−1 0.98
heat 4.10 · 10−1 4.37 · 10−1 5.59 · 10−1 3.42 · 10−1

−0.46
ilaplace 2.22 · 10−1 2.36 · 10−1 2.04 · 10−1 1.97 · 10−1

−0.21
phillips 1.08 · 10−1 1.13 · 10−1 1.40 · 10−1 1.40 · 10−1 1
shaw 2.31 · 10−1 2.73 · 10−1 1.84 · 10−1 1.83 · 10−1

−0.014

Table 4
Same as Table 1, but now with 0.1% error, η = 1.2.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 1.62 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1
−0.44

deriv2-1 1.94 · 10−1 2.14 · 10−1 1.92 · 10−1 1.76 · 10−1
−0.74

deriv2-2 1.87 · 10−1 2.05 · 10−1 1.85 · 10−1 1.69 · 10−1
−0.76

deriv2-3 2.10 · 10−2 2.69 · 10−2 1.88 · 10−2 1.78 · 10−2
−0.12

foxgood 2.50 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2
−0.46

gravity 2.25 · 10−2 2.83 · 10−2 1.78 · 10−2 1.65 · 10−2
−0.12

heat 4.90 · 10−2 6.48 · 10−2 4.31 · 10−2 4.32 · 10−2 0.008
ilaplace 1.25 · 10−1 1.27 · 10−1 1.10 · 10−1 1.06 · 10−1

−0.24
phillips 1.48 · 10−2 2.45 · 10−2 1.60 · 10−2 1.15 · 10−2

−0.33
shaw 7.23 · 10−2 4.91 · 10−2 5.66 · 10−2 5.77 · 10−2 0.37

Table 5
Same as Table 1, but now with 0.1% error, η = 1.5.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 1.67 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1
−0.42

deriv2-1 2.10 · 10−1 2.32 · 10−1 1.92 · 10−1 1.84 · 10−1
−0.19

deriv2-2 2.03 · 10−1 2.23 · 10−1 1.85 · 10−1 1.77 · 10−1
−0.2

deriv2-3 2.48 · 10−2 2.69 · 10−2 1.88 · 10−2 1.76 · 10−2
−0.15

foxgood 2.81 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2
−0.46

gravity 2.59 · 10−2 3.61 · 10−2 1.78 · 10−2 1.73 · 10−2
−0.026

heat 5.70 · 10−2 8.52 · 10−2 4.31 · 10−2 4.25 · 10−2
−0.015

ilaplace 1.33 · 10−1 1.41 · 10−1 1.10 · 10−1 1.09 · 10−1
−0.035

phillips 1.70 · 10−2 2.47 · 10−2 1.60 · 10−2 1.13 · 10−2
−0.53

shaw 9.38 · 10−2 1.01 · 10−1 5.66 · 10−2 5.65 · 10−2
−0.001

Table 6
Same as Table 1, but now with 0.1% error, η = 2.

Problem Tikh (di.pr.) TSVD (di.pr) Tikh (quasi) Lin.comb. ρ

baart 1.73 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1
−0.33

deriv2-1 2.28 · 10−1 2.52 · 10−1 1.92 · 10−1 1.91 · 10−1
−0.019

deriv2-2 2.20 · 10−1 2.33 · 10−1 1.85 · 10−1 1.81 · 10−1
−0.066

deriv2-3 2.95 · 10−2 4.39 · 10−2 1.88 · 10−2 1.86 · 10−2
−0.0075

foxgood 3.11 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2
−0.46

gravity 2.97 · 10−2 4.00 · 10−2 1.78 · 10−2 1.76 · 10−2
−0.008

heat 6.84 · 10−2 9.62 · 10−2 4.31 · 10−2 4.29 · 10−2
−0.0036

ilaplace 1.39 · 10−1 1.45 · 10−1 1.10 · 10−1 1.10 · 10−1
−0.014

phillips 1.93 · 10−2 2.47 · 10−2 1.60 · 10−2 1.13 · 10−2
−0.54

shaw 1.18 · 10−1 1.23 · 10−1 5.66 · 10−2 5.63 · 10−2
−0.0041

5. Conclusion

The evaluation of several approximate solutions x1, x2, . . . , xp of (1) is inexpensive when the SVD of the matrix A is
available. The computed examples illustrate that the ‘‘linear combination’’ approximate solution extracted from W =

span{x1, x2, . . . , xp} in many cases furnishes a better approximation of the desired solution x̂ of the unavailable error-free
system than any of the approximate solutions xi. The proposed scheme provides an inexpensive approach to determine an
improved solution from a set of available approximate solutions.
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Large-scale problems can be treated by first projecting them, e.g., by a Krylov subspace method, to a problem of small
size and then proceeding as described in the present paper to obtain several approximate solutions of this small problem.
A new solution can be extracted as described in Sections 2 and 3, and then be projected back into the high-dimensional
solution (sub)space. This yields an approximate solution of the original (large) problem. Finally, we note that approximate
solutions of (1) also can be determined by methods that do not require the evaluation of an SVD.
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